JPS58200150A - Gas detection element - Google Patents

Gas detection element

Info

Publication number
JPS58200150A
JPS58200150A JP8344282A JP8344282A JPS58200150A JP S58200150 A JPS58200150 A JP S58200150A JP 8344282 A JP8344282 A JP 8344282A JP 8344282 A JP8344282 A JP 8344282A JP S58200150 A JPS58200150 A JP S58200150A
Authority
JP
Japan
Prior art keywords
gas
detection element
sensitivity
sensitive body
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8344282A
Other languages
Japanese (ja)
Other versions
JPS6160378B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8344282A priority Critical patent/JPS58200150A/en
Publication of JPS58200150A publication Critical patent/JPS58200150A/en
Publication of JPS6160378B2 publication Critical patent/JPS6160378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a combustible gas detection element which is operable at a relatively low temperature even with a high sensitivity to CH4 gas by use of a gas sensitive body main composed of CdO and containing SO4<--> within the specified range of proportion. CONSTITUTION:A CdO powder is mixed with a CdSO4-xH2O powder. After a organic binder is added thereto, the mixture is graded to particles of 100-200mum and pressure-molded and sintered in the air at about 600 deg.C to form a gas sensitive body containing SO4<--> 0.05-10wt%. A pair of comb-shaped electrodes are formed on the surface of the sensitive body while a heat generating body on the back thereof to make a detection element. This enables the detection of the gas concentration at a level below a fraction to several tenths of the lower limit concentration of explosion of combustible gas. Thus, a detection element even with a high sensitivity to CH4 gas can be obtained employing a sensitive body containing no precious metal catalyst.

Description

【発明の詳細な説明】 本発明は可燃性ガスを検知するガス検知素子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detection element for detecting combustible gas.

近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有毒ガスによ
る中毒事故が多発し、大きな社会問題となっていること
にも強く起因している。特にプロパンガスは、爆発下限
界(LEL)が低く、かつ比重が空気よりも大きいため
、部屋に停、、やすいチ&おう。ヶヵ8あよオ断たず、
毎年多数の死傷者を出している。
In recent years, various research and development activities regarding materials for sensing elements for flammable gases have become active. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently in ordinary households and in various factories, which have become major social problems. In particular, propane gas has a low lower explosive limit (LEL) and a specific gravity greater than air, so it is easy to store it in a room. After 8 years, I won't cut it.
It causes many casualties every year.

近年になって、酸化第二錫(81102)やガンマ型酸
化第二鉄(γ−Fe2O3)などの金属酸化物を用いた
可燃性ガス検知素子が実用化され、ガス漏れ警報器など
に応用されている。そして、ガス漏れなどの事態が発生
してもLELに至るまでの間に、プロパンガスの存在を
いち早く検知し、爆発を未然に防げるようになっている
In recent years, flammable gas detection elements using metal oxides such as stannic oxide (81102) and gamma-type ferric oxide (γ-Fe2O3) have been put into practical use, and are being applied to gas leak alarms. ing. Even if a situation such as a gas leak occurs, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion.

ところで、日本でもメカンガスを主成分とする液化天然
ガス(LNG )が一般家庭用として用いられるように
なり、徐々に普及して来ている。したがって、このLN
Gの主成分であるメタンガスを選択性よく検出するガス
検知素子の要請も非常に大きくなってきている。
Incidentally, in Japan, liquefied natural gas (LNG) whose main component is mechan gas has come to be used for general household use and is gradually becoming popular. Therefore, this LN
The demand for gas detection elements that can detect methane gas, which is the main component of G, with high selectivity is also increasing.

勿論、すでにメタンガスに感応するガス検知素子は開発
されてはいるが、その多くは感応体材料に増感剤と(2
て貫金楓触媒を用いているため、種々のガスによる触媒
被毒の問題、メタンガスに対する選択度が小さい点、あ
るいは周囲湿度に対する依存性が大きい点などの課題を
抱えている。したがって、実用に際しては未だ不十分な
特性であるのが現状である。
Of course, gas detection elements sensitive to methane gas have already been developed, but most of them use a sensitizer and (2)
Since this method uses a Kankin Kaede catalyst, it has problems such as catalyst poisoning by various gases, low selectivity to methane gas, and high dependence on ambient humidity. Therefore, the current situation is that the properties are still insufficient for practical use.

