JPH022099B2 - - Google Patents

Info

Publication number
JPH022099B2
JPH022099B2 JP10514883A JP10514883A JPH022099B2 JP H022099 B2 JPH022099 B2 JP H022099B2 JP 10514883 A JP10514883 A JP 10514883A JP 10514883 A JP10514883 A JP 10514883A JP H022099 B2 JPH022099 B2 JP H022099B2
Authority
JP
Japan
Prior art keywords
gas
sensor
sensitivity
cuo
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10514883A
Other languages
Japanese (ja)
Other versions
JPS59230150A (en
Inventor
Yoshiko Muneno
Masayuki Sakai
Yoshihiko Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10514883A priority Critical patent/JPS59230150A/en
Publication of JPS59230150A publication Critical patent/JPS59230150A/en
Publication of JPH022099B2 publication Critical patent/JPH022099B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属
酸化物半導体を用いたCOセンサに関するもので
ある。 従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々
の研究開発が活発化してきている。これは、一般
家庭を中心に各種工場などで可燃性ガスによる爆
発事故や中毒事故が多発し、大きな社会問題とな
つていることに強く起因している。 特にこれらの中でも、プロパンガス、あるいは
都市ガスを検知するものについては、感度、信頼
性のいずれにおいてもかなり高いレベルのものが
開発され実用化されるに至つている。これらは、
例えば各種のガス漏れ警報器などに広く応用され
ている。 一方、いまひとつガス防災の社会ニーズとして
COの検知が話題になつてきている。これは種々
のガス機器の普及と住宅構造の気密化が大きな背
景となつている。すなわち、ガス器具の不完全燃
焼あるいは火災の初期に新建材などから発生する
COによる中毒の問題である。特に後者において
は、火災による死因の大部分がこれに属するた
め、極めて重要な社会問題となつている。ところ
が現在の時点においては、COを的確に検知でき
る安価で簡便なガスセンサがないのが実状であ
り、前述の社会ニーズに十分応えていない状況に
ある。その理由は、一般的な可燃性ガスを対象と
したセンサの場合には検知されるべき可燃性ガス
の濃度が爆発下限界の数分の1以上という程度で
あるのに対して、CO用センサの場合には極めて
微量のCOを検知せねばならないことによる。す
なわち、他の可燃性ガス用センサの場合にはガス
爆発を防ぐのが目的であるのに対して、CO用セ
ンサの場合には、CO中毒の予防が主目的であり、
その量は爆発下限界に比べると極めて微量な値の
検知を対象としなければならないことによる。低
価格で高い信頼性をもつ可燃性ガスセンサにおい
ては高温に保持された酸化物半導体がしばしば用
いられ、その抵抗値変化を検知する様にしてい
る。この酸化物半導体にはCOに高感度で、ある
いは選択的に感応する物質も幾種類か見出されて
いるが、残念ながら信頼性の面で未だ十分なセン
サが得られていないのが現状である。 発明の目的 本発明はこのような状況に鑑みてなされたもの
で、COに高感度でかつ信頼性の高いCOセンサを
実現するものである。 発明の構成 本発明は酸化銅(CuO)をガス感応体として用
いたガス検知素子において、これに対する添加物
の効果について検討している中で見出されたもの
である。 すなわち、本発明のCOセンサはCuOに対して
AuをAuに換算して0.1〜10重量%添加したもの
をガス感応体として用いたものであり、これによ
り、ガス感応特性とその信頼性が飛躍的に向上
し、しかも先述の微少量のCOに対しても実用上
十分大きな感度を実現し得ることを見出したこと
によつてなされたものである。 実施例の説明 以下に本発明の実施例を説明する。 まず実施例1においては、市販のCuOを用い、
これに対するAuの添加量効果について述べる。 実施例 1 市販の酸化銅(CuO)に、市販の塩化金酸
(HAuCl4・4H2O)を水に溶かしてこの濃度が
100mg/mlになるように調製した溶液を第1表中
に示したようにそれぞれ添加した。そしてそれぞ
れの粉体をらいかい機で3時間乾式混合した。こ
の粉体に2本の白金線を埋め込んで、直径2mm、
高さ3mmの円柱状に加圧成型し、空気中において
750℃で1時間の焼成を行なつた。得られた多孔
質の焼結体を検知素子ヘツダーにとりつけ、焼結
体のまわりにコイル状のヒータを配置し、防爆用
のステンレス鋼網をかぶせて検知素子を得た。 第1図と第2図a,bはCOセンサの構造を示
したものである。図において、1は焼結体で、2
本の白金線からなる電極3,4が埋め込まれてい
る。2は焼結体1を加熱するためのヒータで、ヒ
ータ用ピン11,12からヒータ用フレーム7,
8を通じてヒータに電力が供給される。焼結体1
の抵抗は電極3,4からフレーム5,6を通じて
ピン9,10の間で測定されるように構成されて
いる。ヒータ用ピン11,12およびピン9,1
0はヘツダー13に固定され、ステンレス鋼製金
網14はヘツダーにとりつけられている。 以上のようにして得られたCOセンサについて、
ガス感応特性、通常使用温度(350℃)での課電
寿命を調べた。 ガス感応特性の測定方法は、あらかじめCOセ
ンサのヒータ部に電流を流し、感応体の温度が
350℃になるように調整しておき、それを容積の
知られている測定箱内に挿入した後、注射器でテ
スト用ガス(COガス(CO5.0%とN295.0%との
混合ガス)、及びH2ガス(99%以上))を測定箱
内に注入し、COあるいはH2の濃度が0.01容量%
(100ppm)に達した時に焼結感応体の抵抗値を測
定した。測定するガス濃度を100ppmに選んだの
は、COの労働衛生上の許容濃度が100ppmである
ため、少なくともこの濃度以下で感応する必要が
あるからである。 ガス感応特性は、(i)ガス感度(空気中の抵抗値
(Ra)/ガス中の抵抗値(Rg))、(ii)抵抗経時変
化率△R(感応体を350℃の温度で2000時間保持し
た場合の抵抗値の初期値に対する変化率)で評価
した。第1表及び第3図には、添加物(Au)を
加えた場合のガス感度(Ra/Rg)と、抵抗経時
変化率(△R)を示す。CuO等のP型の酸化物半
