JPH0382945A - Semiconductor gas sensor - Google Patents

Semiconductor gas sensor

Info

Publication number
JPH0382945A
JPH0382945A JP21928989A JP21928989A JPH0382945A JP H0382945 A JPH0382945 A JP H0382945A JP 21928989 A JP21928989 A JP 21928989A JP 21928989 A JP21928989 A JP 21928989A JP H0382945 A JPH0382945 A JP H0382945A
Authority
JP
Japan
Prior art keywords
layer
sensor
gas
hours
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21928989A
Other languages
Japanese (ja)
Inventor
Noriyoshi Nagase
徳美 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21928989A priority Critical patent/JPH0382945A/en
Publication of JPH0382945A publication Critical patent/JPH0382945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase selective oxidization of an oxide layer in a sensor with respect to alcohol by providing a gas sensitive layer having a catalyst of noble metal added to an n-type oxide semiconductor with a specific ratio. CONSTITUTION:Powder of tin oxide having the central particle size of 2mum is impregnated with palladium chloride so that the palladium becomes 0.5wts.%. Then, the powder is dried and heated at 600 deg.C for two hours, thereby dissolving the palladium chloride. After the powder is turned into paste, the tin oxide is screen printed on electrodes 1A, 1B provided on an alumina substrate 5, heated at 120 deg.C for two hours, thereby forming a gas sensitive layer 2 on the substrate 5. Thereafter, a paste including gamma alumina particles is printed on the gas sensitive layer 2, dried at 120 deg.C for two hours, thereby forming an insulating layer 3. Subsequently, the same powder of the tin oxide as above is impregnated with chloroplatinate so that the platinum becomes 0.5wts.%, which is then heated at 600 deg.C for two hours to be dissolved. The tin oxide powder with platinum is turned into paste, applied on an oxide layer 4, dried at room temperatures, and heated at 600 deg.C for three hours. As a result, an oxide layer 4 is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸化スズ酸化物半導体を用いたガスセンサに
係り、特にアルコールによる干渉がなく目的ガスに対す
る選択性の高い半導体式ガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor using a tin oxide semiconductor, and particularly to a semiconductor type gas sensor that is free from interference by alcohol and has high selectivity to a target gas.

〔従来の技術〕[Conventional technology]

酸化スズ、酸化亜鉛等のn型金属酸化物半導体は大気中
において300〜500℃の温度に加熱されると粒子表
面に大気中の酸素が活性化吸着し高抵抗化するが、可燃
性ガスが接触すると吸着酸素と可燃性ガスとが反応して
吸着酸素が除去されその電気抵抗値が減少する。
When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 300 to 500°C in the atmosphere, atmospheric oxygen is activated and adsorbed onto the particle surface, resulting in high resistance. Upon contact, the adsorbed oxygen and combustible gas react, the adsorbed oxygen is removed, and its electrical resistance value decreases.

このような性質を利用して酸化スズを用いたセンサはL
Pガス、都市ガスなどのガス漏れ警報器として広く用い
られる。酸化スズは、ガス感度を高めるために白金、パ
ラジウムが0.1〜1重量%加えられる。
Utilizing these properties, sensors using tin oxide are
Widely used as a gas leak alarm for P gas, city gas, etc. To the tin oxide, platinum or palladium is added in an amount of 0.1 to 1% by weight to increase gas sensitivity.

この種のセンサでは大気中のアルコールに対しても大き
な抵抗値の変化を示すことが知られており、調理、燗等
から発生するアルコールによる誤動作を防ぐため、アル
コールに対する感度を極力低減させ、目的とするLPガ
ス1都市ガス等を選択的に検知できるセンサが必要とさ
れる。
It is known that this type of sensor exhibits a large change in resistance value even when exposed to alcohol in the atmosphere.In order to prevent malfunctions due to alcohol generated from cooking, warming, etc., the sensor has been designed to reduce its sensitivity to alcohol as much as possible. A sensor is required that can selectively detect LP gas, city gas, etc.