本発明はこのような状況に鑑みてなされたもので、メタ
ンガスに対しても実用上十分大きな感度を持ったガス検
知素子を提供するものである。メタンガスはそれ自身非
常に安定なガスであるだけに、これに十分な感度を有す
る検知素子は非常に高活性である必要がある。したがっ
て、メタンガスに対して大きな感度を実現するためには
、従来は、貴金属触媒を感応体材料に添加して用いるか
、あるいは感応体をかなり高い温度で動作させるなどの
工夫がなされてきた。これに対し、本発明は貴金属触媒
を一切添加することなく、また比較的低い動作温度でも
対メタン感度の大きい素子を実現するものである。
The present invention has been made in view of this situation, and it is an object of the present invention to provide a gas detection element that has a sensitivity sufficiently high for practical use even to methane gas. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventional techniques have been used such as adding a noble metal catalyst to the sensitive material or operating the sensitive material at a considerably high temperature. In contrast, the present invention realizes an element with high sensitivity to methane even at a relatively low operating temperature without adding any noble metal catalyst.

本発明は酸化カドミウム(CaO)をガス感応体として
用いたガス検知素子において、これに含まれる種々の陰
イオンのガス感応特性に及ぼす影響について検討してい
る中で見出されたものである。
The present invention was discovered while studying the effects of various anions contained in a gas sensing element using cadmium oxide (CaO) as a gas sensing material on gas sensitivity characteristics.

すなわち、ガス感応体の母材料であるCdOが硫酸イオ
ン(804−)を含有することによりガス感応特性が飛
躍的に向上し、しかも先述のメタンガスに対しても実用
上十分大きな感度を実現し得ることを見出したことによ
ってなされたものである。
That is, by containing sulfate ions (804-) in CdO, which is the base material of the gas sensitive material, the gas sensitivity characteristics are dramatically improved, and in addition, it is possible to realize a sensitivity that is sufficiently high for practical use even to the aforementioned methane gas. This was done by discovering that.

以下、本発明を具体的な実施例に基づいて説明する。The present invention will be described below based on specific examples.

〔実施例1〕 市販の酸化カドミウム(CaO)試薬に、硫酸イオンを
含有させるための添加物として種々の量の硫酸カドミウ
ム(CdSO4−LH20)粉末をそれぞれ添加混合し
、さらにこれに有機バインダーを加えて100〜200
μの大きさの粒子に整粒したいくつかの粉体を作製した
。このようにして得られた、硫酸カドミウムの含まれる
量の異るそれぞれの粉体を直方体形状に加圧成形し、空
気中で600°C1の温度で1時間焼成した。この焼結
体の表面にkを蒸尤して一対の櫛形電極を形成し、その
裏面には白金発熱体を無機接着剤で貼りつけてヒータと
し検知素子を作製した。この発熱体に電流を通じ、その
電流値を調節して素子の動作温度を制御した。
[Example 1] Various amounts of cadmium sulfate (CdSO4-LH20) powder were added and mixed as an additive to contain sulfate ions to a commercially available cadmium oxide (CaO) reagent, and an organic binder was further added to this. Te100-200
Several powders were prepared that were sized into μ-sized particles. The thus obtained powders containing different amounts of cadmium sulfate were press-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600°C for 1 hour. A pair of comb-shaped electrodes were formed by vaporizing K on the surface of this sintered body, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and to produce a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element.

素体温度を400°Cに保持して、そのガス感応特性を
測定した。
The temperature of the element body was maintained at 400°C, and its gas sensitivity characteristics were measured.

