JPH03248054A - Gas sensor - Google Patents
Gas sensorInfo
- Publication number
- JPH03248054A JPH03248054A JP4679590A JP4679590A JPH03248054A JP H03248054 A JPH03248054 A JP H03248054A JP 4679590 A JP4679590 A JP 4679590A JP 4679590 A JP4679590 A JP 4679590A JP H03248054 A JPH03248054 A JP H03248054A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- alumina
- catalyst layer
- sensitive body
- zinc oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000003054 catalyst Substances 0.000 claims abstract description 40
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 31
- 230000003647 oxidation Effects 0.000 claims abstract description 30
- 239000011787 zinc oxide Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 79
- 239000004065 semiconductor Substances 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 20
- 230000035945 sensitivity Effects 0.000 abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052697 platinum Inorganic materials 0.000 abstract description 10
- 239000000843 powder Substances 0.000 abstract description 10
- 230000001590 oxidative effect Effects 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract 2
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 38
- 235000019441 ethanol Nutrition 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000010718 Oxidation Activity Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はn形金属酸化物半導体をガス感応体とするガ
スセンサに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor using an n-type metal oxide semiconductor as a gas sensitive body.
酸化スズ、酸化亜鉛等のn形金属酸化物半導体は大気中
で300℃〜500℃の温度に加熱されると酸化物の粒
子表面に大気中の酸素を活性化吸着し、表面が高抵抗化
する。ここに可燃性ガスが接触し吸着されると吸着酸素
が可燃性ガスに反応して吸NR素が除去され、電気抵抗
値が減少する。このような性質を利用してたとえば酸化
亜鉛系半導体をガス感応体としたガスセンサはLPガス
、都市ガスなどのガス漏れ警報器に広く用いられている
。When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 300℃ to 500℃ in the atmosphere, oxygen in the atmosphere is activated and adsorbed onto the surface of the oxide particles, resulting in a high resistance surface. do. When a combustible gas comes into contact with and is adsorbed here, the adsorbed oxygen reacts with the combustible gas, the NR-absorbing element is removed, and the electrical resistance value decreases. Utilizing these properties, gas sensors using, for example, zinc oxide-based semiconductors as gas sensing bodies are widely used in gas leak alarms for LP gas, city gas, and the like.
このようなガスセンサの断面構造を第1図に示す。アル
ミナ製のセンサ基板1の一方の面に一対の白金電極2.
3を設け、この両日金電極2,3を跨いで酸化亜鉛系半
導体のガス感応体4が設けられる。このガス感応体4の
表面には、アルコール蒸気による誤報を防止するため酸
化触媒層5で被覆されている。この酸化触媒層5はアル
コール蒸気を酸化して二酸化炭素とし、ガス感応体4に
作用させない機能を有する。6.7は両日金電極2゜3
の外部への引出し用リード縁である。センサ基&1の他
方の面にはガス感応体4を加熱する電気ヒータ8が設け
られ、リード縁9.,10により電源に接続される。ガ
ス感応体4を電気ヒータ8で加熱する理由は、ガス感応
体4を加熱するとこれを被覆している酸化触媒層5も加
熱されその触媒活性が高められてアルコール蒸気の酸化
が促進されるためであって、その温度は400℃前後が
適当とされている。The cross-sectional structure of such a gas sensor is shown in FIG. A pair of platinum electrodes 2 on one side of an alumina sensor substrate 1.
A gas sensitive body 4 made of a zinc oxide semiconductor is provided across the gold electrodes 2 and 3 on both sides. The surface of this gas sensitive body 4 is coated with an oxidation catalyst layer 5 to prevent false alarms due to alcohol vapor. This oxidation catalyst layer 5 has the function of oxidizing alcohol vapor to carbon dioxide and preventing it from acting on the gas sensitive body 4. 6.7 is both days gold electrode 2゜3
This is the lead edge for the external drawer. An electric heater 8 for heating the gas sensitive body 4 is provided on the other side of the sensor base &1, and a lead edge 9. , 10 to the power supply. The reason why the gas sensitive body 4 is heated by the electric heater 8 is that when the gas sensitive body 4 is heated, the oxidation catalyst layer 5 covering it is also heated, increasing its catalytic activity and promoting the oxidation of alcohol vapor. The appropriate temperature is around 400°C.