この問題を解決する方法の1つとしてアルコールを酸化
除去する機能を有する酸化層を酸化スズからなる感ガス
層の外側表面に形成する方法が知られている。酸化層と
しては白金、パラジウムなどの貴金属を活性アルミナに
担持したものが用いられる。
As one method for solving this problem, a method is known in which an oxide layer having the function of oxidizing and removing alcohol is formed on the outer surface of a gas-sensitive layer made of tin oxide. The oxide layer used is one in which noble metals such as platinum and palladium are supported on activated alumina.

(発明が解決しようとする課題) しかしながら上述のような活性アルミナを酸化層として
用いる半導体式ガスセンサにあってはアルコールによる
干渉を充分に除くことができないという問題があった。
(Problems to be Solved by the Invention) However, in the semiconductor type gas sensor using activated alumina as an oxide layer as described above, there is a problem in that interference due to alcohol cannot be sufficiently eliminated.

例えば第4図に従来の半導体式ガスセンサのセンサ温度
375℃におけるイソブタン特性9とアルコール特性1
0が示される。半導体式ガスセンサはその抵抗値が所定
値以下に下がったときに警報を発するが、上述のように
イソブタン特性9とアルコール特性10とが近接してい
るときは、ガスセンサはアルコールによって誤報を発し
やすい。なお上述のセンサ温度375℃はイソブタン特
性とアルコール特性とが最も離れる設定温度となってい
る。
For example, Figure 4 shows isobutane characteristics 9 and alcohol characteristics 1 of a conventional semiconductor gas sensor at a sensor temperature of 375°C.
0 is shown. A semiconductor type gas sensor issues an alarm when its resistance value falls below a predetermined value, but when the isobutane characteristic 9 and the alcohol characteristic 10 are close to each other as described above, the gas sensor is likely to issue a false alarm due to alcohol. Note that the above-mentioned sensor temperature of 375° C. is the set temperature at which the isobutane characteristics and the alcohol characteristics are the most distant from each other.

この発明は上述の点に鑑みてなされ、その目的は酸化層
に改良を加えることにより、アルコールの干渉を受ける
ことがない半導体式ガスセンサを提供することにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a semiconductor gas sensor that is free from alcohol interference by improving the oxide layer.

C1題を解決するための手段〕 上述の目的はこの発明によれば、基板の−Lに感ガスl
W2と絶縁層3と酸化N4とを有するガスセンサであっ
て、前記感ガス層はn型酸化物半導体に貴金属触媒を0
.1〜1重置%添加したものであり、 前記絶縁層は前記感ガス層の上に積層された多孔質の層
であり、前記酸化層は前記絶縁層のLにn型酸化物半導
体を積層し、これに貴金属触媒を0.1〜1重量%添加
することにより達成される。
Means for Solving Problem C1] According to the present invention, the above-mentioned object
A gas sensor comprising W2, an insulating layer 3, and N4 oxide, wherein the gas sensitive layer is an n-type oxide semiconductor coated with a noble metal catalyst.
.. The insulating layer is a porous layer laminated on the gas-sensitive layer, and the oxide layer is an n-type oxide semiconductor laminated on L of the insulating layer. However, this can be achieved by adding 0.1 to 1% by weight of a noble metal catalyst.

〔作用〕[Effect]

酸化スズに0.1〜1重量%の貴金属を担持させた酸化
層は従来の酸化層に比してアルコールに対する選択的酸
化性が増す。
An oxide layer in which 0.1 to 1% by weight of a noble metal is supported on tin oxide has increased selective oxidation property for alcohol compared to a conventional oxide layer.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係る半導体式ガスセンサを
示す断面図で基板5の1つの主面に電極1^とIB、感
ガス層2.絶縁層3.酸化層4が順次積層され、リード
線6A、 6Bが電極IA、 IBに接続される。基板
5の他の主面にはヒータ7が設けられる。リードM8A
、 8Bがヒータ用電流を供給する。
FIG. 1 is a cross-sectional view showing a semiconductor gas sensor according to an embodiment of the present invention, in which electrodes 1^ and IB, gas-sensitive layers 2. Insulating layer 3. Oxide layers 4 are sequentially laminated, and lead wires 6A, 6B are connected to electrodes IA, IB. A heater 7 is provided on the other main surface of the substrate 5. Lead M8A
, 8B supplies current for the heater.

