JPS60170759A - Combustible gas detecting element - Google Patents

Combustible gas detecting element

Info

Publication number
JPS60170759A
JPS60170759A JP2752284A JP2752284A JPS60170759A JP S60170759 A JPS60170759 A JP S60170759A JP 2752284 A JP2752284 A JP 2752284A JP 2752284 A JP2752284 A JP 2752284A JP S60170759 A JPS60170759 A JP S60170759A
Authority
JP
Japan
Prior art keywords
gas
detecting element
added
sensitive
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2752284A
Other languages
Japanese (ja)
Inventor
Masayuki Sakai
界 政行
Yoshihiko Nakatani
吉彦 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2752284A priority Critical patent/JPS60170759A/en
Publication of JPS60170759A publication Critical patent/JPS60170759A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To decrease only the gas sensitivity to CO while maintaining the sensitivities to other combustible gases as they are by composing a compensating element by incorporating prescribed quantities of Sn, Pt into alpha-Fe2O3. CONSTITUTION:Ferric chloride and ferrous sulfate are dissolved into water, and stannic chloride is added so that a 0.1-50mol% composition expressed in terms of SnO2 is obtained. Ammonium hydroxide solution is dropped into the solution to adjust its pH to 7. After finishing the dropping, the coprecipitate is filtered by sucking, and the obtained powder is dried. The dried material is added to an aqueous solution of platinum chloride acid, and mixed in dry state. A pair of electrodes 3, 4 are embedded into the obtained powder, and said body is ignited to obtain a sintered body 1. This body is attached to a header 13 for the detecting element to obtain the gas detecting element for compensation. Since the sensitivity of said element is small only against CO, the sensor responding only to CO can be composed by the combination with the gas detecting element sensitive to CO.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する核合金属酸化物半
導体を用いたガス検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas detection element using a nuclear alloy metal oxide semiconductor used to detect combustible gases.

従来例の構成とその問題点 近年、IiJ燃性ガスの検知素子材料について種々の(
jF究開発が活発化してきている。これは、一般家庭を
中心に各独工場などで可燃性ガスによる爆発事故や中毒
事故が多発し、大きな社会問題となっていることに強く
起因している。特にこれらの中でも、プロパンガス、あ
るいは都市ガスを検知するものについては、感度、信頼
性のいずれにおいてもかなり高いレベルのものが開発さ
れ実用化されるに至っている。これらは、例えば各種の
ガス漏れ1報器などに広く応用されている。
Structures of conventional examples and their problems In recent years, various (
JF research and development is becoming more active. This is largely due to the frequent occurrence of explosions and poisoning accidents caused by flammable gases, mainly in households and in German factories, which has become a major social problem. Among these, in particular, those that detect propane gas or city gas have been developed and put into practical use with considerably high levels of sensitivity and reliability. These are widely applied, for example, to various gas leak alarm devices.

一方、いまひとつのガス防災の社会ニーズとして、CO
の検知が話題になってきている。これは種々のガス機器
の普及と住宅構造の気密化が大きな背景となっている。
On the other hand, as another social need for gas disaster prevention, CO
detection has become a hot topic. This is largely due to the spread of various gas appliances and the airtightness of housing structures.

すなわち、ガス器具の不完全燃焼あるいは火災の初期に
新建材などから発生するCoによる中毒の問題である。
That is, there is a problem of incomplete combustion of gas appliances or poisoning due to Co generated from new building materials in the early stages of a fire.

特に後者においては、火災による死因の大部分がこれに
属するため、極めて重要な社会問題となっている。とこ
ろが現在の時点においては、COを的確に検知出来る安
価で簡便なガスセンサがないのが実状であり、前述の社
会ニーズに十分応えていない状況にある。
In particular, the latter is an extremely important social problem because it accounts for the majority of deaths caused by fire. However, at present, there is no inexpensive and simple gas sensor that can accurately detect CO, and the above-mentioned social needs are not fully met.

