JPS6326767Y2 - - Google Patents

Info

Publication number
JPS6326767Y2
JPS6326767Y2 JP1980155283U JP15528380U JPS6326767Y2 JP S6326767 Y2 JPS6326767 Y2 JP S6326767Y2 JP 1980155283 U JP1980155283 U JP 1980155283U JP 15528380 U JP15528380 U JP 15528380U JP S6326767 Y2 JPS6326767 Y2 JP S6326767Y2
Authority
JP
Japan
Prior art keywords
oxygen
sensor element
sensor
coating layer
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980155283U
Other languages
Japanese (ja)
Other versions
JPS5777944U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980155283U priority Critical patent/JPS6326767Y2/ja
Publication of JPS5777944U publication Critical patent/JPS5777944U/ja
Application granted granted Critical
Publication of JPS6326767Y2 publication Critical patent/JPS6326767Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、固体電解質を用いた酸素濃度センサ
素子(以下、酸素センサ素子又は単にセンサ素子
という)に関するもので、とりわけ自動車排ガス
中の酸素濃度を連続的に高精度に検出することの
できる酸素センサ素子に関する。 気体中の酸素濃度の測定には、ジルコニア電解
質を用いた酸素濃淡電池による酸素センサが知ら
れている。この装置は電解質にて一端が閉止した
筒状容器を形成しこの内外両面に白金電極を形成
し、容器の内側の電極に酸素濃度既知の標準ガス
を接触させ、他方の電極に被測定ガスを接触させ
たとき、両極間に生ずる起電力差から被測定ガス
中の酸素濃度を測定するものである。 従来、自動車の排ガス処理は、上記濃淡電池型
酸素センサにより検出される酸素濃度信号に従つ
て行われていたが、省エネルギーの立場から酸素
分圧が非常に小さい領域から数10%の高濃度まで
連続的且つ高精度に検出できる酸素センサが強く
望まれていた。 上記酸素濃淡電池とは逆に、両面に電極を形成
した固体電解質の両電極間に電圧をかけてやる
と、一方の極(陰極)から他方の極(陽極)に酸
素が透過することが知られている。この原理を利
用して酸素の陰極流入量を制限することによりセ
ンサに限界電流を発生させ一定電圧を印加すると
O2濃度に応じて、電極間の電流量が変動するの
で、この電流の変化によつて酸素濃度を測定する
方法が開発され、限界電流型酸素センサと呼ばれ
ている。 本考案者らは、この限界電流型酸素センサにつ
いて種々研究した結果、板状例えば円板状の固体
電解質の両面に夫々れ電極層を形成せしめ、その
陰極電極層上に多孔質セラミツク層を形成して酸
素の流入を制限すると種々の酸素濃度を精度良く
測定できる酸素センサが得られることを見い出し
た。 この限界電流型酸素センサ素子は、基準ガスが
不要でかつ被測定ガス中の酸素濃度が非常に小さ
い領域から数10%の高濃度まで広範囲にわたつて
連続的に精度良く酸素濃度を測定することがで
き、従つて内燃機関の排ガス中の酸素濃度を測定
する場合に混合ガスの空燃比がリーン(Lean)
側でも作動しうるという利点を有するものであ
る。しかしながら、上記酸素センサ素子は、長期
間使用していると排ガス中のカーボン等が付着し
て目詰りを起こし、信頼性のある値が得られない
という問題点がある。 本考案は、上記限界電流型酸素センサ素子にお
いて、素子表面をより粗い多孔性無機質コーテイ
ング層で被覆することにより、カーボン等の付着
が起きないようにすることを狙つたものである。 即ち、本考案酸素センサ素子は、板状に成形し
た酸素イオンを透過させる固体電解質の両面に、
電圧を印加するための電極及びリード線を設け、
該電極のうち陰極表面を酸素流入量を制限するた
めの多孔性無機質コーテイング層で被覆し、さら
に前記陰極表面上のコーテイング層及び陽極表面
をも含めて素子表面全体に、より多孔性の無機質
コーテイング層を設けたことを特徴とするもので
ある。 以下、本考案酸素センサ素子について図面を用
いて説明する。 第1図は本考案センサ素子の一例を示す断面図
である。本考案センサ素子Aは、固体電解質から
成る円板状酸素イオン透過体1の両面に、例えば
スパツタリング法により金属電極2,3を設け、
該電極2,3上に電圧印加及び出力検出のための
リード線6,6を接続し、酸素流入側の電極(陰
極)2の表面に多孔性無機質コーテイング層4を
設け、更にこのコーテイング層4上をも含めて素
子全体の外表面を覆うように、より粗い多孔性無
機質から成る第2のコーテイング層5を設けてな
るものである。 電解質1としては、酸素イオン透過体である
ZrO2、HfO2、ThO2、Bi2O3等の酸化物にCaO、
MgO、Y2O3、Yb2O3等を固溶させた緻密な焼結
体を用いる。 円板状電解質1の両面に形成する電極2,3と
しては、Pt、Pd、Agを単独又は2種以上混合し
て使用することが適当である。 電極の外表面に設けるコーテイング層4,5
は、多孔性の耐熱性無機物質であればいずれでも
良いが、例えばα−Al2O3、MgO−Al2O3
SiO2、ZrCaO3等が好ましい。 このうち、陰極2表面に設ける第1のコーテイ
ング層4は、該電極2へ到達する酸素量を規定す
るためのものであり、細かい多孔性無機物質で形
成し、素子全体を覆う第2のコーテイング層5
は、粗い多孔性無機物質で形成する。陰極2側の
コーテイング層4を形成する多孔性無機物質の粒
径は、10〜100μが良く、好ましくは20〜70μ程度
である。またコーテイング層4の厚さは200〜
2000μとする。素子全体の表面に設ける第2のコ
ーテイング層5を形成する多孔性無機物質は、平
均粒径50〜200μのものを用い、約20〜100μの厚
さとなるように設ける。 本考案センサ素子Aを用いて排ガス中の酸素濃
度を測定するには、第2図に示す如く、リード線
6,6を電源7に接続して電気回路を構成し、セ
ンサ素子Aの陰極2と陽極3間に印加する電圧を
電圧計9で測定し、排ガス中の酸素濃度に従つて
変化する電流を電流計8で計測する。実際に酸素
濃度を測定する際には、第3図で示す構造のセン
サにおいて、発熱体10を発熱させ予め素子Aを
所定の温度、約750℃前後に加熱する。 上記センサ素子Aをセンサ本体に取付けた状態
を第3図に、第3図の部分拡大分解斜視図を第
4図に示す。図に示すように、内部にステンレス
スチールのような耐熱性金属リード線11,1
1,11,11を長手軸方向に配線した略円筒状
アルミナ碍管12の先端に円板状センサ素子Aを
リード線6,6が長軸方向と平行となるように配