このようなガスセンサは以下のようにして調製される。Such a gas sensor is prepared as follows.

すなわち、中心粒径2irmの酸化スズ粉末にパラジウ
ムとして0.5重量%となるように塩化パラジウムを含
浸させ、乾燥& 600℃で2時間加熱し、塩化パラジ
ウムを分解させた。次いでこの粉末に水とシリカゾルを
加えペースト状とした後アルミナ基板5」二に設けた電
極IA、 1B上に厚さ約50−となるように酸化スズ
をスクリーン印刷し、120℃で2時間加熱してアルミ
ナ基板5上に感ガス層2を形成した。次にγアルミナの
粒子を含むペーストを前記感ガス層2の上にスクリーン
印刷し、120℃で2時間乾燥して絶縁層3を50μ淳
に形成した。続いて前記と同様の酸化スズ粉末に塩化白
金酸を白金として0.5重置%となるように含浸し、6
00℃で2時間加熱して白金を分解させた。
That is, tin oxide powder having a center particle size of 2irm was impregnated with palladium chloride to give a concentration of 0.5% by weight as palladium, dried and heated at 600° C. for 2 hours to decompose the palladium chloride. Next, water and silica sol were added to this powder to form a paste, and tin oxide was screen printed on the electrodes IA and 1B provided on the alumina substrate 5'' to a thickness of about 50 mm, and heated at 120℃ for 2 hours. Then, a gas-sensitive layer 2 was formed on the alumina substrate 5. Next, a paste containing γ-alumina particles was screen printed on the gas-sensitive layer 2 and dried at 120° C. for 2 hours to form an insulating layer 3 with a thickness of 50 μm. Next, the same tin oxide powder as above was impregnated with chloroplatinic acid at a concentration of 0.5% as platinum, and 6
Platinum was decomposed by heating at 00°C for 2 hours.

この白金付き酸化スズ粉末に水とシリカゾルを加えペー
スト状とした後約50−の厚さに酸化層4を塗布した。
Water and silica sol were added to this platinized tin oxide powder to form a paste, and then an oxide layer 4 was applied to a thickness of about 50 mm.

これを常温で乾燥後600℃で3時間加熱した。This was dried at room temperature and then heated at 600°C for 3 hours.

比較のために上述の絶縁層3と酸化層4に替えて白金を
3重量%担持したγアルミナのペーストを用いて感ガス
層を被覆し焼付けた従来のガスセンサを作製した。
For comparison, a conventional gas sensor was fabricated in which the gas-sensitive layer was coated and baked using a paste of γ alumina carrying 3% by weight of platinum in place of the insulating layer 3 and oxide layer 4 described above.

第2図は本発明の実施例に係るガスセンサのセンサ温度
とセンサ抵抗との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between sensor temperature and sensor resistance of the gas sensor according to the embodiment of the present invention.

曲j6i13は空気中におけるセンサ抵抗RO(kΩ)
Song j6i13 is the sensor resistance RO in air (kΩ)
.

