JPH022534B2 - - Google Patents

Info

Publication number
JPH022534B2
JPH022534B2 JP56097610A JP9761081A JPH022534B2 JP H022534 B2 JPH022534 B2 JP H022534B2 JP 56097610 A JP56097610 A JP 56097610A JP 9761081 A JP9761081 A JP 9761081A JP H022534 B2 JPH022534 B2 JP H022534B2
Authority
JP
Japan
Prior art keywords
semiconductor
oxygen
conductivity
oxide
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56097610A
Other languages
Japanese (ja)
Other versions
JPS5730938A (en
Inventor
Barezeru Detorefu
Sharunaa Peetaa
Fuuto Geruharuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19803024449 external-priority patent/DE3024449A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS5730938A publication Critical patent/JPS5730938A/en
Publication of JPH022534B2 publication Critical patent/JPH022534B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体がドープした金属酸化物からな
り、その導電率が酸素および被酸化性成分存在す
る際ガス組成とともに連続的に変化し、その際排
ガス全量中の酸素分圧が約1/2けた変化すると導
電率が少なくとも1けた変化する、導電率の変化
により排ガス中の酸素および(または)1酸化炭
素のような被酸化性成分の含量を測定するセンサ
の半導体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of a metal oxide doped with a semiconductor, the conductivity of which changes continuously with the gas composition in the presence of oxygen and oxidizable components. Relating to a semiconductor for a sensor for measuring the content of oxidizable components such as oxygen and/or carbon monoxide in exhaust gas by a change in conductivity, in which the conductivity changes by at least one order of magnitude when the pressure changes by about half an order of magnitude. .

このようなセンサに半導体を使用するための前
提は排ガス中の前記ガスの濃度変化に導電率変化
(△σ)が敏感に応答することである。排ガスは
有害成分として空気不足範囲では主として1酸化
炭素(CO0.4〜8%)、空気過剰範囲では主とし
て酸素(O20.5〜3%)を含み、その際CO含量は
0.03〜1%、NOx含量は1.01<λ<1.2で最高0.4
%に達する。
The premise for using a semiconductor in such a sensor is that the conductivity change (Δσ) sensitively responds to a change in the concentration of the gas in the exhaust gas. The exhaust gas mainly contains carbon monoxide (0.4-8% CO) as a harmful component in the air-deficient range, and mainly oxygen (0.5-3% O2 ) in the air-excess range, with the CO content being
0.03-1%, NOx content 1.01<λ<1.2 and max. 0.4
reach %.

空気不足範囲でCOの分折は警告信号の前提と
して重要な意義があり、空気過剰範囲でO2濃度
の分析はたとえば家庭用燃焼装置またはできるだ
け空気過剰で作動する内燃機関の制御のために重
要なので、センサのCOおよびO2への応答性が問
題である。
In the air-deficit range, the splitting of CO is of great significance as a prerequisite for warning signals, while in the air-excess range, the analysis of the O 2 concentration is important, for example, for the control of domestic combustion devices or internal combustion engines that operate with as much air as possible. Therefore, the sensor's responsiveness to CO and O 2 is an issue.