上述したガスセンサにおいて酸化触媒層5としては従来
は通常白金、パラジウムなどの貴金属を活性アルミナに
担持させた活性アルミナ担持貴金属触媒が萬い活性度を
示すとして用いられていた。In the above-mentioned gas sensor, as the oxidation catalyst layer 5, an active alumina-supported noble metal catalyst, in which a noble metal such as platinum or palladium is supported on activated alumina, has been conventionally used because it exhibits a high degree of activity.
しかしながら本発明者が予てよりアルコール除去のため
の酸化触媒について極々検討をIねたところ前述した活
性アルミナ担持賞金属触媒には以下に述べるような問題
点があることが判明した。However, the inventor of the present invention has conducted extensive research on oxidation catalysts for alcohol removal and has found that the above-mentioned activated alumina-supported metal catalyst has the following problems.
すなわちまず第1の問題点として前記活性アルミナ担持
貴金属触媒はアルコール蒸気に対して充分な酸化活性を
示すものの被検ガスであるLPガスに対しても多少の酸
化活性を有しており、このためガスセンサの@!度が高
くなり過ぎると酸化触媒層5での酸化反応が進行し易く
なるのでガス感応体4でLPガスに対する検知感度が低
下し易い。That is, the first problem is that although the active alumina-supported noble metal catalyst exhibits sufficient oxidizing activity against alcohol vapor, it also has some oxidizing activity against LP gas, which is the test gas. Gas sensor @! If the temperature becomes too high, the oxidation reaction in the oxidation catalyst layer 5 tends to proceed, and the detection sensitivity of the gas sensitive body 4 to LP gas tends to decrease.
この結果ガスセンサの使用可能な温度範囲が狭くなると
いう実用上の不具合がある。As a result, there is a practical problem that the usable temperature range of the gas sensor becomes narrow.
次に第2の問題点としてセンサ基板1および画電極2,
3に対する金属酸化物半導体ガス感応体4の付着強度に
比べて、このガス感応体4を被覆する酸化触媒層のガス
感応体への付所強度が低い。Next, the second problem is that the sensor substrate 1 and the picture electrode 2,
Compared to the adhesion strength of the metal oxide semiconductor gas sensitive member 4 to the gas sensitive member 3, the adhesion strength of the oxidation catalyst layer covering the gas sensitive member 4 to the gas sensitive member is low.
これは次の冥験によって判明した。酸化亜鉛系半導体を
ガス感応体として形成するには、談ず酸化亜鉛粉末を水
などともに混練してペースト化し、これを基板上に塗布
して形成し、さらにコロイド状のアルミナ、シリカ等の
無機バインダを含浸させた後温[300℃〜800℃で
焼付けて酸化亜鉛ガス感応層を形成し、続いて活性アル
ミナ担持貴金属触媒粉末を上記と同様にペースト化して
前記ガス感応層を被覆するように塗布し、加熱して焼き
付は酸化触媒層を形成するという方法で試作した。This was revealed by the following experience. To form a zinc oxide-based semiconductor as a gas sensitive material, it is necessary to knead zinc oxide powder with water to form a paste, apply this onto a substrate, and then apply an inorganic material such as colloidal alumina or silica. After being impregnated with the binder, the zinc oxide gas sensitive layer is formed by baking at a temperature of 300° C. to 800° C., and then the active alumina-supported noble metal catalyst powder is made into a paste in the same manner as above to cover the gas sensitive layer. A prototype was created by coating, heating, and baking to form an oxidation catalyst layer.
ところがこの方法で試作を頁ね行なった結果、ガス感応
層がセンサ基板に付着する強度に比べて酸化触媒層がガ
ス感応層に付着する強度が弱いことが判明した。ガス感
応層(#l化亜鉛層)に比べて酸化触媒層(活性アルミ
ナ担持貴金属層触媒層)の付着強度が低い原因について
の詳細は不明だが。However, as a result of trial manufacturing using this method, it was found that the strength with which the oxidation catalyst layer adheres to the gas-sensitive layer is weaker than the strength with which the gas-sensitive layer adheres to the sensor substrate. Although the details of the reason why the adhesion strength of the oxidation catalyst layer (active alumina-supported precious metal layer catalyst layer) is lower than that of the gas-sensitive layer (#l zinc oxide layer) are unknown.
酸化亜鉛に比べて活性アルミナの方がバインダ存在下で
の焼結性が低いこととの関係があるものと考えられる。This is thought to be related to the fact that activated alumina has lower sinterability in the presence of a binder than zinc oxide.