空気中における抵抗値(Ra)については、乾燥した空
気が乱流のできない程度にゆっくり攪拌されている容積
601の測定容器中で測定し、ガス中での抵抗値(Rg
)はこの容器の中に純度99チ以上のメタン(CHす、
プロパン(05H8) 、イソブタン(i−(4H+の
及び水素(H2)の各ガスを容量比率にして1 OFF
/秒の割合で流入させ、その濃度が0.1容量チに達し
た時にそれぞれ測定した。測定するガス濃度を0.1容
量係に選んだのは、ガス検知素子として実用上要望され
る検知濃度がそのガスの爆発下限界濃度(LICL)の
数10分の1から数分の1の範囲であり、上記のガスの
それぞれのLELが約2容量係から6容量チであるから
である。
The resistance value (Ra) in air is measured in a measurement container with a volume of 601 in which dry air is slowly stirred to the extent that no turbulence occurs.
) is in this container methane (CHS,
Propane (05H8), isobutane (i-(4H+) and hydrogen (H2) gases in volume ratio 1 OFF
/second, and each measurement was made when the concentration reached 0.1 volume. The gas concentration to be measured was chosen to be 0.1 volume because the detection concentration that is practically required for a gas detection element is several tenths to several tenths of the lower explosive limit concentration (LICL) of the gas. This is because the LEL of each of the above gases ranges from approximately 2 volumes to 6 volumes.

またガス感応体に含まれる硫酸イオン(Soa−)  
−の存在は赤外線吸収スペクトルで確認し、含有されて
いる量はTG−DT五凸曲線び螢光X線分析から同定し
た。次表に種々の硫酸イオン量を含むガス感応体の感応
特性を示す。また、第1図(a)。
Also, sulfate ions (Soa-) contained in the gas sensitive material
The presence of - was confirmed by infrared absorption spectrum, and the amount contained was identified by TG-DT five-convex curve and fluorescence X-ray analysis. The following table shows the sensitivity characteristics of gas sensitizers containing various amounts of sulfate ions. Also, FIG. 1(a).

(b)はこれを感度(Ra 7 Rg)で表わしたもの
であり、第1図(IL)にはメタンとプロパン、第1図
(b)にはイソブタンと水素に対する特性を示す。
(b) shows this in terms of sensitivity (Ra 7 Rg); FIG. 1 (IL) shows the characteristics for methane and propane, and FIG. 1 (b) shows the characteristics for isobutane and hydrogen.

く以 下 余 白〉 上記表および第1図から明らかなように、硫酸イオ7 
(804−)を0.005−10.0重量%含有するこ
とによって、ガス感応特性、特にメタンに対する感度が
飛躍的に向上していることがわかる。
As is clear from the above table and Figure 1, sulfuric acid 7
It can be seen that by containing 0.005-10.0% by weight of (804-), the gas sensitivity characteristics, especially the sensitivity to methane, are dramatically improved.

なお、本実施例において含有される硫酸イオン(804
−−) c7)量を0.005−10.0重量%に限定
したのは、まずo、o o s重量係未満では上記表に
見られるようにガス感応特性を向上せしめる効果が見ら
れず、逆に10.0重量%を超えると特性の安定性、あ
るいは機械的強度の面で実用性に欠けるからである。上
記表において4印を付したものはこれに該当するもので
あり、表中では比較例として記載した。表中のA1に示
されている様に、通常のC(10そのものではガス感応
特性が極めて小さく、そのままでは実用に供し得るもの
ではない。
Note that the sulfate ion (804
--) c7) The reason for limiting the amount to 0.005-10.0% by weight is that, as shown in the above table, there is no effect of improving the gas sensitivity characteristics below the o, o o s weight ratio. On the other hand, if it exceeds 10.0% by weight, it will lack practicality in terms of stability of properties or mechanical strength. Items marked with 4 in the table above correspond to this category, and are described as comparative examples in the table. As shown in A1 in the table, ordinary C(10) itself has extremely low gas sensitivity characteristics and cannot be put to practical use as it is.