ガス状酸素と半導体酸化物の格子に組込まれた
酸素の平衡に基く導電率変化△σは半導体理論に
よれば △σ〜Po2 ±1/n (1) の式によりn4で表わされる。吸着に基く導電
率変化の場合nは2になることもあり(−1価の
酸素イオン)、COの場合n2である。これは測
定した導電率(σ)を酸素分圧(po2)に対し両
軸とも対数目盛でプロツトした第1図の曲線1お
よび2から明らかである。曲線1はFeO15モル%
を含むMgO半導体の900℃における関係、曲線2
はCoO10モル%を含むMgO半導体の同様900℃に
おける関係を表わす。曲線1の場合 d logσ/d logPO2=−1/5.75=−0.17 の比が得られ、曲線2の場合この比は1/3.5=
0.29である。これら純粋半導体酸化物の場合それ
ゆえ酸素分圧が約2けた変化する際導電率は約1/
3けた変化する。導電率のこの比較的小さい変化
は実際に排ガス中に生ずる濃度変化内の警告信号
には小さ過ぎ、導電率の温度依存性が小さい場合
またはこの温度依存性が第2の同じセンサによつ
て電気的に補償される場合、大きい電気的測定費
用のもとにのみ使用することができる。この導電
率の差は制御用には不十分である。
According to semiconductor theory, the conductivity change Δσ based on the equilibrium between gaseous oxygen and oxygen incorporated in the lattice of the semiconductor oxide is expressed by n4 according to the equation Δσ˜Po 2 ±1/n (1). In the case of conductivity change based on adsorption, n may be 2 (−1-valent oxygen ion), and in the case of CO, it is n2. This is evident from curves 1 and 2 in FIG. 1, where measured conductivity (σ) is plotted against oxygen partial pressure (po 2 ) on a logarithmic scale on both axes. Curve 1 is FeO15 mol%
Relationship at 900℃ for MgO semiconductor containing curve 2
represents the same relationship at 900°C for an MgO semiconductor containing 10 mol% of CoO. For curve 1 we get the ratio d logσ/d logPO 2 = -1/5.75 = -0.17, and for curve 2 this ratio is 1/3.5 =
It is 0.29. In the case of these pure semiconductor oxides, therefore, when the oxygen partial pressure changes by about two orders of magnitude, the conductivity decreases by about 1/
Changes by 3 digits. This relatively small change in conductivity is too small to be a warning signal within the concentration changes that actually occur in the exhaust gas, and if the temperature dependence of the conductivity is small or if this temperature dependence is detected by a second and identical sensor. If it is compensated automatically, it can only be used with high electrical measurement outlays. This conductivity difference is insufficient for control purposes.

西独公開特許公報第2648373号により酸化マグ
ネシウムまたは5酸化ニオブでドープした2酸化
スズからなるセンサ用半導体が公知である。この
半導体は導電率と酸素分圧のきわめて強い関係を
有するので、この種のセンサの信号は警告または
制御装置でさらに処理することができる。これは
第1図の曲線3にMgO5モル%を含む2酸化スズ
からなるこの種の半導体の例として示される。酸
素分圧が約1/2けた変化すると導電率は約2けた
変化する。これは比 d logσ/d logPo2=−3.5 によつても表わされる。
A sensor semiconductor consisting of tin dioxide doped with magnesium oxide or niobium pentoxide is known from DE 26 48 373 A1. Since this semiconductor has a very strong relationship between electrical conductivity and oxygen partial pressure, the signals of such sensors can be further processed in warning or control devices. This is shown in curve 3 of FIG. 1 as an example of a semiconductor of this type consisting of tin dioxide containing 5 mol % MgO. When the oxygen partial pressure changes by about 1/2 order of magnitude, the conductivity changes by about 2 orders of magnitude. This is also expressed by the ratio dlogσ/ dlogPo2 =-3.5.

導電率と酸素分圧のこの関係はもはや(1)式を導
入する半導体理論のみで説明することはできな
い。この場合測定するガス、酸素および被酸化性
ガスたとえば1酸化炭素の濃度変化のアナログ増
幅が生ずる。この増幅は半導体表面の触媒作用を
意図的に低下することにより達成され、この触媒
作用は相当する反応平衡たとえば CO+1/2O2Co2 (2) の式による平衡がごく遅く調節されるように弱く
なければならず、いずれにせよこの調節は反応成
分たとえばCOおよびO2の吸着平衡の調節より著
しく遅く行われなければならない。これはとくに
種々のガスの吸着もしくは化学吸着の強さが異な
る場合(競合吸着)または固体表面における被吸
着物の解離過程の速度が異なることによりもしく
は反応機構(アングミユアヒンシエルウツド、エ
リー−リデアル)が異なることによつて可能であ
る。したがつて測定信号の前記アナログ増幅はセ
ンサとして使用する半導体の触媒作用を減少する
方向への化学的調製に関係する。それによつて表
面に近い範囲で金属イオンの還元がどの程度行わ
れるかはまだ正確に決定できない。半導体動作と
著しく低下した触媒作用の組合せは半導体の1定
の化学的組成によつて達成され、その際半導体動
作は化学吸着によつても、半導体格子に対する酸
素の離脱および組込みによつても調節することが
できる。
This relationship between conductivity and oxygen partial pressure can no longer be explained only by semiconductor theory that introduces equation (1). In this case, an analog amplification of the concentration changes of the gases to be measured, oxygen and oxidizable gases such as carbon monoxide, takes place. This amplification is achieved by deliberately reducing the catalytic activity of the semiconductor surface, which is so weak that the corresponding reaction equilibrium, e.g. according to the equation CO+1/2O 2 Co 2 (2), is adjusted very slowly. In any case, this adjustment must take place significantly slower than the adjustment of the adsorption equilibrium of the reaction components, such as CO and O 2 . This is particularly the case when the adsorption or chemisorption strength of the various gases differs (competitive adsorption), or because of the different rates of the dissociation process of the adsorbate on the solid surface, or because of the reaction mechanism (Angmi-Uahinschel-Ud, Ellie). - redeal) are different. Said analog amplification of the measurement signal therefore involves a chemical conditioning towards reducing the catalytic effect of the semiconductor used as a sensor. The extent to which metal ions are thereby reduced close to the surface cannot yet be determined precisely. The combination of semiconducting behavior and significantly reduced catalytic activity is achieved by a certain chemical composition of the semiconductor, in which the semiconducting behavior is regulated both by chemisorption and by the desorption and incorporation of oxygen into the semiconductor lattice. can do.