その理由は、他の可燃性ガス用センサの場合にはガス爆
発を防ぐのが目的であるのに対して、CO用七ンブの場
合には、C○中毒の予防が主目的であり、その量は爆発
下限界に比べると惨めで微量な値の検知を討幕としなけ
ればならないことによる。そのために、COセンサは他
の種々のガスが存在してもそれらのガスに対しては感応
しにくく、一方Coに対しては極めて微少貞の存在に対
しても感応せねはならないことになる。ずなわち、■セ
ンサはCOに対する選択性がめられ、かつ商い信頼性を
持つことが要求される。
The reason for this is that while the purpose of sensors for other combustible gases is to prevent gas explosions, the main purpose of sensors for CO is to prevent C○ poisoning. The amount is pitiful compared to the lower explosive limit, and detection of a minute amount must be considered as a counterattack. For this reason, CO sensors are not sensitive to various other gases even if they are present, while they must be sensitive to Co even in the presence of extremely small amounts. . That is, (1) the sensor is required to be selective to CO and to have commercial reliability.

低価格で高い信頼性をもつ可燃性ガスセンサにおいては
高温に保持された酸化物半導体がしばしば用いられ、そ
の抵抗値変化を検知する様にしている。この酸化物半導
体にはCo(C高感匣で感応する物質も幾種耕か見出さ
れているが、残念ながら選択性及び信頼性の面で未だ十
分なセンナが得られていないのが現状である。
In low-cost, highly reliable combustible gas sensors, oxide semiconductors that are maintained at high temperatures are often used to detect changes in their resistance. Some substances have been found in this oxide semiconductor that are highly sensitive to Co (C), but unfortunately, sufficient senna has not yet been obtained in terms of selectivity and reliability. It is.

このような状況のもと、ガス選択性改善のためガス感応
体に貴金属添加物を加えたシ、動作温度を変えたり、種
々の方法が試みられているが、COの選択的検知を1コ
の素子で行なうのには限界があると思われる。このため
複数の素子を用いる方法が考えられる。すなわちCOを
含む可燃性ガスに感応する素子とCO以外の可燃性ガス
に感応する青子(以下補償素子と呼ぶ)を組み合わせ、
それらの信号処理によってCoだけを検知しようとする
ものである。しかし、このためには、CO感応素子とと
もに補償素子が必要となり、またそのガス感度の制御が
必要となってくる。ここで困難なことはある種のガス(
この場合はCo)だけに感応しない素子(補償素子)の
作成であシ、現状ではこのような選択性に浸れた素子の
開発が遅れているのが実情である。
Under these circumstances, various methods have been tried to improve gas selectivity, such as adding noble metal additives to the gas sensitive body and changing the operating temperature. There seems to be a limit to what can be done with this element. For this reason, a method using a plurality of elements can be considered. That is, a combination of an element sensitive to combustible gases including CO and a blue element (hereinafter referred to as a compensation element) sensitive to flammable gases other than CO,
The aim is to detect only Co by processing these signals. However, this requires a compensation element as well as a CO sensitive element, and also requires control of its gas sensitivity. The difficulty here is that some types of gas (
In this case, it is necessary to create an element (compensation element) that is not sensitive only to Co), and the current situation is that the development of elements that are highly selective is delayed.

発明の目的 本発明はこのような状況に鑑みてなされたもので、CO
の選択的検知を行なうために必要な補償素子を実現する
ものである。
Purpose of the Invention The present invention was made in view of the above situation, and it
This realizes a compensating element necessary for selectively detecting.

発明の構成 本発明のガス検知素子は、SnをS n O2に換算し
て0.1〜50 mo 1 %含むa−Fe203 に
、ptを0.1〜10重量係添加したものをガス感応体
として用いたものであり、これはガス感応体の母材料で
あるSnOを含むα−Fe203にptを添加すること
により、COに対するガス感度だけを減少させ、他の可
燃性ガスの感度はそのままの値を維持させることを見出
したことによってなされたものである。
Structure of the Invention The gas sensing element of the present invention is a gas sensitive material made of a-Fe203 containing Sn in an amount of 0.1 to 50 mo 1% in terms of SnO2, to which 0.1 to 10% by weight of pt is added. By adding pt to α-Fe203 containing SnO, which is the base material of the gas sensitive material, only the gas sensitivity to CO is reduced, while the sensitivity to other combustible gases remains the same. This was achieved by discovering that the value can be maintained.

実症例の説明 以下に本発明の詳細な説明する。Description of actual case The present invention will be explained in detail below.