置し、この酸素センサ素子Aの外周を取り囲むよ
うにニクロム、カンタル等のコイル状のシース金
属ヒーターもしくはセラミツクヒーターから成る
発熱体10を配置し、これらを、センサ素子Aの
リード線6,6及び発熱体両端10a,10bと
前記アルミナ碍管12に配線したリード線11,
11,11,11とを溶接することによりアルミ
ナ碍管12の先端に取り付ける(溶接部13,1
3,13,13)。リード線11,11,11,
11の一端はアルミナ碍管12の上方に位置する
導線16,16,16,16とコネクター17,
17,17,17を介して接合されており、この
導線16,16,16,16によりセンサ信号の
外部取り出し及び発熱体10の加熱に必要な電力
の入力を行う。アルミナ碍管12外周は、高温で
も酸化変形しにくい金属、例えばステンレススチ
ールよりなる保護カバー15で覆われ、先端のセ
ンサ素子A及び発熱体10近傍部分には、複数の
通気孔14,14…が開口している。 尚、図中18はフランジ、19は取付け穴、2
0は防水チユーブ、21,22はテフロン製ブツ
シユ、23は絶縁用ラバーチユーブを表わす。 次に、本考案センサ素子Aの製造方法の一例を
以下に述べる。 センサ素子Aの固体電解質としては、純度99.9
%の酸化ジルコニウム粉末と、同じく純度99.9%
の酸化イツトリウム粉末をモル比で9:1の割合
に採取し、湿式ボールミルで5時間粉砕混合し、
150℃で6時間乾燥する。この粉末を1200℃で4
時間〓焼し、更に湿式ボールミルで5時間粉砕
し、粒子径を比較的細かく揃え、再び150℃で6
時間乾燥する。得られた粉末を成形圧1200Kg/cm2
で厚さ1.5mm、直径4.0mmの円板状に加圧成形す
る。この成形体を、空気中1800℃で3時間焼成
し、焼結体とする。このようにして得られた円板
状の固体電解質1の上下両面にスパツタリング法
により直径3mmの円形状に厚さ1uの白金電極2,
3を形成し、これに直径0.3mmの白金線を圧着し
てリード線6,6とした。 多孔性無機質コーテイング層4,5は、プラズ
マ溶射法によりMgO−Al2O3を所定の厚さに溶射
することにより形成される。溶射条件と溶射層仕
様は次のとおりである: Γ プラズマアーク電流 500A Γ プラズマアーク電圧 65V Γ 使用ガス N2 100SCFH H2 15SCFH (SCFH…Standard Cubic Feet/
Hour) Γ プラズマガンから被溶射体までの距離約80mm Γ 溶射剤平均粒径 陰極表面 40μ 素子全体表面 100μ Γ 溶射厚さ 陰極表面 900μ 素子全体表面 70μ 次に、前記と同様の工程で、第5図に示すよう
な構造のセンサ素子Bを製造する(比較例セン
サ)。陰極2、陽極3には、平均粒径40μのMgO.
Al2O3をそれぞれ厚さ900μ,70μに被覆すること
によりコーテイング層4,5′を設け、それ以外
の素子表面部分にはコーテイング層を設けない。 上記のようにして得られた本考案センサ素子A
及び比較例センサ素子Bを用いて、自動車の排ガ
ス中の酸素濃度を測定し、それぞれの性能を評価
する。 第6図は、本考案センサ素子Aを有するセンサ
(第3図に示す構造のもの)において、エンジン
の回転数を一定にしセンサの印加電圧を変えたと
きの、各電圧におけるセンサの電流値を測定し、
その結果を示したものである。この測定は、排ガ
ス中の酸素濃度を変えるため種々のエンジン負荷
について行つた。図中、a,b,c,d,e,f
はそれぞれ下記第1表に示す酸素濃度、エンジン
負荷のもとで測定した電圧と電流の関係を示す曲
線である。
The present invention relates to an oxygen concentration sensor element (hereinafter referred to as an oxygen sensor element or simply a sensor element) using a solid electrolyte, and in particular an oxygen sensor that can continuously and highly accurately detect the oxygen concentration in automobile exhaust gas. Regarding elements. For measuring oxygen concentration in gas, an oxygen sensor using an oxygen concentration battery using a zirconia electrolyte is known. This device forms a cylindrical container with an electrolyte closed at one end, and platinum electrodes are formed on both the inside and outside of this container.A standard gas with a known oxygen concentration is brought into contact with the electrode inside the container, and a gas to be measured is brought into contact with the other electrode. The oxygen concentration in the gas to be measured is measured from the difference in electromotive force generated between the two electrodes when they are brought into contact. Conventionally, automobile exhaust gas treatment has been performed according to the oxygen concentration signal detected by the concentration cell type oxygen sensor mentioned above, but from the standpoint of energy conservation, oxygen partial pressure has been changed from extremely low oxygen concentration ranges to high concentrations of several 10%. There has been a strong desire for an oxygen sensor that can detect oxygen continuously and with high precision. Contrary to the oxygen concentration battery mentioned above, it is known that when voltage is applied between both electrodes of a solid electrolyte with electrodes formed on both sides, oxygen permeates from one electrode (cathode) to the other electrode (anode). It is being Using this principle, by limiting the amount of oxygen flowing into the cathode, a limiting current is generated in the sensor and a constant voltage is applied.