特願昭52−128550号に記載のドープした酸化ス
ズは酸素過剰範囲(λ>1)では非常に良好に使
用され、すなわち数%の小さい濃度変化が測定さ
れ、またはこの半導体から製造したセンサは十分
に早い応答時間で燃焼過程を制御できるけれど、
その測定可能性は酸素不足範囲へは十分におよば
ず、λ=1を中心とする全範囲をたとえばMgO
ドープしたCr2O3半導体で生ずるような急変なし
に連続的に検出することができない。
The doped tin oxide described in Japanese Patent Application No. 52-128550 can be used very well in the oxygen excess range (λ>1), i.e. small concentration changes of a few percent can be measured, or sensors made from this semiconductor can be Although the combustion process can be controlled with a sufficiently fast response time,
Its measurability does not fully extend to the oxygen-deficient range, and the entire range centered at λ = 1 is
It cannot be detected continuously without sudden changes as occurs with doped Cr 2 O 3 semiconductors.

本発明による半導体は酸化マグネシウム、酸化
アルミニウム、酸化イツトリウム、2酸化チタ
ン、5酸化タンタル、5酸化ニオブまたは5酸化
バナジウムをドープした2酸化セリウムからなる
ことを特徴とする。この特徴を有する本発明の半
導体の利点はこれから製造したセンサがλ=0.9
〜1.2の範囲で約4けたにわたつて拡がる連続的
で均一な経過のλ−R特性を有することである。
電気抵抗と酸素および1酸化炭素濃度の関係は直
線的でないけれど、上昇は連続的に変化するので
較正が容易に可能であり、前記全範囲にわたつて
満足な測定経果が得られる。測定範囲の検出上限
はCO約500ppmである。
The semiconductor according to the invention is characterized in that it consists of cerium dioxide doped with magnesium oxide, aluminum oxide, yttrium oxide, titanium dioxide, tantalum pentoxide, niobium pentoxide or vanadium pentoxide. The advantage of the semiconductor of the present invention having this feature is that the sensor manufactured from it has λ = 0.9
It has a continuous and uniform course of λ-R characteristics extending over about 4 orders of magnitude in the range of ~1.2.
Although the relationship between electrical resistance and oxygen and carbon monoxide concentrations is not linear, the rise changes continuously so that calibration is easily possible and satisfactory measurement results are obtained over the entire range. The upper detection limit of the measurement range is approximately 500ppm CO.

2酸化セリウムを前記酸化物0.1〜10モル%で
ドープすることにより本発明の半導体はさらに有
利に形成される。
The semiconductor of the present invention is further advantageously formed by doping cerium dioxide with 0.1 to 10 mol % of said oxide.