し7かしこれに硫酸イオンが含有されることによって、
上記表及び第1図に見られる様に、メタンをはじめとす
る種々の可燃性ガスに対して大きな感度が現出するわけ
である。
However, due to the inclusion of sulfate ions,
As seen in the above table and FIG. 1, a large sensitivity appears to various flammable gases including methane.

また一般的には、ある程度非晶質の状態の金属酸化物の
方が、結晶化されているものより可燃性ガスに対する吸
脱着現象などの物理化学現象が活性になり易いと云われ
ている。しかし、はぼ完全に近く結晶化されている本実
施例で使用した市販試薬の酸化カドミウムでも、硫酸イ
オンを含有することにより極めて高い活性度を示し、結
果的((は非常に大きなガス感応特性を示すことになる
Additionally, it is generally said that physicochemical phenomena such as adsorption/desorption phenomena for combustible gases are more likely to become active in metal oxides that are amorphous to some extent than those that are crystallized. However, even the commercially available reagent cadmium oxide used in this example, which is almost completely crystallized, exhibits extremely high activity due to the inclusion of sulfate ions, and as a result (( will be shown.

上記実施例1では、感応体が焼結体の場合について述べ
たが、本発明が焼結体を感応体にした時のみならず焼結
膜の場合も同様に有効であることを次の実施例2を用い
て説明する。また、実施例1では動作温度が400 ’
Cの場合のみについて述べたが、動作温度を変えること
によって本発明による素子のガス選択性(ある特定のガ
スを選択的に検出する能力を示す要素)が著しく変化す
ること、すなわち、動作温度によってガス選択性を大幅
に制御し得るという本発明のいまひとつの重要な効果に
ついても次に示す実施例2で具体的に説明することにす
る。なお実施例2においては、被検ガスとしてプロパン
ガスとほぼ同じ特性を示すイソフリンガスの代りにエタ
ノールを用いて測定した。
In Example 1 above, the case where the sensitive body is a sintered body was described, but the following example shows that the present invention is effective not only when a sintered body is used as the sensitive body but also when a sintered film is used. This will be explained using 2. In addition, in Example 1, the operating temperature is 400'
Although only case C has been described, the gas selectivity (a factor indicating the ability to selectively detect a certain gas) of the device according to the present invention changes significantly by changing the operating temperature. Another important effect of the present invention, which is that gas selectivity can be significantly controlled, will be specifically explained in Example 2 below. In Example 2, ethanol was used as the test gas instead of isofrine gas, which has almost the same characteristics as propane gas.

〔実施例2〕 市販の酸化カドミウム(CdO)の試薬と、硫酸イオン
を含有させる添加物としての種々の濃度に調製した硫酸
カドミウム(CdSO4−XH20)水溶液を準備した
。次に、上記CaOの試薬を10gづつ秤取し、これら
に上記の硫酸カドミウム水溶液をそれぞれ滴下し混合し
た。このようにして得られたいくつかの混合粉体を空気
中で400°Cの温度で2時間熱処理した。さらにこの
粉体を60〜100pに整粒し、トリエタノールアミン
を加えてペースト化した。一方、ガス検知素子の基板と
して縦、f’i7iそれぞれ5朋、厚みQ、6MMのア
ルミナ基板を用、6−1〜、この表面にQ、5111N
の間隔に櫛形に金ペースト企印刷し、焼きつけて一対の
櫛形電極を形成した。そして、アルミナ基板の裏面には
金電極の間に市販の酸化ルテニウムのグレーズ抵抗体を
印刷121、焼きつけてヒータとした。
[Example 2] A commercially available cadmium oxide (CdO) reagent and cadmium sulfate (CdSO4-XH20) aqueous solutions prepared at various concentrations as an additive containing sulfate ions were prepared. Next, 10 g of the above CaO reagent was weighed out, and the above cadmium sulfate aqueous solution was added dropwise to each of these and mixed. Some of the mixed powders thus obtained were heat treated in air at a temperature of 400°C for 2 hours. Further, this powder was sized to 60 to 100p, and triethanolamine was added to form a paste. On the other hand, as the substrate of the gas detection element, an alumina substrate of 5 mm in length and f'i7i and thickness Q of 6 mm was used.
A pair of comb-shaped electrodes were formed by printing gold paste in a comb shape at intervals of . Then, on the back surface of the alumina substrate, a commercially available ruthenium oxide glaze resistor was printed 121 between the gold electrodes and baked to serve as a heater.