まず実施例1においては、a−Fe203 中に含まれ
るE+ n O2の量を変えた母体拐相中に、ptの添
加量を変化させた場合の添加効果について述べる。
First, in Example 1, the effect of adding pt when the amount of pt added is varied in the matrix phase in which the amount of E+ n O2 contained in a-Fe203 is varied will be described.

〔実姉例1〕 市販の塩化第二鉄(FeCff13−eR20) 3o
yと(iRM第一鉄(Fe3O3・7H2o)6oyを
12の水に浴かし、50Cに保ちながら攪拌した。これ
に市販の塩化第二錫(5n(j2゜・6M 20 )を
、第1表(Sn02量)に示すような組成になるように
加えた。M液の温度を60Cに保ちつつ、この溶液にB
規定の水酸化アンモニウム(NH2OH)浴液を60C
C,/分の割合で溶液の水素イオン一度が7になるまで
滴下した。滴下終了後、ただちにこの共沈物を吸引ろ過
した。このようにして得られた粉体を空気中で110C
で乾燥した。この乾燥物を空気中において400Cで1
時間の熱処理を行なった0 この熱処理粉体に、第1表(Pt量)に示すような組成
になるように市販の塩化白金酸(H4F tcff6・
61′120)を水に溶かしてこの濃度が1007%/
rniになるように調督した溶液を添加した。そしてそ
れぞえしの粉体をらいかい機で3時間乾式混合した。
[Actual sister example 1] Commercially available ferric chloride (FeCff13-eR20) 3o
y and (iRM ferrous (Fe3O3・7H2o) 6oy) were bathed in 12 liters of water and stirred while maintaining the temperature at 50C. Commercially available stannic chloride (5n (j2゜・6M 20 ) B was added so that the composition was as shown in the table (amount of Sn02).While keeping the temperature of M solution at 60C, B was added to this solution.
Specified ammonium hydroxide (NH2OH) bath solution at 60C
The hydrogen ions in the solution were added dropwise at a rate of 7 C,/min until the number of hydrogen ions in the solution reached 7. Immediately after the dropwise addition was completed, the coprecipitate was suction-filtered. The powder thus obtained was heated at 110C in air.
It was dried. This dried material was heated to 400C in air for 1
This heat-treated powder was heated with commercially available chloroplatinic acid (H4F tcff6.
61'120) in water and the concentration is 1007%/
A solution adjusted to reach rni was added. Then, the respective powders were dry-mixed using a mill for 3 hours.

この粉体に2本の白金線を埋め込んで、直径2順、^さ
3喘の円柱状に加圧成型し、空気中において760Cで
1時間の焼成を行なった。得られた多孔室の焼結体を検
知累子用ヘツグーにとりつけ、焼結体のまわシにコイル
状のヒータを配置し、防錫用のステンレス鋼網をかぶせ
て検知素子を4#た。
Two platinum wires were embedded in this powder, which was pressure-molded into a cylinder shape with a diameter of 2 and a diameter of 3 mm, and fired at 760C for 1 hour in air. The obtained sintered body with the porous chamber was attached to a sensing element bracket, a coil-shaped heater was placed around the sintered body, and a tin-proof stainless steel net was covered to form a 4-inch sensing element.

第1図はガス検知素子の構造を示したものである。図に
おいて、1は焼結体で、2本の白金、尿からなる電極3
.4が埋め込まれている。2は焼結体1を加熱するため
のヒータで、ヒータ用ピン11.12からヒータ用フレ
〜ム7,8を赳じてヒータに電力が供給される。焼結体
1の抵抗Qユ電極3,4からフレーム6.6を通じてピ
ン9,10の間で測定されるよう構成されている。ヒー
タ用ピン11.’+2およびピン9.10はヘッダー1
3に固定され、ステンレス銅製金網14はヘッダーにと
りつけられている。
FIG. 1 shows the structure of a gas detection element. In the figure, 1 is a sintered body, and 2 electrodes 3 made of platinum and urine.
.. 4 is embedded. Reference numeral 2 denotes a heater for heating the sintered body 1, and power is supplied to the heater through heater pins 11 and 12 through heater frames 7 and 8. The resistance Q of the sintered body 1 is configured to be measured between the pins 9, 10 from the electrodes 3, 4 through the frame 6.6. Heater pin 11. '+2 and pin 9.10 are header 1
3, and a stainless copper wire mesh 14 is attached to the header.