導体の場合、これにCOやH2等の還元性ガスが触
れると抵抗が大きくなる性質をもつている。すな
わちガス感度をRa/Rgで定義すれば1より小さ
い程感度が大きいと言える。
INDUSTRIAL APPLICATION FIELD The present invention relates to a CO sensor using a composite metal oxide semiconductor used to detect flammable gas. Conventional configuration and its problems In recent years, various research and development activities have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosions and poisoning accidents caused by flammable gas occur frequently, mainly in households and in various factories, and have become a major social problem. Among these, in particular, those that detect propane gas or city gas have been developed and put into practical use with considerably high levels of sensitivity and reliability. these are,
For example, it is widely applied to various gas leak alarms. On the other hand, there are still some social needs for gas disaster prevention.
CO detection is becoming a hot topic. This is largely due to the spread of various gas appliances and the airtightness of housing structures. In other words, it can occur from incomplete combustion of gas appliances or from new building materials in the early stages of a fire.
The problem is CO poisoning. In particular, the latter is an extremely important social problem because it accounts for the majority of deaths caused by fire. However, at present, there is no inexpensive and simple gas sensor that can accurately detect CO, and the above-mentioned social needs are not fully met. The reason for this is that in the case of a sensor for general combustible gases, the concentration of combustible gas to be detected is at least a fraction of the lower explosive limit; In this case, extremely small amounts of CO must be detected. In other words, while the purpose of sensors for other combustible gases is to prevent gas explosions, the main purpose of sensors for CO is to prevent CO poisoning.
This is because the amount must be detected at an extremely small amount compared to the lower explosive limit. In low-cost, highly reliable combustible gas sensors, oxide semiconductors that are maintained at high temperatures are often used to detect changes in their resistance. Several types of oxide semiconductors have been found that are highly sensitive or selectively sensitive to CO, but unfortunately, sensors with sufficient reliability have not yet been obtained. be. Purpose of the Invention The present invention has been made in view of the above circumstances, and is intended to realize a CO sensor that is highly sensitive to CO and highly reliable. Structure of the Invention The present invention was discovered while studying the effect of additives on a gas sensing element using copper oxide (CuO) as a gas sensing element. In other words, the CO sensor of the present invention has a
The gas-sensitive material is made by adding 0.1 to 10% by weight of Au (calculated as Au), which dramatically improves the gas-sensitivity characteristics and reliability. This was achieved based on the discovery that it was possible to achieve a sensitivity high enough for practical use. Description of Examples Examples of the present invention will be described below. First, in Example 1, commercially available CuO was used,