Since the amount of current between the electrodes varies depending on the O 2 concentration, a method for measuring oxygen concentration based on changes in this current has been developed and is called a limiting current type oxygen sensor. As a result of various research on this limiting current type oxygen sensor, the present inventors formed electrode layers on both sides of a solid electrolyte in the form of a plate, for example, a disk, and formed a porous ceramic layer on the cathode electrode layer. We have discovered that by restricting the inflow of oxygen, an oxygen sensor that can accurately measure various oxygen concentrations can be obtained. This limiting current type oxygen sensor element does not require a reference gas and can continuously and accurately measure oxygen concentration in a wide range of gases, from very low oxygen concentrations to high concentrations of several tens of percent. Therefore, when measuring the oxygen concentration in the exhaust gas of an internal combustion engine, the air-fuel ratio of the mixed gas is lean.
This has the advantage that it can also be operated on the side. However, when the oxygen sensor element is used for a long period of time, carbon, etc. in the exhaust gas adheres to the oxygen sensor element, causing clogging, making it impossible to obtain reliable values. The present invention aims to prevent the adhesion of carbon and the like by coating the element surface with a rougher porous inorganic coating layer in the limiting current type oxygen sensor element. That is, the oxygen sensor element of the present invention has a solid electrolyte formed in a plate shape that allows oxygen ions to pass therethrough, and on both sides of the solid electrolyte,
Provide electrodes and lead wires for applying voltage,
The surface of the cathode of the electrode is coated with a porous inorganic coating layer for restricting the amount of oxygen inflow, and the entire surface of the device, including the coating layer on the cathode surface and the anode surface, is coated with a more porous inorganic coating. It is characterized by having layers. The oxygen sensor element of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the sensor element of the present invention. The sensor element A of the present invention includes metal electrodes 2 and 3 provided on both sides of a disk-shaped oxygen ion permeable body 1 made of a solid electrolyte by, for example, a sputtering method.
Lead wires 6, 6 for voltage application and output detection are connected to the electrodes 2, 3, a porous inorganic coating layer 4 is provided on the surface of the electrode (cathode) 2 on the oxygen inflow side, and this coating layer 4 A second coating layer 5 made of a coarser porous inorganic material is provided so as to cover the entire outer surface of the element including the top. Electrolyte 1 is an oxygen ion permeator
Oxides such as ZrO 2 , HfO 2 , ThO 2 , Bi 2 O 3 and other