以上のようにして得られた素子について、ガス感応特性
(’ 350 C)を調べた。
The gas sensitivity characteristics (' 350 C) of the device obtained as described above were investigated.

ガス感応特性の測定方法は、あらかじめ検知素子のヒー
タ部に電流を流し、感応体の温度が350Cになるよう
に調蟹しておき、それを容積の知られている測定箱内に
挿入した後、注射器でテスト用ガ2(COガス(CO5
−0%とN295.0%との混合ガス)、)ガス(99
%以上)、およびi C4〜。:/jス(99%以上)
)を測定箱内に注入し、Co、N2.%るい/r!1−
C4H1o誕度が。、α容量%(1ooppm)に達し
た時に焼結感応体の抵抗値を測定した。測定するガス濃
度を1100pp に選んだのは、Coの労働衛生上の
許容濃度が100 Ppm であるため、少なくともこ
の濃度以下で感応する必要があるからである。
The method for measuring gas sensitivity characteristics is to apply a current to the heater part of the sensing element in advance, adjust the temperature of the sensing element to 350C, and then insert it into a measurement box with a known volume. , test gas 2 (CO gas (CO5) with a syringe)
-0% and N295.0% mixed gas),) gas (99
% or more), and i C4~. :/jsu (99% or more)
) was injected into the measurement box, and Co, N2. %rui/r! 1-
C4H1o birthday. , the resistance value of the sintered sensitive body was measured when α capacity % (1 ooppm) was reached. The gas concentration to be measured was chosen to be 1100 ppm because the permissible concentration of Co in terms of industrial hygiene is 100 ppm, so it was necessary to be sensitive at least below this concentration.

ガス感応特性は、(1ンガス感度(空気中の抵抗値(R
a )7ガス中の抵抗値(Rcr)で評価した。
The gas sensitivity characteristic is (1 gas sensitivity (resistance value in air (R
a) Evaluation was made using the resistance value (Rcr) in 7 gases.

第1表にガスlfv度(Ra/)Icy)を記載した。Table 1 shows the gas lfv degree (Ra/)Icy).

以 下 余 白 粥1表 ■ 比較物 第1表より、S n O2を0.1〜50モル%含Lr
α−F’ e 203にptを添加することにより、C
oに対してだけ顕著な感度の低下が認められ、Co用の
補填素子として実現し得ることがわかった。
Below Margin Table 1 ■ Comparative Table 1 From Table 1, Lr containing 0.1 to 50 mol% of S n O2
By adding pt to α-F' e 203, C
A remarkable decrease in sensitivity was observed only for Co, indicating that it can be realized as a complementary element for Co.

この実姉例1ては、感応体が焼結体の場合であったが、
次に示す実姉例2ては感応体が焼結膜の場合のptの添
加効果について述べる。
In this sister example 1, the sensitive body was a sintered body, but
In Example 2 shown below, the effect of adding PT when the sensitive body is a sintered film will be described.

〔実姉例2〕 出発原料は市販の塩化第二鉄(k e Cl s・6H
20)309と硫酸第一鉄(F@1804−7H20)
eoyK塩化第二>3(5nCF!4−5820)を渠
2表(Sn○2量)に示すような組成になるように添加
し、実姉例1と同イボの方法で共沈物を得た。これを乾
燥。
[Sister Example 2] The starting material is commercially available ferric chloride (keCls・6H
20) 309 and ferrous sulfate (F@1804-7H20)
eoyK chloride 2>3 (5nCF!4-5820) was added so that the composition was as shown in Table 2 (Sn○2 amount), and a coprecipitate was obtained using the same method as in Example 1. . Dry this.

熱処理を行ない、これに第2fi(Pi量)に示すよう
な組成pcなるように市販の塩化白金酸(N2PtC1
26・e M 20 )を水に浴かしてこの屓度が10
0 j3f / mlに調整した溶液を添加し、それぞ
れの粉体をらいかい機で3時間乾式混合した。
After heat treatment, commercially available chloroplatinic acid (N2PtC1
26・e M 20 ) is bathed in water and its hardness is 10.
A solution adjusted to 0 j3f/ml was added, and each powder was dry mixed for 3 hours using a miller.