The effect of the amount of Au added on this will be described. Example 1 Commercially available copper oxide (CuO) and commercially available chloroauric acid (HAuCl 4 4H 2 O) were dissolved in water to reach this concentration.
Solutions prepared to have a concentration of 100 mg/ml were added as shown in Table 1. The respective powders were then dry mixed for 3 hours using a mixer. Two platinum wires were embedded in this powder to create a diameter of 2 mm.
Pressure molded into a cylindrical shape with a height of 3 mm and placed in air.
Firing was performed at 750°C for 1 hour. The obtained porous sintered body was attached to a sensing element header, a coil-shaped heater was placed around the sintered body, and an explosion-proof stainless steel net was covered to obtain a sensing element. Figures 1 and 2 a and b show the structure of the CO sensor. In the figure, 1 is a sintered body, 2
Electrodes 3 and 4 made of real platinum wire are embedded. 2 is a heater for heating the sintered compact 1, and the heater frame 7,
Power is supplied to the heater through 8. Sintered body 1
The resistance is arranged to be measured from the electrodes 3, 4 through the frames 5, 6 and between the pins 9, 10. Heater pins 11, 12 and pins 9, 1
0 is fixed to a header 13, and a stainless steel wire mesh 14 is attached to the header. Regarding the CO sensor obtained as above,
We investigated the gas sensitivity characteristics and the lifespan of the battery under normal use (350°C). To measure the gas sensitivity characteristics, a current is passed through the heater section of the CO sensor in advance, and the temperature of the sensitive body is increased.
After adjusting the temperature to 350℃ and inserting it into a measurement box with a known volume, use a syringe to inject the test gas (CO gas (mixed gas of 5.0% CO and 95.0% N2 )). , and H 2 gas (99% or more)) into the measurement box, and the concentration of CO or H 2 is 0.01% by volume.
(100 ppm), the resistance value of the sintered sensitive body was measured. The gas concentration to be measured was chosen to be 100 ppm because the permissible concentration of CO for industrial hygiene is 100 ppm, so it is necessary to be sensitive to at least this concentration or lower. The gas sensitivity characteristics are (i) gas sensitivity (resistance value in air (Ra)/resistance value in gas (Rg)), (ii) resistance change rate over time △R (resistance change rate over time of 2000 hours at 350°C). Evaluation was made based on the rate of change in resistance value from the initial value when the resistance value was maintained. Table 1 and FIG. 3 show the gas sensitivity (Ra/Rg) and the rate of change in resistance over time (ΔR) when an additive (Au) is added. P-type oxide semiconductors such as CuO have the property of increasing resistance when exposed to reducing gases such as CO and H 2 . That is, if gas sensitivity is defined as Ra/Rg, it can be said that the smaller the value is than 1, the higher the sensitivity is.