曲M14はイソブタンを0.2%含む空気中におけるセ
ンサ抵抗R,(B)(kΩ)1曲線15はアルコールを
0.2%含む空気中におけるセンサ抵抗R,(A)(k
Ω)を示す。イソブタンを含む空気中におけるセンサ抵
抗は温度が上昇していくと感度が大きくなり、センサ抵
抗が小さくなるが、やがて酸化層におけるイソブタンの
燃焼が始まり感ガス層に到達するイソブタン量が減少し
てセンサ抵抗の単調な減少傾向が弱まる。これに対しア
ルコールを含む空気中におけるセンサ抵抗はセンサ温度
の低い間に、おいて酸化層が機能しないためアルコール
が直接感ガス層に到達し、センサ抵抗がイソブタンの場
合より小さくなるが、温度の上昇につれ酸化層が機能す
るようになりアルコールが酸化層で燃焼して感ガス層に
到達するアルコール量が減少し、センサ抵抗は増大する
ようになる。このようにしてイソブタンを含む空気中に
おけるセンサ抵抗を示す曲線14とアルコールを含む空
気中におけるセンサ抵抗を示す曲線15とは交差し、交
差点の温度より高い温度でアルコールを含む空気中にお
けるセンサ抵抗がイソブタンを含む空気中におけるセン
サ抵抗より大きくなる。曲線14と曲線15は450℃
の温度でセンサ抵抗の開きが最大となる。450℃にお
けるセンサ抵抗とガス温度との関係が第4図に示される
。特性4111がイソブタンを含む空気中におけるセン
サ特性、特性線12がアルコールを含む空気中における
センサ特性である。特性線11と特性112のセンサ抵
抗の違いは大きい。アルコールの干渉は従来のセンサよ
り少ないことがわかる。
Curve M14 is the sensor resistance R in air containing 0.2% isobutane, (B) (kΩ) 1 curve 15 is the sensor resistance R in air containing 0.2% alcohol, (A) (k
Ω). As the temperature rises, the sensor resistance in air containing isobutane increases and the sensor resistance decreases, but eventually the isobutane begins to burn in the oxidized layer and the amount of isobutane that reaches the sensitive gas layer decreases, causing the sensor resistance to increase. The monotonically decreasing trend of resistance weakens. On the other hand, the sensor resistance in air containing alcohol is lower than that in the case of isobutane because the oxidation layer does not function while the sensor temperature is low, so the alcohol directly reaches the sensitive gas layer, and the sensor resistance is smaller than in the case of isobutane. As the temperature rises, the oxidized layer becomes functional and alcohol burns in the oxidized layer, reducing the amount of alcohol that reaches the gas-sensitive layer and increasing the sensor resistance. In this way, the curve 14 showing the sensor resistance in air containing isobutane and the curve 15 showing the sensor resistance in air containing alcohol intersect, and the sensor resistance in air containing alcohol intersects at a temperature higher than the temperature at the intersection. The sensor resistance is greater than that in air containing isobutane. Curve 14 and curve 15 are 450℃
The difference in sensor resistance becomes maximum at a temperature of . The relationship between sensor resistance and gas temperature at 450° C. is shown in FIG. Characteristic 4111 is the sensor characteristic in air containing isobutane, and characteristic line 12 is the sensor characteristic in air containing alcohol. The difference in sensor resistance between characteristic line 11 and characteristic line 112 is large. It can be seen that alcohol interference is less than with conventional sensors.

第3図は従来のガスセンサにつきセンサ抵抗とセンサ温
度との関係を示す線図である。曲線16は空気中におけ
るセンサ特性1曲線17はイソブタンを0.2%含む空
気中におけるセンサ特性1曲m18はアルコールを0.
2%含む空気中におけるセンサ特性である。曲線17と
曲線18が交差する温度より高温側においてセンサ抵抗
値の差が最も大きくなるのは温度375℃のときである
。375℃におけるセンサ抵抗とガス濃度の関係は前述
したように第4図の特性線9110で示される。
FIG. 3 is a diagram showing the relationship between sensor resistance and sensor temperature for a conventional gas sensor. Curve 16 shows sensor characteristics in air.Curve 17 shows sensor characteristics in air containing 0.2% isobutane.Curve 18 shows sensor characteristics in air containing 0.2% alcohol.
These are sensor characteristics in air containing 2%. The difference in sensor resistance value becomes largest at a temperature of 375° C. on the higher temperature side than the temperature where curves 17 and 18 intersect. The relationship between sensor resistance and gas concentration at 375° C. is shown by the characteristic line 9110 in FIG. 4, as described above.