以上のことはガス漏れ警報器にガスセンサを組込んだ場
合、ガス漏れ警報器の輸送時の振動、落下等により酸化
触媒層の剥離が起こる可能性があり、製品の信頼性を確
保する上で好ましくない。The above is because when a gas sensor is incorporated into a gas leak alarm, there is a possibility that the oxidation catalyst layer may peel off due to vibrations, drops, etc. during transportation of the gas leak alarm, and it is important to ensure the reliability of the product. Undesirable.
この発明の目的は、金属酸化物半導体からなるガスg応
体の表面を酸化触媒層で被覆し、この触媒層でアルコー
ル蒸気等の易燃性妨害ガスを選択的に酸化し、LPガス
などの被検ガスに対する選択性を高めた構成のガスセン
サにおいて、より広い温度領域で被検知ガスの酸化を抑
制し、妨害ガスのみを選択的に酸化でき、かつ酸化触媒
の付着強度が実使用上光分な強さをもつように酸化触媒
層を構成することにある。The purpose of the present invention is to coat the surface of a gas reactant made of a metal oxide semiconductor with an oxidation catalyst layer, and selectively oxidize easily combustible interfering gases such as alcohol vapor with this catalyst layer. A gas sensor with a configuration that increases selectivity for the gas to be detected suppresses oxidation of the gas to be detected over a wider temperature range, selectively oxidizes only the interfering gas, and has an adhesion strength of the oxidation catalyst that is within the range of optical spectroscopy in practical use. The objective is to configure the oxidation catalyst layer so that it has sufficient strength.
この発明では、上述した目的達成のためガスセンサを次
のように構成した。すなわちセンサ基板の一方の面に設
けたn形金属酸化物半導体からなるガス感応体の表面を
酸化触媒層で被覆し、この触媒層で検知すべき成分以外
の易燃性ガスを酸化除去し、前記センサ基板の他方の面
に設けた電気ヒータで前記ガス感応体を77f+熱する
構成において、前記触媒層は活性アルミナと酸化亜鉛の
混合物からなり、かつ少なくとも活性アルミナには貴金
属を担持させた。In this invention, a gas sensor is configured as follows in order to achieve the above-mentioned object. That is, the surface of a gas sensitive body made of an n-type metal oxide semiconductor provided on one side of the sensor substrate is coated with an oxidation catalyst layer, and this catalyst layer oxidizes and removes combustible gases other than the components to be detected. In a configuration in which the gas sensitive body is heated to 77f+ by an electric heater provided on the other surface of the sensor substrate, the catalyst layer is made of a mixture of activated alumina and zinc oxide, and at least the activated alumina supports a noble metal.
活性アルミナは可燃ガスに対して優れた酸化活性をもっ
ており、そのため被検ガスであるLPガスをも一部酸化
させるのでガス感応体でのLPガスに対する検知感度が
低下するが、酸化触媒としての機能がほとんど無い酸化
亜鉛を活性アルミナに担持させることにより酸化活性を
抑制する作用がある。活性アルミナに酸化亜鉛を混合す
ることにより、活性アルミナの粒子同志を焼結性の高い
酸化亜鉛粒子が互いに結合し、ガス感応体である酸化亜
鉛層への付着強度が高くなる。Activated alumina has excellent oxidizing activity against combustible gases, and therefore partially oxidizes the LP gas, which is the gas to be detected, reducing the detection sensitivity of the gas sensor for LP gas, but it still functions as an oxidation catalyst. By supporting activated alumina with zinc oxide, which has almost no oxidation activity, it has the effect of suppressing oxidation activity. By mixing zinc oxide with activated alumina, the activated alumina particles are bonded to each other by highly sinterable zinc oxide particles, and the adhesion strength to the zinc oxide layer, which is a gas sensitive material, is increased.
第1図はガスセンサの断面図で、第1図に基づいて本発
明の詳細な説明する。アルミナ製のセンサ基板1の一方
の面に一対の白金電極2,3を設け、この両日金電極2
,3を跨いでガス感応体4を設ける。このガス感応体4
は次のようにして作られる。すなわち比表面積10 m
/g 、中心粒径3μの酸化亜鉛粉末にパラジウム0.
5重量%を有する塩化パラジウム溶液を含浸させ、乾燥
後600℃で2時間加熱して塩化パラジウムを分解させ
る。FIG. 1 is a sectional view of a gas sensor, and the present invention will be explained in detail based on FIG. A pair of platinum electrodes 2 and 3 are provided on one side of the sensor substrate 1 made of alumina, and the gold electrodes 2 and 3 are provided on both sides.