次に、上述のペーストを基板の表面に約70μの厚みに
印刷し、室温で自然乾燥させた後、400°Cの温度に
なるまで徐々に加熱し、この温度で1時間保持した。こ
の段階でペーストが蒸発し硫酸イオンを含有する酸化カ
ドミウム(CaO)の焼結膜になった。このガス感応体
の厚みは約66μであった。このようにしてガス検知素
子を得た。
Next, the above-mentioned paste was printed on the surface of the substrate to a thickness of about 70 μm, air-dried at room temperature, and then gradually heated to a temperature of 400° C. and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of cadmium oxide (CaO) containing sulfate ions. The thickness of this gas sensitive member was approximately 66μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
力く、ペーストのまま上述と同じ様に400’Cの温度
で徐加熱し、これをTG −DTムならびに螢光X線分
析にかけて行なった。また硫酸イオンの存在は実施例1
と同じく赤外線吸収スペクトルを分析することにより行
なった。
In addition, it is difficult to identify the amount of sulfate ions contained in the gas-sensitive membrane by printing a portion of each of the above pastes on an alumina substrate, but by slowly heating the paste as is at a temperature of 400'C in the same manner as described above. This was then subjected to TG-DT and fluorescent X-ray analysis. In addition, the presence of sulfate ions was confirmed in Example 1.
This was done by analyzing the infrared absorption spectrum in the same way as in .

このようにして得られた検知素子について、動作温度を
360°Cおよび460°Cの2点とした以外は実施例
1と同じ方法でガス感応特性を測定した。第2図e)〜
(d)は硫酸イオン含有量と各種可燃性ガスに対する感
度(R−71g)の関係を示す特性図であり、第2図(
a)はメタン、第2図(b)はプロパン、第2図(C)
は水素、第2図(d)はエタノールに対する特性を示し
ている。
The gas sensitivity characteristics of the thus obtained sensing element were measured in the same manner as in Example 1 except that the operating temperatures were set at two points, 360°C and 460°C. Figure 2 e)
(d) is a characteristic diagram showing the relationship between sulfate ion content and sensitivity to various combustible gases (R-71g);
a) is methane, Figure 2 (b) is propane, Figure 2 (C)
shows the characteristics for hydrogen, and FIG. 2(d) shows the characteristics for ethanol.

第2図から明らかなように、硫酸イオン(SO4−)が
0.006重量%以上含まれることにより、36゜’C
,450’Cのいずれの動作温度においてもガス感応特
性が飛躍的に向上していることがわかる。
As is clear from Figure 2, by containing 0.006% by weight or more of sulfate ions (SO4-), the temperature at 36°C
It can be seen that the gas sensitivity characteristics are dramatically improved at any operating temperature of , 450'C.