この粉体を60〜100μに整粒し、トリエタノールア
ミンを加えてペースト化した。これを用いて作成して焼
結膜型ガス検知素子の構造を第2図a、bKそれぞれ表
面図および裏面図として示した0図において、ガス検知
素子の基板として帳。
This powder was sized to a size of 60 to 100 microns, and triethanolamine was added to form a paste. The structure of a sintered film type gas sensing element created using this is shown in Figures 2a and 2b as a front view and a back view, respectively, as a substrate of the gas sensing element.

横それぞれ5111m v厚みQ 、 5111111
のアルミナ基板15の表m1に0 、5 ntmの間隔
に一対の櫛形の金電極16を形成した。裏面には抵抗体
用の金電極17も同時に形成し、この間にグレーズ抵J
’jr体18を印刷し、現きつけてヒータとした。
Width: 5111m, respectively Thickness: Q, 5111111
A pair of comb-shaped gold electrodes 16 were formed on the surface m1 of the alumina substrate 15 at an interval of 0.5 ntm. A gold electrode 17 for the resistor is also formed on the back side at the same time, and a glaze resistor J is formed at the same time.
'jr type 18 was printed, exposed and used as a heater.

次に、上述のペーストケ基板の表面に約70μのノ卑み
に印刷し、室温で自然乾燥させた後、750Cの温度に
なるまで徐々に加熱し、この温度で1時間保持した。こ
の段階てペーストが#、発し、焼結膜19になった。こ
のガスl騒応体のノ厚みは約56それぞれの検知素子の
ガス感応特性を実施例1の場合と同様の方法で測定し、
第2表に示した。
Next, it was printed on the surface of the above-mentioned Pasteke substrate with a thickness of about 70 μm, and after air drying at room temperature, it was gradually heated to a temperature of 750 C and held at this temperature for 1 hour. At this stage, the paste was released and became a sintered film 19. The thickness of this gas-reactive body was approximately 56. The gas sensitivity characteristics of each sensing element were measured in the same manner as in Example 1.
It is shown in Table 2.

第2表から明らかなように、感応体が焼結膜であっても
実施例1て得られたのとほぼ同じ特性が得られている。
As is clear from Table 2, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film.

丑た第1衣と第2表からS n O2の量が0.1モル
嘱未満及び50モルφ以上ではCo以外の可燃性ガスに
対して感度が小さいので用いられない、Ptの添加量と
しては0.1!量係未満ではその効果はなく、そして1
0重童%を超えると特性の安定性の而で実用性に欠ける
ようになる0本発明のガス検知素子に含まれるS n 
O2とPt量を限定したの(d上述した理由に依る。
From Ushita No. 1 and Table 2, if the amount of S n O2 is less than 0.1 mol or more than 50 mol φ, the sensitivity to combustible gases other than Co is low, so it cannot be used, and as the amount of Pt added. is 0.1! There is no effect below the amount, and 1
If it exceeds 0%, it becomes impractical due to the stability of the characteristics.Sn contained in the gas detection element of the present invention
The O2 and Pt amounts were limited (d) for the reasons mentioned above.

ところで、実施例1および2では母材料の出発原料とし
て、鉄塩ては硫酸第一鉄と塩化第二鉄を、錫塩として塩
化物を用いた。またptについては塩化白金酸を用いた
ものについて述べたが、本発明は最終的に感応体の組成
が前述した範囲内のものであればよく、伺ら出発原料や
製造工程を限定するものではない。
By the way, in Examples 1 and 2, ferrous sulfate and ferric chloride were used as the iron salts, and chloride was used as the tin salt as the starting materials for the base materials. Regarding PT, we have described the one using chloroplatinic acid, but in the present invention, the final composition of the susceptor only needs to be within the above-mentioned range, and the starting materials and manufacturing process are not limited. do not have.

発明の詳細 な説明したように、本発明のガス検知素子は、添加物と
してSn○2を含むα−Fe203にさらにptを添加
した焼結体あるいは焼結膜を感応体として用いたもので
あシ、これによって選択的微量検知がiil+ Lいと
されてきたCOガスに対して、複数センサ方式(Coに
も感応する素子と、COに感応しない素子の組み合わせ
による信号処理方式)を実現し得る補償素子を提供する
ものである。
As described in detail, the gas sensing element of the present invention uses a sintered body or a sintered film obtained by adding pt to α-Fe203 containing Sn○2 as an additive as a sensitive body. , thereby creating a compensation element that can realize a multi-sensor system (a signal processing system using a combination of an element that is also sensitive to Co and an element that is not sensitive to CO) for CO gas, which has been said to be able to selectively detect trace amounts of Iil+L. It provides:

ここで、本発明品を用いた複数センサ方式によるCOの
選択的検知の一例を載せる。
Here, an example of selective CO detection using a multiple sensor method using the product of the present invention will be described.