, 3, a gas sensitive body 4 is provided across them. This gas sensitive body 4
is created as follows. That is, the specific surface area is 10 m
/g, zinc oxide powder with a center particle size of 3μ and palladium 0.
It is impregnated with a palladium chloride solution having a concentration of 5% by weight, and after drying is heated at 600° C. for 2 hours to decompose the palladium chloride.
次いでこの粉末に水を児えペースト状としたものを両日
金電極2,3を跨いで塗布し、常温で乾燥したのちアル
ミナゾルバインダを浸み込才せ乾燥したのち750℃で
31)分加熱してアルミナ製のセンサ基″#i、1上に
焼付はガス感応体4として形成した。Next, this powder was mixed with water to form a paste, which was applied across the gold electrodes 2 and 3 on both days, dried at room temperature, impregnated with alumina sol binder, dried, and then heated at 750°C for 31) minutes. A gas sensitive body 4 was formed by baking on the alumina sensor base #i.
なお前記酸化亜鉛粉末に添〃口したパラジウムは酸化亜
鉛の可燃性ガスに対するII&度を高めるためのもので
ある。このガス感応体4の底面は、アルコール蒸気によ
る脂層を防止するため酸化触媒層5で被覆するが、その
製法は次のとおりである。すなわち比表面積150 i
/g 、 中心粒径3Pのγ−アルミナ粉末に白金1
重量%を有する塩化白金酸水溶液を含浸させ、乾燥した
後600℃で2時間加熱してr−アルミナに白金を担持
させた粉末を調製する。この白金添加γ−アルミナ粉末
と酸化亜鉛粉末とを重量比で1=1になるように混合し
たのち水を加えてペースト状とし、これをガス感応体4
を被枡するようにして厚さ100 pに塗布した。The palladium added to the zinc oxide powder is used to increase the resistance of zinc oxide to combustible gases. The bottom surface of the gas sensitive body 4 is coated with an oxidation catalyst layer 5 to prevent a fat layer from forming due to alcohol vapor, and the manufacturing method thereof is as follows. That is, the specific surface area is 150 i
/g, γ-alumina powder with a center particle size of 3P and platinum 1
% by weight of a chloroplatinic acid aqueous solution, dried, and then heated at 600° C. for 2 hours to prepare a powder in which platinum is supported on r-alumina. After mixing this platinum-added γ-alumina powder and zinc oxide powder so that the weight ratio was 1=1, water was added to make a paste, and this was mixed into a gas sensitive material 4.
It was coated to a thickness of 100p so as to cover the entire area.
この状態において常温で乾燥したのちアルミナゾルバイ
ンダを浸み込ませ、さらに乾燥後730℃で(9)分加
熱して酸化触媒層5を形成した。In this state, after drying at room temperature, an alumina sol binder was impregnated, and after drying, the oxidation catalyst layer 5 was formed by heating at 730° C. for 9 minutes.
6.7は両日金電極2,3の外部への引出した抵抗値測
定用のリード線である。センサ基板lの他方の面にはガ
ス感応体4を加熱する電気ヒータ8を設け、リード線9
,10により図示しない電源に接続する。Reference numeral 6.7 denotes lead wires for resistance measurement drawn out from the gold electrodes 2 and 3 on both sides. An electric heater 8 for heating the gas sensitive body 4 is provided on the other surface of the sensor substrate l, and a lead wire 9 is provided.
, 10 to connect to a power source (not shown).
上述のように[kされたガスセンサの酸化触媒層の効果
をr4紹するため次のような英験を行なりた。まず第1
の実験は、前記実施例で形成した撤化触媒層5(以下こ
れを素子−1と称す)との比較用として素子−2を作成
した。この素子−2は前記素子−1の製法の中で1重1
%の白金を担持したγ−アルミナ粉末のみを用い(vR
化亜鉛粉末を混合しないで)水を加えてペースト状とし
、ガス感応体4を被覆したものである。この画素子のガ
ス感度の測定は、電気ヒータ8で加熱して素子を所定温
度に保ち、素子の大気中での電気抵抗値Roと、0.2
%のイソブタンガス中での電気抵抗値ILg(B)、
0.2%のエチルアルコール蒸気中での電気抵抗値Rg
(A)を基として次式により求めた。As mentioned above, in order to introduce the effect of the oxidation catalyst layer of the gas sensor, the following experiment was conducted. First of all
In this experiment, a device-2 was prepared for comparison with the abrogated catalyst layer 5 (hereinafter referred to as device-1) formed in the above example. This element-2 has a single layer and one layer in the manufacturing method of the element-1.