(ただ、この硫酸イオンが10重量%を超えて含まれる
と、実施例1の場合と同様に特性が安定せず、また機械
的強度も弱くなり実用素子としては不適当であるため第
2図ではデータを記載していない。〕いまひとつ重要な
点は、動作温度によりてガス選択性が大幅に異る点であ
る。1例として硫酸イオンが0.5重量%含まれている
時の感度と動作温度の関係を第3図に示す。第3図から
明らかなように、350′Cの動作温度においてはエタ
ノールに対する感度が他のガスのそれに比べて著しく大
きく、エタノールに対する選択性が非常に高いことがわ
かる。一方、460′Cの動作温度においては逆にエタ
ノールに対する感度が非常に小     1さく、他の
メタン、プロパン及び水素に対する感度が相対的に極め
て大きくなっている。換言すれば、この素子は動作温度
を変えることによって、エタノールとそれ以外のガスと
の相対感度を容易に制御出来る特徴を持っているという
ことになる。
(However, if this sulfate ion is contained in an amount exceeding 10% by weight, the characteristics will not be stable as in the case of Example 1, and the mechanical strength will also be weakened, making it unsuitable for use as a practical device. [No data are listed here.] Another important point is that gas selectivity varies greatly depending on the operating temperature.For example, the sensitivity when 0.5% by weight of sulfate ions is included. The relationship between operating temperatures is shown in Figure 3.As is clear from Figure 3, at an operating temperature of 350'C, the sensitivity to ethanol is significantly greater than that of other gases, and the selectivity to ethanol is extremely high. On the other hand, at an operating temperature of 460'C, the sensitivity to ethanol is very small, and the sensitivity to other methane, propane, and hydrogen is relatively large. This means that the device has the characteristic that the relative sensitivity between ethanol and other gases can be easily controlled by changing the operating temperature.

これは実用的な見地から見れば、動作温度を周期的に変
えるなり、あるいは動作温度の異る2つの素子を併用す
るなりの工夫をすることにより、エタノール乙それ以外
のガスとを容易に識別出来る機能を有したガス検知素子
を形成することができるということを意味するものでも
ある。この点も本発明の大きな効果のひとつであり、本
発明の効用範囲を天きく広げるものである。
From a practical standpoint, this means that by periodically changing the operating temperature or by using two elements with different operating temperatures, it is possible to easily distinguish between ethanol and other gases. This also means that it is possible to form a gas sensing element with functions that can be achieved. This point is also one of the great effects of the present invention, and greatly expands the scope of the present invention.

なお、上記各実施例においては、出発原料として酸化カ
ドミウム(CdO)の市販試薬を用いたが、本発明は側
ら出発原料や製造工法を限定するものではない。また特
性を向上させるために更に添JJII物を加えることも
勿論可能である。
In each of the above Examples, a commercially available reagent of cadmium oxide (CdO) was used as a starting material, but the present invention does not limit the starting material or manufacturing method. Of course, it is also possible to further add JJII additives to improve the properties.

以上述べたように、本発明のガス検知素子はガス感応体
の母材料である酸化カドミウム(CaO)が硫酸イオン
を含有することによりガス感応特性が飛躍的に向上し、
これまで貴金属触媒を用いずには微量検知が難かしいと
されてきたメタンガスに対しても非常に大きい感度を実
現し得るものである。これは都市ガスの天然ガス(主成
分:メタンガス)化に伴って要求が大きくなりつつある
社会ニーズに的確に対応するものであり、その効果は極
めて大なるものがある。またすでに述べたように、動作
温度によってガス選択性を大幅に制御することが出来る
点も本発明の実用面から見た大きな効果である。このよ
うに、本発明のガス検知素子はますます重要性が増しつ
つある種4のガス防災分野に極めて大きな貢献をするも
のと期待される。
As described above, the gas sensing element of the present invention has dramatically improved gas sensitivity characteristics because cadmium oxide (CaO), which is the base material of the gas sensing element, contains sulfate ions.
It is possible to achieve extremely high sensitivity even for methane gas, which until now has been considered difficult to detect in trace amounts without the use of noble metal catalysts. This precisely responds to social needs, which are becoming increasingly demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely significant. Furthermore, as already mentioned, the fact that gas selectivity can be greatly controlled by the operating temperature is also a great advantage from a practical standpoint of the present invention. As described above, the gas detection element of the present invention is expected to make an extremely large contribution to the field of gas disaster prevention, which is becoming increasingly important.