A dense sintered body containing MgO, Y 2 O 3 , Yb 2 O 3 , etc. as a solid solution is used. As the electrodes 2 and 3 formed on both sides of the disc-shaped electrolyte 1, it is appropriate to use Pt, Pd, and Ag singly or in a mixture of two or more. Coating layers 4 and 5 provided on the outer surface of the electrode
may be any porous heat-resistant inorganic substance, such as α-Al 2 O 3 , MgO-Al 2 O 3 ,
SiO 2 , ZrCaO 3 and the like are preferred. Among these, the first coating layer 4 provided on the surface of the cathode 2 is for regulating the amount of oxygen reaching the electrode 2, and the second coating layer 4 is formed of a fine porous inorganic material and covers the entire element. layer 5
is made of coarsely porous inorganic material. The particle size of the porous inorganic material forming the coating layer 4 on the cathode 2 side is preferably about 10 to 100 microns, preferably about 20 to 70 microns. Also, the thickness of coating layer 4 is 200~
Set to 2000μ. The porous inorganic material forming the second coating layer 5 provided on the entire surface of the element has an average particle size of 50 to 200 microns, and is provided so as to have a thickness of approximately 20 to 100 microns. To measure the oxygen concentration in exhaust gas using sensor element A of the present invention, as shown in FIG. The voltage applied between the anode 3 and the anode 3 is measured with a voltmeter 9, and the current that changes depending on the oxygen concentration in the exhaust gas is measured with an ammeter 8. When actually measuring the oxygen concentration, in the sensor having the structure shown in FIG. 3, the heating element 10 generates heat to heat the element A to a predetermined temperature of approximately 750°C. FIG. 3 shows the state in which the sensor element A is attached to the sensor body, and FIG. 4 is a partially enlarged exploded perspective view of FIG. 3. As shown in the figure, there are heat-resistant metal lead wires 11, 1 made of stainless steel inside.
A disk-shaped sensor element A is arranged at the tip of a substantially cylindrical alumina insulator tube 12 in which wires 1, 11, 11 are wired in the longitudinal axis direction, and the lead wires 6, 6 are parallel to the longitudinal axis direction. A heating element 10 consisting of a coiled sheathed metal heater or ceramic heater made of Nichrome, Kanthal, etc. is arranged so as to surround the outer periphery of the sensor element A, and these are connected to the lead wires 6, 6 of the sensor element A and both ends 10a, 10b of the heating element. A lead wire 11 wired to the alumina insulator tube 12,
11, 11, 11 is attached to the tip of the alumina insulator tube 12 by welding (welding parts 13, 1
3, 13, 13). Lead wire 11, 11, 11,
One end of 11 is connected to conductive wires 16, 16, 16, 16 located above the alumina insulator tube 12, and a connector 17,
These conductive wires 16, 16, 16, 16 are used to extract sensor signals to the outside and input electric power necessary for heating the heating element 10. The outer periphery of the alumina insulator tube 12 is covered with a protective cover 15 made of a metal that does not easily undergo oxidation deformation even at high temperatures, such as stainless steel, and a plurality of ventilation holes 14 are opened in the vicinity of the sensor element A and the heating element 10 at the tip. are doing. In addition, in the figure, 18 is a flange, 19 is a mounting hole, and 2