第5図はガス感度γ、、γ、のセンサ温度依存性を示す
線図である。ここでガス感度γA1 γ薦はそれぞれア
ルコール感度、イソブタン感度であり、次のように定義
される。
FIG. 5 is a diagram showing the sensor temperature dependence of gas sensitivity γ, γ. Here, gas sensitivity γA1 and γrecommendation are alcohol sensitivity and isobutane sensitivity, respectively, and are defined as follows.

rA=Ro / Re (A) rs =R1) /Re (B) また曲線19.20はこの発明の実施例に係るガスセン
サに関してγ、、γ、のセンサ温度依存性であり、曲線
21.22は従来のガスセンサに関してγ。
rA=Ro/Re (A) rs = R1)/Re (B) Curve 19.20 is the sensor temperature dependence of γ,,γ, regarding the gas sensor according to the embodiment of this invention, and curve 21.22 is γ with respect to conventional gas sensors.

γ、のセンサ温度依存性である一rm’;:γ、であり
かつγ、=5を満足するセンサ温度範囲をセンサの使用
温度範囲と定義すると、この発明の実施例に係るセンサ
の使用温度範囲23は従来のセンサの使用温度範囲24
より広くなっていることがわかる。
If we define the sensor temperature range that satisfies the sensor temperature dependence of γ, 1 rm'; Range 23 is the operating temperature range 24 of conventional sensors.
You can see that it is wider.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、基板の上に感ガス層と絶縁層と酸化
層とを有するガスセンサであって、前記感ガス層はn型
酸化物半導体に貴金属触媒を0.1〜1重量%添加した
ものであり、前記絶縁層は前記感ガス層の上に積層され
た多孔質の層であり、前記酸化層は前記絶縁層の上にn
型酸化物半導体を積層し、これに貴金属触媒を0.1〜
1重量%添加したものであるので酸化層のアルコールに
対する選択的酸化性が増し、その結果感ガス層に到達す
るアルコールと目的ガスとの比が従来のガスセンサと大
きく変化してアルコールの干渉のより少ない半導体式ガ
スセンサが得られる。また本発明に係るガスセンサは従
来のセンサより使用温度範囲が広くなるという効果も得
られる。
According to this invention, there is provided a gas sensor having a gas-sensitive layer, an insulating layer, and an oxide layer on a substrate, wherein the gas-sensitive layer is formed by adding 0.1 to 1% by weight of a noble metal catalyst to an n-type oxide semiconductor. The insulating layer is a porous layer laminated on the gas-sensitive layer, and the oxide layer is a porous layer laminated on the insulating layer.
type oxide semiconductor is laminated, and a noble metal catalyst is added to this layer by 0.1~
Since it is added in an amount of 1% by weight, the selective oxidation property of the oxidation layer toward alcohol increases, and as a result, the ratio of alcohol reaching the gas-sensitive layer to the target gas is significantly different from that of conventional gas sensors, reducing the interference of alcohol. It is possible to obtain a semiconductor gas sensor with a small number of semiconductors. Furthermore, the gas sensor according to the present invention has the advantage that its operating temperature range is wider than that of conventional sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る半導体式ガスセンサを
示す断面図、第2図はこの発明の実施例に係るセンサに
つきセンサ抵抗の温度依存性を示す線図、第3図は従来
のセンサにつきセンサ抵抗の温度依存性を示す線図、第
4図は本発明の実施例に係るセンサにつきそのセンサ抵
抗のガス濃度依存性を従来のセンサのガス濃度依存性と
対比して示す線図、第5図は本発明の実施例に係るセン
サにつきそのガス感度の温度依存性を従来のセンサの温
度依存性と対比して示す線図である。 2:感ガス層、3:絶縁層、4二酸化層。 2503003504004505005501=−/
→ツノ−1更’tL (’c)第2図 250300350400450500tソす過度(0
C) 第3図 0.1 0.2 0.5 1.0 力′°ス儂度(X) 第4図 300350400450500550tソサ温度(0
C) 第5図
FIG. 1 is a sectional view showing a semiconductor gas sensor according to an embodiment of the present invention, FIG. 2 is a diagram showing the temperature dependence of sensor resistance for the sensor according to an embodiment of the invention, and FIG. 3 is a diagram showing a conventional sensor. FIG. 4 is a diagram showing the temperature dependence of the sensor resistance of the sensor according to the embodiment of the present invention, in comparison with the gas concentration dependence of the sensor resistance of the conventional sensor; FIG. 5 is a diagram showing the temperature dependence of gas sensitivity of the sensor according to the embodiment of the present invention in comparison with the temperature dependence of a conventional sensor. 2: Gas sensitive layer, 3: Insulating layer, 4 Dioxide layer. 2503003504004505005501=-/
→ Horn-1 change'tL ('c) Fig. 2 250300350400450500t Excess (0
C) Fig. 3 0.1 0.2 0.5 1.0 Force'°S temperature (X) Fig. 4 300350400450500550tSother temperature (0
C) Figure 5