【表】【table】

【表】 ※ 比較例
第1表及び第3図より、CuOにAuを0.1〜10重
量%添加することによりCOに対して極めて高い
活性度を示し、しかもこれが経時的に安定なた
め、結果的に非常に大きなガス感度と信頼性を実
現し得ることがわかる。 この実施例1では、感応体が焼結体の場合であ
り、母材料のCuOが市販試薬を用いた場合のAu
の添加物量について述べた。次に示す実施例2で
は、感応体が焼結膜の場合で、母材料のCuOは沈
殿法で得た粉体を用いた場合のAuの添加量効果
について述べる。 実施例 2 出発原料は市販の硫酸銅(CuSO4・5H2O)
100gを1の水に溶かし、50℃に保ちながら攪
拌した。この溶液の温度を50℃に保ちつつ、この
溶液に2規定の水酸化ナトリウム(NaOH)溶
液を60ml/分の割合で溶液の水素イオン濃度が9
になるまで滴下した。滴下終了後、ただちにこの
沈殿物を吸引ろ過した。さらに、この沈殿物上に
は繰り返し水を注ぎ、充分に洗浄を行つた。この
ようにして得られた粉体を空気中で110℃で1時
間の熱処理を行なつた。この熱処理粉体に、市販
の塩化金酸(HAuCl4・4H2O)を水に溶かして
この濃度が100mg/mlになるように調製した溶液
を第2表中に示したようにそれぞれ添加した。そ
してそれぞれの粉体をらいかい機で3時間乾式混
合した。 この粉体を50〜100μに整粒し、トリエタノー
ルアミンを加えてペースト化した。これを用いて
作成して焼結膜型COセンサの構造を第2図に示
した。図においてCOセンサの基板として縦、横
それぞれ5mm、厚み0.5mmのアルミナ基板1の表
面に0.5mmの間隔に一対の櫛形の金属極2を形成
した。裏面には抵抗体用の金属極3も同時に形成
し、この間にグレーズ抵抗体4を印刷し、焼きつ
けてヒータとした。 次に、上述のペーストを基板の表面に約70μの
厚みに印刷し、室温で自然乾燥させた後、750℃
の温度になるまで徐々に加熱し、この温度で1時
間保持した。この段階でペーストが蒸発し、焼結
膜5になつた。このガス感応体の厚みは約55μで
あつた。このようにしてCOセンサを得た。
[Table] *Comparative example From Table 1 and Figure 3, adding 0.1 to 10% by weight of Au to CuO shows extremely high activity against CO, and since this is stable over time, the result is It can be seen that extremely high gas sensitivity and reliability can be achieved. In this Example 1, the sensitive body is a sintered body, and the base material CuO is Au when a commercially available reagent is used.
The amount of additives was mentioned. In Example 2 shown below, the effect of the amount of Au added will be described when the sensitive body is a sintered film and the base material CuO is powder obtained by a precipitation method. Example 2 Starting material is commercially available copper sulfate (CuSO 4 5H 2 O)
100g was dissolved in 1 water and stirred while maintaining the temperature at 50°C. While keeping the temperature of this solution at 50℃, add 2N sodium hydroxide (NaOH) solution to this solution at a rate of 60ml/min until the hydrogen ion concentration of the solution is 9.
I dripped it until it was. Immediately after the dropwise addition was completed, the precipitate was suction-filtered. Furthermore, water was repeatedly poured onto this precipitate to thoroughly wash it. The powder thus obtained was heat treated in air at 110°C for 1 hour. To this heat-treated powder, a solution prepared by dissolving commercially available chloroauric acid (HAuCl 4 4H 2 O) in water to a concentration of 100 mg/ml was added as shown in Table 2. . The respective powders were then dry mixed for 3 hours using a mixer. This powder was sized to a size of 50 to 100 microns, and triethanolamine was added to form a paste. Figure 2 shows the structure of a sintered film type CO sensor created using this. In the figure, a pair of comb-shaped metal electrodes 2 are formed at an interval of 0.5 mm on the surface of an alumina substrate 1, which is 5 mm long and 5 mm wide and 0.5 mm thick, as a substrate for a CO sensor. A metal electrode 3 for a resistor was also formed on the back surface at the same time, and during this time a glaze resistor 4 was printed and baked to form a heater. Next, the above paste was printed on the surface of the substrate to a thickness of about 70μ, and after air drying at room temperature, it was heated to 750℃.
The mixture was gradually heated until the temperature reached , and maintained at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film 5. The thickness of this gas sensitive body was approximately 55μ. In this way, a CO sensor was obtained.