Using only γ-alumina powder supporting % platinum (vR
The paste is made into a paste by adding water (without mixing the zinc oxide powder), and the gas sensitive member 4 is coated with the paste. To measure the gas sensitivity of this pixel element, the element is heated with an electric heater 8 to maintain it at a predetermined temperature, and the electric resistance value Ro of the element in the atmosphere is 0.2.
% electrical resistance value ILg (B) in isobutane gas,
Electrical resistance value Rg in 0.2% ethyl alcohol vapor
It was determined by the following formula based on (A).
すなわち、インブタンガス感度ra =Ro/Rg (
B) −エチルアルコール感度γA : Ro/Rg
(A)である。That is, inbutane gas sensitivity ra = Ro/Rg (
B) -Ethyl alcohol sensitivity γA: Ro/Rg
(A).
第2図は本発明に係る素子−1と比較用の素子−2のセ
ンサ温度(’C)に対するガス感度の依存性を比較した
もので、笑紛曲線■、@はそれぞれ素子−1のrBvr
ムの温度依存性を示し、破線曲線θ。Figure 2 compares the dependence of gas sensitivity on the sensor temperature ('C) of Element-1 according to the present invention and Comparative Element-2.
The dashed curve θ shows the temperature dependence of the temperature.
0はそれぞれ素子−2のγB、γ人の温度依存性を示す
。この特性曲線図より、酸化触媒層がγ−アルミナと酸
化亜鉛の混合物から成る素子−1は、陳化亜鉛の無いr
−アルミナのみから成る素子−2に比べて高温における
イソブタンガス感度rsの低下が大幅に抑制され、たと
えばイソブタンガス感Krmが5以上で、かつエチルア
ルコールg[γムがイソブタンrsより低い温度領域1
1が、素子−2の81度領域12に比べて広くなる。0 indicates the temperature dependence of γB and γ of element-2, respectively. From this characteristic curve diagram, it can be seen that element-1, in which the oxidation catalyst layer is made of a mixture of γ-alumina and zinc oxide, has no zinc oxide.
- Compared to Element-2 made only of alumina, the decrease in isobutane gas sensitivity rs at high temperatures is significantly suppressed; for example, in the temperature range 1 where isobutane gas sensitivity Krm is 5 or more and ethyl alcohol g
1 is wider than the 81 degree region 12 of element-2.
次に第2の英験は前述した実施例と刈株の製法において
、酸化触IX層5におけるr−アルミナと酸化亜鉛との
混合比を変えて得られた7稙の素子を家庭用のガス漏れ
警報器(′IL量260 g )に組込み、これをコン
クIJ −トの床上(資)傭の渦さから落下させる動作
を5厄繰返した。この後素子を数日して酸化触TIi、
層の剥離の有無を目視により調食しこの英験は同一のγ
−アルミナ/酸化亜鉛混合比の素子につき各10個ずつ
行ない剥離した素子の割合を求めたもので、7°−アル
ミナ/酸化亜鉛の混合比を5以下にすることによりr−
アルミナの場合に比べて極めて高い付着強度が得られる
。Next, the second experiment was conducted using a 7-layer element obtained by changing the mixing ratio of r-alumina and zinc oxide in the oxidized catalyst IX layer 5 in the above-mentioned example and stubble manufacturing method. The leak alarm was assembled into a leak alarm (IL amount: 260 g), and the operation of dropping it from a vortex on the floor of a concrete IJ was repeated 5 times. After this, the device was oxidized for a few days, and TIi was oxidized.
This test was carried out by visual inspection to check whether there was any peeling of the layer.
- 10 elements each with alumina/zinc oxide mixing ratio were tested and the percentage of peeled elements was determined.
Extremely high adhesion strength can be obtained compared to alumina.