Claims (1)

【特許請求の範囲】 1)基板の上に感ガス層と絶縁層と酸化層とを有するガ
スセンサであって、 前記感ガス層はn型酸化物半導体に貴金属触媒を0.1
〜1重量%添加したものであり、 前記絶縁層は前記感ガス層の上に積層された多孔質の層
であり、 前記酸化層は前記絶縁層の上にn型酸化物半導体を積層
し、これに貴金属触媒を0.1〜1重量%添加したもの
であることを特徴とする半導体式ガスセンサ。
[Claims] 1) A gas sensor having a gas-sensitive layer, an insulating layer, and an oxide layer on a substrate, the gas-sensitive layer comprising an n-type oxide semiconductor coated with a noble metal catalyst of 0.1%.
~1% by weight is added, the insulating layer is a porous layer laminated on the gas-sensitive layer, the oxide layer is a n-type oxide semiconductor laminated on the insulating layer, A semiconductor gas sensor characterized in that 0.1 to 1% by weight of a noble metal catalyst is added thereto.
JP21928989A 1989-08-25 1989-08-25 Semiconductor gas sensor Pending JPH0382945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928989A JPH0382945A (en) 1989-08-25 1989-08-25 Semiconductor gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928989A JPH0382945A (en) 1989-08-25 1989-08-25 Semiconductor gas sensor

Publications (1)

Publication Number Publication Date
JPH0382945A true JPH0382945A (en) 1991-04-08

Family

ID=16733170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928989A Pending JPH0382945A (en) 1989-08-25 1989-08-25 Semiconductor gas sensor

Country Status (1)

Country Link
JP (1) JPH0382945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082755A (en) * 1996-08-07 1998-03-31 Lg Electron Inc Hydrocarbon gas sensor and manufacture thereof
JP2010185774A (en) * 2009-02-12 2010-08-26 Fuji Electric Systems Co Ltd Membrane gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082755A (en) * 1996-08-07 1998-03-31 Lg Electron Inc Hydrocarbon gas sensor and manufacture thereof
JP2010185774A (en) * 2009-02-12 2010-08-26 Fuji Electric Systems Co Ltd Membrane gas sensor

Similar Documents

Publication Publication Date Title
JP2992748B2 (en) Contact combustion type gas sensor and manufacturing method thereof
JPH0382945A (en) Semiconductor gas sensor
JPH07128268A (en) Hydrogen gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JPS6366448A (en) Gas detector
JPS6137577B2 (en)
JP3191544B2 (en) Thick film type gas sensor
JPH07260728A (en) Carbon monoxide gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP2570440B2 (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH0221256A (en) Gas sensor
JPH04344450A (en) Gas sensor
JPH07209234A (en) Semiconductor gas sensor
JP3191523B2 (en) Thick film gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH0252247A (en) Gas sensor
JP2513274B2 (en) Gas sensor
JPH01145561A (en) Gas sensor
JPH0743331A (en) Thick film gas sensor
JPS63233358A (en) Gas sensor
JPH0455747A (en) Gas sensor
JPH06186191A (en) Thick-film gas sensor
JP2000356614A (en) Gas sensor and gas detector
JPS6363064B2 (en)