0 is a waterproof tube, 21 and 22 are Teflon bushes, and 23 is an insulating rubber tube. Next, an example of a method for manufacturing the sensor element A of the present invention will be described below. The solid electrolyte of sensor element A has a purity of 99.9.
% zirconium oxide powder and the same purity 99.9%
Yttrium oxide powder was collected at a molar ratio of 9:1, and ground and mixed in a wet ball mill for 5 hours.
Dry at 150°C for 6 hours. This powder was heated to 1200℃ for 4 hours.
Time: Calcinate, then grind for 5 hours in a wet ball mill, make the particle size relatively fine, and heat again at 150℃ for 6 hours.
Dry for an hour. The obtained powder was molded under a pressure of 1200Kg/cm 2
Pressure mold it into a disk shape with a thickness of 1.5 mm and a diameter of 4.0 mm. This molded body is fired in air at 1800°C for 3 hours to form a sintered body. A circular platinum electrode 2 with a diameter of 3 mm and a thickness of 1 μ is placed on both the upper and lower surfaces of the disk-shaped solid electrolyte 1 thus obtained.
3 was formed, and a platinum wire with a diameter of 0.3 mm was crimped onto this to form lead wires 6, 6. The porous inorganic coating layers 4 and 5 are formed by spraying MgO-Al 2 O 3 to a predetermined thickness using a plasma spraying method. The spraying conditions and spray layer specifications are as follows: Γ Plasma arc current 500A Γ Plasma arc voltage 65V Γ Usage gas N 2 100SCFH H 2 15SCFH (SCFH…Standard Cubic Feet/
Hour) Γ Distance from plasma gun to object to be sprayed: approx. 80 mm Γ Spraying agent average particle size Cathode surface 40μ Entire element surface 100μ Γ Spray thickness Cathode surface 900μ Entire element surface 70μ Next, in the same process as above, the fifth A sensor element B having a structure as shown in the figure is manufactured (comparative example sensor). The cathode 2 and anode 3 are made of MgO with an average particle size of 40μ.
Coating layers 4 and 5' are provided by coating Al 2 O 3 to a thickness of 900 μm and 70 μm, respectively, and no coating layer is provided on the other surface portions of the device. Sensor element A of the present invention obtained as above
and Comparative Example Sensor Element B are used to measure the oxygen concentration in automobile exhaust gas and evaluate their respective performances. Figure 6 shows the current value of the sensor at each voltage when the engine speed is kept constant and the voltage applied to the sensor is changed in a sensor having the sensor element A of the present invention (having the structure shown in Figure 3). measure,
The results are shown below. This measurement was performed at various engine loads to vary the oxygen concentration in the exhaust gas. In the figure, a, b, c, d, e, f
are curves showing the relationship between voltage and current measured under the oxygen concentration and engine load shown in Table 1 below, respectively.