前述のように第1図には種々のタイプの半導体
の導電率と酸素分圧の関係が両軸とも対数目盛で
プロツトして示される。第2図には温度範囲400
〜500℃の種々の半導体の抵抗と酸素または1酸
化炭素含量の関係を示し、抵抗は縦軸に対数目盛
でプロツトされる。横軸に示す範囲はガス室内の
λ値約0.9〜1.2に相当する。
As mentioned above, FIG. 1 shows the relationship between conductivity and oxygen partial pressure for various types of semiconductors, plotted on a logarithmic scale on both axes. Figure 2 shows the temperature range 400
The resistance of various semiconductors is shown as a function of oxygen or carbon monoxide content at temperatures up to 500°C, with resistance plotted on a logarithmic scale on the vertical axis. The range shown on the horizontal axis corresponds to a λ value of approximately 0.9 to 1.2 within the gas chamber.

半導体の製造は金属塩化物または硝酸塩のほぼ
中性溶液からアンモニアにより金属水酸化物を沈
澱させるように行われる。次にこの水酸化物を灼
熱して酸化物にし、これを微粉に摩砕する。この
粉末をタブレツトに圧縮し、焼結によつて硬化
し、電気的接続リードを備える。または粉末をケ
イ酸塩または高沸点有機混和剤のような無機また
は有機稀釈剤と塗布可能のペーストに混合し、こ
れを酸化アルミニウムからなるセラミツク板のよ
うな不活性支持体へ厚膜または薄膜技術で配置す
る。接触はこの場合、金または白金の導体路によ
り行われる。
The manufacture of semiconductors is carried out by precipitation of metal hydroxides with ammonia from approximately neutral solutions of metal chlorides or nitrates. The hydroxide is then scorched to form an oxide, which is ground into a fine powder. This powder is compressed into tablets, hardened by sintering, and provided with electrical connection leads. or by mixing the powder with inorganic or organic diluents such as silicates or high-boiling organic admixtures into a spreadable paste and applying this to an inert support such as a ceramic plate made of aluminum oxide using thick or thin film techniques. Place it in The contact is made in this case by means of gold or platinum conductor tracks.

後に半導体センサに成形する粉末は次の方法で
製造する: 例 1 CeCl3・7H2O34.8gおよびAlCl3・6H2O0.504
gを1の水に溶解し、70〜80℃で撹拌しながら
半濃アンモニア溶液(約50ml)を滴下してPH7
〜7.5で沈澱させる。沈澱後なお2時間80℃で撹
拌する。次に沈降させて傾しやし、水に懸濁さ
せ、遠心分離する。遠心分離したものを150℃で
3時間乾燥し、次に850℃で8時間焼結する。800
℃への加熱時間は4〜5時間である。
The powder that will later be molded into a semiconductor sensor is manufactured in the following way: Example 1 CeCl 3 7H 2 O 34.8 g and AlCl 3 6H 2 O 0.504
Dissolve 1 g in water and add semi-concentrated ammonia solution (approx.
Precipitate at ~7.5. After precipitation, stir for another 2 hours at 80°C. It is then sedimented, decanted, suspended in water, and centrifuged. The centrifuged material is dried at 150°C for 3 hours and then sintered at 850°C for 8 hours. 800
The heating time to °C is 4-5 hours.

例 2 CeCl3・7H2O37.5gおよびMgCl2・6H2O0.633
gを水1に溶解し、次の例1記載のとおり処理
する。
Example 2 CeCl 3・7H 2 O37.5g and MgCl 2・6H 2 O0.633
g is dissolved in 1 part of water and processed as described in Example 1 below.

2つの例で得た粉末状焼結物から104〜105N/
cm2の圧力でタブレツトを圧縮し、これを1100℃で
12〜24時間空気中で焼結する。接触のためこのタ
ブレツトを2つの金接点の間に圧縮し、その際全
体がホルダ内にあり、このホルダを、安定化され
た2酸化ジルコニウムのようなイオン伝導固体電
解質による公知センサと同様、内燃機関の排気管
または合成排ガスによる試験装置へねじ込む。接
点の間に直流12Vを印加し、電気抵抗を半導体の
導電率の尺度として測定する。
10 4 to 10 5 N/
Compress the tablet with a pressure of cm 2 and store it at 1100°C.
Sinter in air for 12-24 hours. For contacting, the tablet is compressed between two gold contacts, the entirety of which is in a holder, which is connected to an internal combustion chamber similar to known sensors with ionically conductive solid electrolytes such as stabilized zirconium dioxide. Screw into engine exhaust pipe or synthetic exhaust gas test equipment. A direct current of 12 V is applied between the contacts and the electrical resistance is measured as a measure of the conductivity of the semiconductor.