この発明によれば、酸化触媒層を活性アルミナと酸化亜
鉛の混合物とすることにより高温における被検ガスの酸
化による感度低下を抑制することが可能となり、ガスセ
ンサの使用可能な温度領域を広くすることができた。こ
れは、たとえば電源電圧の変動に伴うガス検知感度の変
動幅を狭くできるという極めて大きな利点が得られる。According to this invention, by making the oxidation catalyst layer a mixture of activated alumina and zinc oxide, it is possible to suppress a decrease in sensitivity due to oxidation of the gas to be detected at high temperatures, thereby widening the usable temperature range of the gas sensor. was completed. This has the extremely large advantage that, for example, the range of fluctuation in gas detection sensitivity due to fluctuations in power supply voltage can be narrowed.
さらに酸化亜鉛の混合によって酸化触媒層の付着強度が
富くなり落下衝撃、振動による酸化触媒層の剥離を防止
することができる。Furthermore, the adhesion strength of the oxidation catalyst layer is increased by mixing zinc oxide, and peeling of the oxidation catalyst layer due to drop impact and vibration can be prevented.
第1図はガスセンサの断面図、第2図は本発明によるガ
スセンサの温度に対するガス感度の依存性を示す特性曲
線図である。
1:センサ基板、4:ガス感応体、5:酸化触第1
凹
彷
図FIG. 1 is a sectional view of a gas sensor, and FIG. 2 is a characteristic curve diagram showing the dependence of gas sensitivity on temperature of the gas sensor according to the present invention. 1: Sensor board, 4: Gas sensitive body, 5: Oxidation catalyst 1
Claims (1)
体からなるガス感応体の表面を酸化触媒層で被覆し、こ
の触媒層で検知すべき成分以外の易燃性ガスを酸化除去
し、前記センサ基板の他方の面に設けた電気ヒータで前
記ガス感応体を加熱する構成において、前記触媒層は活
性アルミナと酸化亜鉛の混合物からなり、かつ少なくと
も活性アルミナには貴金属が添加されていることを特徴
とするガスセンサ。1) The surface of a gas sensitive body made of an n-type metal oxide semiconductor provided on one side of the sensor substrate is coated with an oxidation catalyst layer, and this catalyst layer oxidizes and removes combustible gases other than the components to be detected. , in a configuration in which the gas sensitive body is heated by an electric heater provided on the other surface of the sensor substrate, the catalyst layer is made of a mixture of activated alumina and zinc oxide, and at least a noble metal is added to the activated alumina. A gas sensor characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4679590A JPH03248054A (en) | 1990-02-27 | 1990-02-27 | Gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4679590A JPH03248054A (en) | 1990-02-27 | 1990-02-27 | Gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03248054A true JPH03248054A (en) | 1991-11-06 |
Family
ID=12757271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4679590A Pending JPH03248054A (en) | 1990-02-27 | 1990-02-27 | Gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03248054A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1082755A (en) * | 1996-08-07 | 1998-03-31 | Lg Electron Inc | Hydrocarbon gas sensor and manufacture thereof |
-
1990
- 1990-02-27 JP JP4679590A patent/JPH03248054A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1082755A (en) * | 1996-08-07 | 1998-03-31 | Lg Electron Inc | Hydrocarbon gas sensor and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03248054A (en) | Gas sensor | |
JP2513274B2 (en) | Gas sensor | |
JP3271635B2 (en) | Thick film gas sensor and method of manufacturing the same | |
JPH0252247A (en) | Gas sensor | |
JP3393504B2 (en) | Contact combustion type carbon monoxide sensor | |
JP2570440B2 (en) | Gas sensor | |
JPH08226909A (en) | Contact-combustion-type carbon monoxide gas sensor | |
EP0261275A1 (en) | A hydrogen gas detecting element and method of producing same | |
JPH0875691A (en) | Gas sensor | |
JP2980290B2 (en) | Gas detection method and gas sensor used therefor | |
JP3486797B2 (en) | Activation method of catalyst for gas sensor | |
JPH0221256A (en) | Gas sensor | |
JP3191523B2 (en) | Thick film gas sensor | |
JP2575479B2 (en) | Gas sensor | |
JPH0382945A (en) | Semiconductor gas sensor | |
JPH0473543B2 (en) | ||
JPH04344450A (en) | Gas sensor | |
JPH07209235A (en) | Thick film type gas sensor | |
JPH0455747A (en) | Gas sensor | |
JPH0894576A (en) | Gas sensor and its manufacture | |
JPH01197646A (en) | Gas sensor | |
JP2819362B2 (en) | Gas detection material | |
JPH0949819A (en) | Carbon monoxide detector | |
JPS63233358A (en) | Gas sensor | |
JPH0473544B2 (en) |