COにも感応する素子としてb n O2を10モル係
含むa F e 203 (第’表の試料NO,A−9
)を用い補償素子としては上記組成にptを1.0重縮
%添加したもの(第1表の試料No、A−4)を組み合
わせた場合の、それぞれの素子のガスtag txと、
この画素子に可燃性ガス(たとえば1100pp濃度の
C09H2,あるいは1−C4H1゜ガス)が接触した
時の抵抗値の低下が、あらかじめ設定しておいた抵抗値
以下になるとスイッチが動作するようにした場合の結果
を合わぜて第3表に示す。
a Fe 203 containing 10 mol of b n O2 as an element sensitive to CO (Sample No. A-9 in Table ')
) and the compensation element is a combination of the above composition with 1.0% PT added (sample No. A-4 in Table 1), the gas tag tx of each element,
When this pixel element comes into contact with a flammable gas (for example, C09H2 at a concentration of 1100pp, or 1-C4H1° gas), the switch will operate when the drop in resistance value falls below a preset resistance value. Table 3 shows the results for both cases.

第3表 し− 1−′ この結果よシ、Coの時だけ画素子の信号が異なシ、他
の可燃性ガスと区別出来ることがわかる。
Table 3-1-' From this result, it can be seen that the signal of the pixel element is different only when Co is used, and it can be distinguished from other combustible gases.

これはガス器具の不完全燃焼あるいは火災の初期に発生
するCoによる中毒事故が多発する傾向にある昨今、こ
れを未然に防ぐCOセンサの要求が大きくなりつつある
社会ニーズに的確に対応するものであり、その効果は極
めて大なるものがある。
This is an accurate response to the growing social needs of CO sensors that can prevent CO poisoning accidents that occur in incomplete combustion of gas appliances or in the early stages of fires, as accidents tend to occur frequently these days. Yes, and the effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるガス検知素子の構造の一例を示
す図、第2図a、bは同素子の表面図および裏面図であ
る。 1・・・・・・焼結体、2・・・・・・ヒータ、3,4
・・・・・・電極、5.6 ・・・フレーム、7..8
・・・・・・ヒータ用ンレーム、9,10・・、・・・
ビン、11 .12 ・・・ヒ〜りJIJピノ、12 
・・・・−\ツター114 ・・・ステンレス錦]製金
網、15・・・・・・アルミナ基板、16・・・・・分
電j+i1K、17・・・抵抗体用金電極、18・・・
クレース爪1ノ’+。 体、19・・・・か)L結膜。 代理人の氏名 弁理士 中 尾 1カ(男 ほか1名第
1図 第2[ヌ1 (a、)表面 Oy)裏面
FIG. 1 is a diagram showing an example of the structure of a gas sensing element according to the present invention, and FIGS. 2a and 2b are a front view and a back view of the element. 1... Sintered body, 2... Heater, 3, 4
... Electrode, 5.6 ... Frame, 7. .. 8
・・・・・・Heater frame, 9, 10...
Bottle, 11. 12 ... Hi~ri JIJ Pino, 12
....-\Tutter 114 ... Stainless brocade] wire mesh, 15 ... Alumina substrate, 16 ... Distribution j+i1K, 17 ... Gold electrode for resistor, 18 ...・
Clase nail 1 no'+. Body, 19...?) L conjunctiva. Name of agent: Patent attorney Nakao 1ka (male and 1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)eijA(S”)をS n O2に換算して0.
1〜50モル係含むアルファ型識比第二鉄(aF’ e
 203 )に白金(pt)を0.1〜10重量係添加
したもa、をガス感応体とし、これに電気抵抗測足用の
1対の電極と加熱用のヒータを打力して可燃性ガスの一
度変化によシ、該ガス感応体の電気抵抗116が変化す
ることを用いて可燃性ガスを検知することを特徴とする
可燃性ガス検知素子。
(1) Convert eijA(S”) to S n O2 and convert it to 0.
Alpha-type ferric iron (aF' e
203) to which 0.1 to 10% by weight of platinum (pt) was added was used as a gas sensitive material, and a pair of electrodes for measuring electrical resistance and a heater for heating were applied to it to make it flammable. A combustible gas detection element characterized in that a combustible gas is detected by using a change in electrical resistance 116 of the gas sensitive body due to a single change in gas.
(2) ガス感応体が加圧成型し、焼成して得られる焼
結体、またはペーストを印刷して焼成して得ら
(2) A sintered body obtained by pressure molding and firing a gas sensitive body, or a sintered body obtained by printing a paste and firing it.
JP2752284A 1984-02-16 1984-02-16 Combustible gas detecting element Pending JPS60170759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2752284A JPS60170759A (en) 1984-02-16 1984-02-16 Combustible gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2752284A JPS60170759A (en) 1984-02-16 1984-02-16 Combustible gas detecting element