【表】 ※ 比較例
それぞれのCOセンサのガス感応特性を実施例
1の場合と同様の方法で測定した。第2表及び第
4図に、CuOにAuを添加した時のガス感度
(Ra/Rg)と抵抗変化率(△R)を示す。 第2表及び第4図から明らかなように、感応体
が焼結膜であつても、またCuOを沈殿法で作製し
た粉体を用いた場合でも、実施例1で得られたの
とほぼ同じ特性が得られている。また抵抗値の経
時変化率も実施例1と同様非常に小さい。 また第2表及び第4図から、Auの添加量が0.1
重量%未満ではその効果はなく、本発明の効果が
期待できない。また逆に添加量が10.0重量%を起
えるとガス感度の低下あるいは特性の安定性の面
で実用性に欠けるようになる。本発明のガス検知
素子に含まれるAu量を、CuOに対して添加する
量で0.1〜10重量%に限定したのは上述した理由
に依る。 ところで、実施例1では酸化銅として市販の酸
化物試薬を、実施例2では銅の出発原料塩として
硫酸銅を、またAuについては市販の塩化金酸を
用いたものについて述べたが、本発明は最終的に
感応体の組成が前述した範囲内のものであればよ
く、何ら出発原料や製造工程を限定するものでは
ない。 発明の効果 以上説明したように、本発明のCOセンサは、
CuOにAuを添加した焼結体あるいは焼結膜を感
応体として用いたものであり、これによつて微量
検知が難しいとされてきたCOガスに対して大き
い感度を実現し得るものである。これはガス器具
の不完全燃焼あるいは火災の初期に発生するCO
による中毒事故が多発する傾向にある昨今、これ
を未然に防ぐCOセンサの要求が大きくなりつつ
ある社会ニーズに的確に対応するものであり、そ
の効果は極めて大なるものがある。また、本発明
のいまひとつの効果は寿命特性、特に通電による
抵抗値の経時変化の大幅な軽減である。これは換
言すればあらゆる検知素子の最も重要な要素であ
る素子の信頼性の向上に極めて大きな寄与をもた
らすものである。
[Table] *Comparative example The gas sensitivity characteristics of each CO sensor were measured in the same manner as in Example 1. Table 2 and FIG. 4 show the gas sensitivity (Ra/Rg) and resistance change rate (ΔR) when Au is added to CuO. As is clear from Table 2 and Figure 4, almost the same result as that obtained in Example 1 is obtained even when the sensitive body is a sintered film or when a powder prepared by CuO precipitation method is used. characteristics have been obtained. Further, the rate of change in resistance value over time is also very small, as in Example 1. Also, from Table 2 and Figure 4, the amount of Au added is 0.1
If the amount is less than % by weight, there will be no effect, and the effects of the present invention cannot be expected. On the other hand, if the amount added exceeds 10.0% by weight, it becomes impractical in terms of reduced gas sensitivity or stability of properties. The reason why the amount of Au contained in the gas sensing element of the present invention is limited to 0.1 to 10% by weight relative to CuO is due to the above-mentioned reason. By the way, in Example 1, a commercially available oxide reagent was used as copper oxide, in Example 2, copper sulfate was used as the starting raw material salt for copper, and for Au, commercially available chloroauric acid was used. The final composition of the reactor may be within the above-mentioned range, and the starting materials and manufacturing process are not limited in any way. Effects of the Invention As explained above, the CO sensor of the present invention has
It uses a sintered body or a sintered film made of CuO with Au added as the sensitive body, and can achieve high sensitivity to CO gas, which has been considered difficult to detect in trace amounts. This is CO generated during incomplete combustion of gas appliances or at the beginning of a fire.
In recent years, there has been a tendency for accidents caused by CO poisoning to occur more frequently, and the demand for CO sensors that can prevent such poisoning is precisely responding to growing social needs, and its effects are extremely significant. Another effect of the present invention is a significant reduction in the life characteristics, especially the change in resistance value over time due to energization. In other words, this makes an extremely large contribution to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図a,bは本発明の一実施例にか
かるCOセンサの構造を示す図、第3図、第4図
は本発明の一実施例における添加物量と、COお
よびH2に対する感度(Ra/Rg)ならびに抵抗経
時変化率(△R)との関係を示した特性図であ
る。 1……焼結体。
Figures 1 and 2 a and b are diagrams showing the structure of a CO sensor according to an embodiment of the present invention, and Figures 3 and 4 are diagrams showing the amount of additives and CO and H 2 in an embodiment of the present invention. FIG. 2 is a characteristic diagram showing the relationship between sensitivity (Ra/Rg) and resistance change rate over time (ΔR). 1... Sintered body.