例1および2で得た粉末をセンサに加工する他
の方法は粉末を厚膜技術で常用の稀釈剤により支
持板に配置することである。この目的で例1およ
び2で得た粉末をトルオールで練り、これをボー
ルミルで10〜30μmの粒度に摩砕する。微細に摩
砕した酸化物をさらにトルオールまたは厚膜技術
で常用のテルペンチン油もしくはグリセリンのよ
うな混和剤と撹拌してペーストにし、次に酸化ア
ルミニウムからなる0.6mm×5mm×51mmの寸法の
あらかじめ白金の2つの導体路を厚膜技術で配置
した支持板の1端へ塗布し、その際2つの導体路
は塗布した半導体材料の下で0.02〜2mmの間隔を
有する。塗付した半導体は20〜10000μmとくに
50〜100μmの厚さを有する。この材料を1100℃
で6時間焼付け、白金導体路の半導体酸化物で蔽
われない部分は接続リードとして役立つ部分まで
ホウケイ酸塩ガラスで蔽い、900℃で2時間焼付
ける。板の裏面にはジグザグ形の白金導体路から
なる加熱装置を設置することができ、カーボンを
多量に含むガスの場合この加熱導体路を同様ガラ
スで蔽い、カーボン沈積等の際の個個の導体路間
の短絡を防ぐのが有利である。半導体層へ通ずる
2つの導体路へ直流12Vを印加し、この場合も同
様電気抵抗を半導体の導電率の尺度として測定す
る。
Another way to process the powders obtained in Examples 1 and 2 into sensors is to place the powders on a support plate using thick film technology with customary diluents. For this purpose, the powders obtained in Examples 1 and 2 are milled with toluene and ground in a ball mill to a particle size of 10 to 30 μm. The finely ground oxide is further stirred with common admixtures such as turpentine oil or glycerin in toluene or thick-film technology to form a paste, and then pre-plated with dimensions 0.6 mm x 5 mm x 51 mm made of aluminum oxide. The two conductor tracks are applied using thick-film technology to one end of the arranged carrier plate, the two conductor tracks having a spacing of 0.02 to 2 mm below the applied semiconductor material. The coated semiconductor has a thickness of 20 to 10,000 μm, especially
It has a thickness of 50-100 μm. This material is heated to 1100℃
The parts of the platinum conductor track which are not covered by the semiconductor oxide are covered with borosilicate glass up to the parts that serve as connection leads and baked for 2 hours at 900 DEG C. A heating device consisting of a zigzag-shaped platinum conductor track can be installed on the back side of the plate, and in the case of gas containing a large amount of carbon, this heating conductor track is similarly covered with glass to prevent individual It is advantageous to prevent short circuits between conductor tracks. A direct current of 12 V is applied to the two conductor paths leading to the semiconductor layer, and the electrical resistance is again measured as a measure of the conductivity of the semiconductor.