【表】 第6図において、横軸は電圧(Volt)、縦軸は
電流(mA)をとつた。図においてほぼ平行な測
定線を示す値が各酸素濃度(各エンジン負荷)に
おける限界電流値である。 上記測定方法によつて得られる酸素濃度(%)
と限界電流値(mA)の関係を、本考案センサA
及び比較例センサBの各々について、初期と耐久
後(実車耐久50000Km)の変化を、第7図、第
8図に示す。これらの図から明らかなように、比
較例センサBでは、カーボン等の付着による目づ
まり等でセンサ出力の低下がみられるが、本考案
センサAでは耐久後も出力にほとんど変動はな
く、長期間の使用にも十分耐え得ることが明らか
である。 以上の記載からも明らかなように、本考案セン
サ素子は、素子外表面全体を粗い第2の多孔性無
機質コーテイング層で覆つたためカーボン等の付
着による目づまりを起こすことなく、従つて信頼
性のある値を得ることができるとともに、該層で
陽極表面をも覆つたので陽極保護の面でも十分で
ある為、種々の利点を有するものである。
[Table] In Figure 6, the horizontal axis is voltage (Volt) and the vertical axis is current (mA). In the figure, the values showing almost parallel measurement lines are the limiting current values at each oxygen concentration (each engine load). Oxygen concentration (%) obtained by the above measurement method
The relationship between the limit current value (mA) and the sensor A of the present invention
For each of Comparative Example Sensor B, changes between the initial period and after durability (actual vehicle durability 50,000 km) are shown in FIGS. 7 and 8. As is clear from these figures, in Comparative Example Sensor B, there is a decrease in sensor output due to clogging due to adhesion of carbon, etc., but in Sensor A of the present invention, there is almost no change in output even after durability, and it can be used for a long period of time. It is clear that it can withstand the use of As is clear from the above description, since the sensor element of the present invention covers the entire outer surface of the element with the rough second porous inorganic coating layer, clogging due to adhesion of carbon, etc. does not occur, and therefore reliability is improved. In addition to being able to obtain a certain value, since the layer also covers the anode surface, it is sufficient in terms of protection of the anode, so it has various advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案センサ素子Aの断面図、第2
図は、上記センサ素子の出力検出のための回路
図、第3図は、上記センサ素子を有するセンサの
構造を示す側面図、第4図は、前記第3図の部
分を示す拡大分解斜視図、第5図は、比較例酸素
センサ素子の断面図、第6図はセンサ素子Aを有
する本考案センサの各酸素濃度における電流と電
圧の関係を示すグラフ、第7図は、本考案センサ
素子における初期及び耐久後の酸素濃度と限界電
流の関係を示すグラフ、第8図は、比較例セン素
子における初期及び耐久後の酸素濃度と限界電流
の関係を示すグラフ、を表わす。 図中、1……固体電解質、2……陰極、3……
陽極、4……多孔性コーテイング層(第1)、5
……多孔性コーテイング層(第2)、6,6……
リード線、12……アルミナ碍管。
FIG. 1 is a sectional view of the sensor element A of the present invention, and FIG.
The figure is a circuit diagram for detecting the output of the sensor element, FIG. 3 is a side view showing the structure of a sensor having the sensor element, and FIG. 4 is an enlarged exploded perspective view showing the portion shown in FIG. 3. , FIG. 5 is a cross-sectional view of a comparative example oxygen sensor element, FIG. 6 is a graph showing the relationship between current and voltage at each oxygen concentration of the sensor of the present invention having sensor element A, and FIG. 7 is a graph of the sensor element of the present invention. FIG. 8 is a graph showing the relationship between the oxygen concentration and the limiting current at the initial stage and after the durability test, and FIG. In the figure, 1... solid electrolyte, 2... cathode, 3...
Anode, 4...Porous coating layer (first), 5
...Porous coating layer (second), 6,6...
Lead wire, 12...Alumina insulator tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 板状に成形した酸素イオンを透過させる固体電
解質焼結体の両面に、電圧を印加するための電極
及びリード線を設け、該電極のうち陰極表面を酸
素の流入量を制限するための多孔性無機質コーテ
イング層で被覆し、さらに前記陰極表面上のコー
テイング層及び陽極表面をも含めた素子表面全体
に、より多孔性の無機質コーテイング層を設けた
ことを特徴とする酸素センサ素子。
Electrodes and lead wires for applying voltage are provided on both sides of a solid electrolyte sintered body formed into a plate shape and permeable to oxygen ions, and the cathode surface of the electrode is porous to limit the amount of oxygen inflow. An oxygen sensor element coated with an inorganic coating layer, further comprising a more porous inorganic coating layer provided over the entire element surface including the coating layer on the cathode surface and the anode surface.
JP1980155283U 1980-10-30 1980-10-30 Expired JPS6326767Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980155283U JPS6326767Y2 (en) 1980-10-30 1980-10-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980155283U JPS6326767Y2 (en) 1980-10-30 1980-10-30