Publications (1)

Publication Number Publication Date
JPS60170759A true JPS60170759A (en) 1985-09-04

Family

ID=12223453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2752284A Pending JPS60170759A (en) 1984-02-16 1984-02-16 Combustible gas detecting element

Country Status (1)

Country Link
JP (1) JPS60170759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155360A (en) * 2014-02-21 2015-08-27 株式会社オメガ Production method of sinter ceramic electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121795A (en) * 1978-03-15 1979-09-21 Fujitsu Ltd Production of gas detecting element material
JPS54145196A (en) * 1978-05-02 1979-11-13 Toshiba Corp Gas sensitive element
JPS54145197A (en) * 1978-05-02 1979-11-13 Toshiba Corp Gas sensitive element
JPS5533609A (en) * 1978-08-31 1980-03-08 Toshiba Corp Gas-sensitive element
JPS5610246A (en) * 1979-07-06 1981-02-02 Matsushita Electric Ind Co Ltd Combustible gas detecting element
JPS5649950A (en) * 1979-10-01 1981-05-06 Nohmi Bosai Kogyo Co Ltd Gas-detecting element and gas-detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121795A (en) * 1978-03-15 1979-09-21 Fujitsu Ltd Production of gas detecting element material
JPS54145196A (en) * 1978-05-02 1979-11-13 Toshiba Corp Gas sensitive element
JPS54145197A (en) * 1978-05-02 1979-11-13 Toshiba Corp Gas sensitive element
JPS5533609A (en) * 1978-08-31 1980-03-08 Toshiba Corp Gas-sensitive element
JPS5610246A (en) * 1979-07-06 1981-02-02 Matsushita Electric Ind Co Ltd Combustible gas detecting element
JPS5649950A (en) * 1979-10-01 1981-05-06 Nohmi Bosai Kogyo Co Ltd Gas-detecting element and gas-detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155360A (en) * 2014-02-21 2015-08-27 株式会社オメガ Production method of sinter ceramic electrode

Similar Documents

Publication Publication Date Title
JPS5853862B2 (en) Flammable gas detection element
US3625756A (en) Method for making a gas-sensing element
WO1992017773A1 (en) Tin oxide gas sensors
EP0022369B1 (en) Combustible gas detecting elements
JPH0429023B2 (en)
EP0095313B1 (en) Combustible gas-detecting element and its production
JPS60170759A (en) Combustible gas detecting element
JPH0423212B2 (en)
JPH0230661B2 (en) GASUKENCHISOSHI
JPH0875698A (en) Gas sensor
JPS60170760A (en) Combustible gas detecting element
JPH022534B2 (en)
JPH0230663B2 (en) GASUKENCHISOSHI
JPH0230662B2 (en) COSENSA
JP3919306B2 (en) Hydrocarbon gas detector
JPH01321348A (en) Hydrogen gas sensor
JPH022099B2 (en)
JPH022100B2 (en)
JP3919305B2 (en) Hot wire semiconductor gas detector for air pollution detection
KR0158561B1 (en) Method of manufacturing thick-film for one-fired inflammability gas sensor
JPS60253859A (en) Gas sensor
JPS6152938B2 (en)
JPS58200153A (en) Gas detection element
JPH027025B2 (en)
JPS5853741B2 (en) Kanenseigaskenchisoshi