【図面の簡単な説明】[Brief explanation of drawings]

第1図くΔ) 、 (b)は本発明の一実施例における
硫酸イオン含有量と感度(Ra 71g)  との関係
を示した特性図、第2図(&) 、 (b) 、 (C
) 、 ((1)は本発明の他の実施例におけるメタン
、プロパン、水素、エタノールの各可燃性ガスに対する
硫酸イオン含有量と感U (RlL 71g)の関係を
動作温度をパラメータにして表わした特性図、第3図は
同実施例における感度(R& 7 Rg)の動作温度依
存性の一例を示した特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (Q+ λ丸−、イオンカ含膚量(tf’/−を第 1 図 (b) 各九由(イオシψ金有+t*f/、> 第2図 ((1) 句屹鹸イオンめ4;有−t<11%) 第21!1 +A) 石九禮斐イオ〉4含有量(! 童γOン       
     −第2図 (t’1 扶廼クイオンめ含有i<1 量%> 第2図 1(1)
Figure 1 (Δ), (b) is a characteristic diagram showing the relationship between sulfate ion content and sensitivity (Ra 71g) in one example of the present invention, and Figure 2 (&), (b), (C
), ((1) represents the relationship between the sulfate ion content and sensitivity U (RIL 71g) for each flammable gas of methane, propane, hydrogen, and ethanol in another embodiment of the present invention, using the operating temperature as a parameter. The characteristic diagram, FIG. 3, is a characteristic diagram showing an example of the operating temperature dependence of the sensitivity (R&7 Rg) in the same example. Name of agent: Patent attorney Toshio Nakao and one other person No. 1
Figure (Q + λ circle -, ion force content (tf'/-) in Figure 1 (b) Each nine points (Ioshi + t*f/, > Figure 2 ((1)) ; Yes -t<11%) No. 21!1 +A) Ishikureiio〉4 content (! DoγON
-Figure 2 (t'1 Fuyuan Kuionme content i <1 amount %> Figure 2 1 (1)

Claims (2)

【特許請求の範囲】[Claims] (1)酸化カドミウム(CaO)を主成分とし、硫酸イ
オンが0.005〜10重量%含有されたものをガス感
応体として用いることを特徴とするガス検知素子。
(1) A gas sensing element characterized in that a gas sensing element containing cadmium oxide (CaO) as a main component and containing 0.005 to 10% by weight of sulfate ions is used as a gas sensing element.
(2)感応体が加圧成型し焼成して得られる焼結体、ま
たはぺ−1ストを印刷して焼成して得られる焼結膜であ
ることを特徴とする特許請求の範囲第(1)項記載のガ
ス検知素子。
(2) Claim (1) characterized in that the sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. Gas detection element described in section.
JP8344282A 1982-05-17 1982-05-17 Gas detection element Granted JPS58200150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8344282A JPS58200150A (en) 1982-05-17 1982-05-17 Gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8344282A JPS58200150A (en) 1982-05-17 1982-05-17 Gas detection element

Publications (2)

Publication Number Publication Date
JPS58200150A true JPS58200150A (en) 1983-11-21
JPS6160378B2 JPS6160378B2 (en) 1986-12-20

Family

ID=13802539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8344282A Granted JPS58200150A (en) 1982-05-17 1982-05-17 Gas detection element

Country Status (1)

Country Link
JP (1) JPS58200150A (en)

Also Published As

Publication number Publication date
JPS6160378B2 (en) 1986-12-20

Similar Documents

Publication Publication Date Title
JPS58200153A (en) Gas detection element
JPS58200150A (en) Gas detection element
JPS58200152A (en) Gas detection element
JPS6160382B2 (en)
JPS6160379B2 (en)
JPS623375B2 (en)
JPS6223252B2 (en)
JPH0159542B2 (en)
JPS5994050A (en) Gas detection element
JPS6222414B2 (en)
JPS5992338A (en) Gas detecting element
JPS6160386B2 (en)
JPS6160377B2 (en)
JPS59107250A (en) Gas detecting element
JPS6222420B2 (en)
JPS6222417B2 (en)
JPS6160385B2 (en)
JPS6222419B2 (en)
JPS6156789B2 (en)
JPS5957150A (en) Gas detecting element
JPS6160383B2 (en)
JPS5957151A (en) Gas detecting element
JPH027025B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)