【特許請求の範囲】[Claims]

1 酸化カドミウム(CdO)に金(Au)が0.1〜
10重量%含まれるものをガス感応体として用いる
ことを特徴とするCOセンサ。 2 ガス感応体が加圧成型し、焼成して得られる
焼結体、またはペーストを印刷して焼成して得ら
れる焼結膜であることを特徴とする特許請求の範
囲第1項記載のCOセンサ。
1 Gold (Au) in cadmium oxide (CdO) is 0.1~
A CO sensor characterized by using a gas containing 10% by weight as a gas sensitive material. 2. The CO sensor according to claim 1, wherein the gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. .

JP10514883A 1983-06-13 1983-06-13 Co sensor Granted JPS59230150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10514883A JPS59230150A (en) 1983-06-13 1983-06-13 Co sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10514883A JPS59230150A (en) 1983-06-13 1983-06-13 Co sensor

Publications (2)

Publication Number Publication Date
JPS59230150A JPS59230150A (en) 1984-12-24
JPH022099B2 true JPH022099B2 (en) 1990-01-16

Family

ID=14399636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10514883A Granted JPS59230150A (en) 1983-06-13 1983-06-13 Co sensor

Country Status (1)

Country Link
JP (1) JPS59230150A (en)

Also Published As

Publication number Publication date
JPS59230150A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
US3625756A (en) Method for making a gas-sensing element
JPH0468586B2 (en)
JPS6133132B2 (en)
JPH022099B2 (en)
JPS58221154A (en) Gas sensor element
JPH0230661B2 (en) GASUKENCHISOSHI
JPS6024442A (en) Co sensor
JPH0230663B2 (en) GASUKENCHISOSHI
JPH0230662B2 (en) COSENSA
JPS60170760A (en) Combustible gas detecting element
JPH0572162A (en) Gas sensor
JPH0514861B2 (en)
JPS6160381B2 (en)
JPS5844368Y2 (en) Oxygen concentration detection device
JPH027025B2 (en)
JPS5840696B2 (en) gas sensing element
JPS60170759A (en) Combustible gas detecting element
JPS5853741B2 (en) Kanenseigaskenchisoshi
JPH02163647A (en) Oxide semiconductor gas sensor
JPS6129660B2 (en)
JPS58115355A (en) Calorimeter for gas
JP2004028822A (en) Semiconductor type hydrogen gas detection element
JPH09101279A (en) Catalytic combustion method gas sensor
JPS5816124A (en) Flame sensor
JPS5957153A (en) Gas detecting element