Publications (2)

Publication Number Publication Date
JPS5777944U JPS5777944U (en) 1982-05-14
JPS6326767Y2 true JPS6326767Y2 (en) 1988-07-20

Family

ID=29514485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980155283U Expired JPS6326767Y2 (en) 1980-10-30 1980-10-30

Country Status (1)

Country Link
JP (1) JPS6326767Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146346A (en) * 2017-03-03 2018-09-20 株式会社Soken Ammonia sensor element
KR20200026461A (en) 2018-09-03 2020-03-11 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116248A (en) * 1979-02-23 1980-09-06 Bosch Gmbh Robert Electrochemical feeler for measuring oxygen content of gas

Also Published As

Publication number Publication date
JPS5777944U (en) 1982-05-14

Similar Documents

Publication Publication Date Title
US4207159A (en) Apparatus for measurement of oxygen concentration
US4356065A (en) Polarographic oxygen concentration sensor and method of determining oxygen content in the exhaust gases of an internal combustion engine
US7045047B2 (en) Gas sensor element
US20020108854A1 (en) Gas sensor
JPS6118854A (en) Oxygen concentration detecting element
JPS63300955A (en) Electrochemical element
JPH0517650Y2 (en)
US6344118B1 (en) Structure of oxygen sensing element
JPH033904B2 (en)
JPH0430537Y2 (en)
JPH11153571A (en) Oxygen sensor element
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JPS6326767Y2 (en)
JPH0115016B2 (en)
JPS6133132B2 (en)
JPH0114534B2 (en)
JPS58109846A (en) Element for oxygen detection and its preparation
US4485369A (en) Sensor for measuring air-fuel ratio
JPH0121902B2 (en)
JPH01201149A (en) Composite gas sensor
JPH05501297A (en) electrochemical measurement sensor
JPH0536212Y2 (en)
JPH0121901B2 (en)
JPS58100746A (en) Detector of oxygen concentration
JPH09264872A (en) Gas sensor