第2図には8つの半導体酸化物について抵抗と
ガス組成の関係が示される。この場合抵抗は縦軸
に対数目盛でプロツトされる。曲線1はMgO0.6
モル%をドープしたCr2O3で得た。これはλ=1
で大きい抵抗急変を示すけれど、酸素過剰範囲で
はもはや抵抗が変化しない半導体の代表例であ
る。これは常用のポテンシオメータλセンサと同
様の特性である。曲線2はMgO9%をドープした
2酸化スズからなる半導体センサの結果を示す。
この半導体は前記特願昭52−128550号に記載され
るものである。この曲線は酸素不足範囲へ曲線3
および4の場合のように深く拡がらず、さらにλ
=1の範囲で曲線の上昇が非常に急激であり、酸
素過剰範囲で著しく平らになり、続いて非常に急
激に降下することが明らかである。このような特
性はもちろんλ=0.90〜1.20の範囲の測定には曲
線の経過が2つの変曲点を有するので不適当であ
る。
FIG. 2 shows the relationship between resistance and gas composition for eight semiconductor oxides. In this case the resistance is plotted on a logarithmic scale on the vertical axis. Curve 1 is MgO0.6
Obtained with Cr 2 O 3 doped with mol %. This is λ=1
This is a typical example of a semiconductor that shows a large sudden change in resistance in the oxygen excess range, but the resistance no longer changes in the oxygen excess range. This is a characteristic similar to that of a commonly used potentiometer λ sensor. Curve 2 shows the results for a semiconductor sensor consisting of tin dioxide doped with 9% MgO.
This semiconductor is described in the aforementioned Japanese Patent Application No. 52-128550. This curve goes into the oxygen deficient range.Curve 3
and λ does not spread as deeply as in the case of 4, and furthermore λ
It is clear that in the range = 1 the rise of the curve is very steep, it flattens out significantly in the oxygen excess range and then falls very sharply. Such a characteristic is, of course, unsuitable for measurements in the range λ=0.90 to 1.20, since the course of the curve has two inflection points.

曲線3および4は本発明によるドープした2酸
化セリウムについて得られ、曲線3の酸化物は
Al2O30.9モル%、曲線4はMgO3モル%をドープ
したものである。2つの曲線は酸素不足範囲へ曲
線2の場合より広く拡がり、さらにその経過は直
線的ではないけれど、この曲線の上昇の変化は1
方向だけに行われ(変曲点なし)、曲線2の場合
よりはるかに緩徐である。それゆえこの半導体は
0.90〜1.20のλ範囲での測定に好適に使用するこ
とができる。
Curves 3 and 4 are obtained for doped cerium dioxide according to the invention, the oxide of curve 3 being
0.9 mol % Al 2 O 3 , curve 4 doped with MgO 3 mol %. Although the two curves extend more widely into the oxygen-deficient range than curve 2, and the course is not linear, the change in the rise of this curve is 1
direction only (no inflection point) and much more slowly than in curve 2. Therefore, this semiconductor
It can be suitably used for measurements in the λ range of 0.90 to 1.20.

さらに曲線5はY2O30.3モル%、曲線6は
TiO22モル%、曲線7はTa2O55モル%、曲線8
はV2O55モル%をドープした2酸化セリウムの特
性を示す。いずれも曲線は変曲点なしに上昇し、
λ=0.90〜1.20の範囲で曲線3および4と同様の
勾配を示す。
Furthermore, curve 5 is Y 2 O 3 0.3 mol%, curve 6 is
TiO 2 2 mol %, curve 7 is Ta 2 O 5 5 mol %, curve 8
shows the properties of cerium dioxide doped with 5 mol % of V 2 O 5 . In both cases, the curve rises without an inflection point,
It shows a slope similar to curves 3 and 4 in the range λ=0.90 to 1.20.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3つのタイプの半導体の導電率と酸素
分圧の関係を示す図、第2図は本発明の半導体を
含む種々の半導体の抵抗と酸素または1酸化炭素
含量の関係を示す図である。
Figure 1 is a diagram showing the relationship between the conductivity and oxygen partial pressure of three types of semiconductors, and Figure 2 is a diagram showing the relationship between the resistance and oxygen or carbon monoxide content of various semiconductors, including the semiconductor of the present invention. be.

Claims (1)

【特許請求の範囲】 1 半導体がドープした金属酸化物からなり、そ
の導電率が酸素および被酸化性成分が存在する際
ガス組成とともに連続的に変化し、その排ガス全
量中の酸素分圧が約1/2けた変化すると導電率が
少なくとも1けた変化する、導電率の変化により
排ガス中の酸素および(または)1酸化炭素のよ
うな被酸化性成分の含量を測定するセンサの半導
体において、半導体が酸化マグネシウム、酸化ア
ルミニウム、酸化イツトリウム、2酸化チタン、
5酸化タンタル、5酸化ニオブまたは5酸化バナ
ジウムをドープした2酸化セリウムからなること
を特徴とするガス中の酸素および(または)被酸
化性成分の含量を測定するセンサの半導体。 2 2酸化セリウムが前記酸化物0.1〜10モル%
でドープされている特許請求の範囲第1項記載の
半導体。
[Claims] 1. The semiconductor is made of a doped metal oxide, and its conductivity changes continuously with the gas composition in the presence of oxygen and oxidizable components, such that the oxygen partial pressure in the total amount of exhaust gas is approximately In semiconductors for sensors that measure the content of oxidizable components such as oxygen and/or carbon monoxide in exhaust gases by changes in conductivity, where a change in conductivity changes by at least one order of magnitude, the conductivity changes by at least one order of magnitude. Magnesium oxide, aluminum oxide, yttrium oxide, titanium dioxide,
A semiconductor sensor for measuring the content of oxygen and/or oxidizable components in a gas, characterized in that it consists of cerium dioxide doped with tantalum pentoxide, niobium pentoxide or vanadium pentoxide. 2 Cerium dioxide is 0.1 to 10 mol% of the above oxide
A semiconductor according to claim 1 doped with .
JP9761081A 1980-06-28 1981-06-25 Semiconductor of sensor for measuring content of oxygen and/or components prone to be oxidized in gas Granted JPS5730938A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803024449 DE3024449A1 (en) 1976-10-26 1980-06-28 Semiconductor sensor for determn. of oxygen in exhaust gas - consists cerium di:oxide doped with other oxide, esp. magnesia or alumina

Publications (2)

Publication Number Publication Date
JPS5730938A JPS5730938A (en) 1982-02-19
JPH022534B2 true JPH022534B2 (en) 1990-01-18

Family

ID=6105816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9761081A Granted JPS5730938A (en) 1980-06-28 1981-06-25 Semiconductor of sensor for measuring content of oxygen and/or components prone to be oxidized in gas

Country Status (1)

Country Link
JP (1) JPS5730938A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991222A (en) * 1982-11-18 1984-05-25 Sekisui Prefab Homes Ltd Earth anchor
JPS5991218A (en) * 1982-11-18 1984-05-25 Sekisui Prefab Homes Ltd Earth anchor
JPS5991220A (en) * 1982-11-18 1984-05-25 Sekisui Prefab Homes Ltd Reinforcing work of retaining wall and earth anchor therefor
JPS6060634A (en) * 1983-09-13 1985-04-08 Canon Inc Image forming device
JPH03118459A (en) * 1989-09-30 1991-05-21 Toyota Central Res & Dev Lab Inc Exhaust gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658652A (en) * 1979-10-18 1981-05-21 Matsushita Electric Ind Co Ltd Sensing element for partial pressure of oxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658652A (en) * 1979-10-18 1981-05-21 Matsushita Electric Ind Co Ltd Sensing element for partial pressure of oxygen

Also Published As

Publication number Publication date
JPS5730938A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
KR940002635B1 (en) Humidity sensor
US5427740A (en) Tin oxide gas sensors
JPH0517650Y2 (en)
EP0114310B1 (en) Carbon monoxide sensing element and process for manufacturing it
US4194994A (en) Sintered metal oxide semiconductor having electrical conductivity highly sensitive to oxygen partial pressure
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
US3970431A (en) Carbon monoxide gas detector
EP0022369B1 (en) Combustible gas detecting elements
JPS6317794B2 (en)
US4732738A (en) Combustible gas detecting element
JPH022534B2 (en)
KR20000068032A (en) Nitrogen oxides detection method, and sensor element for detection of nitrogen oxides
JPS62500955A (en) Detector and method for the measurement of oxygen partial pressure in hot gases
Steudel et al. Miniaturized solid state electrochemical CO2 sensors
GB2061520A (en) Hydrogen Sulphide Detector
JPH0114534B2 (en)
JP3919306B2 (en) Hydrocarbon gas detector
JPS6326767Y2 (en)
US4602955A (en) Composite material that can be used to make oxygen sensors
Woo et al. Humidity Tolerance of Electrochemical Hydrogen Safety Sensors Based on Yttria-Stabilized Zirconia (YSZ) and Tin-doped Indium Oxide (ITO)
JP3669807B2 (en) Carbon monoxide detection sensor
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection
JPS58201057A (en) Sensing element of gas
KR900003930B1 (en) Gas detector