JPH07128268A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor

Info

Publication number
JPH07128268A
JPH07128268A JP29265693A JP29265693A JPH07128268A JP H07128268 A JPH07128268 A JP H07128268A JP 29265693 A JP29265693 A JP 29265693A JP 29265693 A JP29265693 A JP 29265693A JP H07128268 A JPH07128268 A JP H07128268A
Authority
JP
Japan
Prior art keywords
gas
layer
gas sensor
sensitive layer
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29265693A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kawada
泰之 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29265693A priority Critical patent/JPH07128268A/en
Publication of JPH07128268A publication Critical patent/JPH07128268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To provide a hydrogen gas sensor having no interference of an organic solvent gas by providing an electrode, a gas sensitive layer, a catalyst layer, an oxidizing combusting layer, and a heater on a base. CONSTITUTION:An electrode 2, a gas sensitive layer 3, a catalyst layer 4, and an oxidizing combusting layer 5 are successively laminated on the first main surface of a base 1. A heater 8 consisting of an electrode 2A and ruthenium oxide is formed on the second main surface of the base 1. The gas sensitive layer 3 is a thin film of an n-type metal oxide semiconductor prepared by spattering, and the catalyst layer 4 is an extremely thin film of a noble metal, the oxidizing combusting layer 5 is a thick film of the n-type metal oxide semiconductor supporting the noble metal. The oxidizing combusting layer 5 selectively burns an organic solvent gas and guides hydrogen gas and an inflammable gas to the gas sensitive layer 3. The gas sensitive layer 3 is a columnar crystal formed by spattering, and the inflammable gas can not be diffused into the gas sensitive layer 3. The hydrogen gas is activated by the catalyst layer 4 and guided into the gas sensitive layer 3. Thus, high selectivity of responding to only hydrogen gas can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水素ガスを検出するガ
ス漏れ警報器用のガスセンサに係り、特にアルコールガ
スの干渉を受けないガスセンサの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor for a gas leak alarm for detecting hydrogen gas, and more particularly to the structure of a gas sensor which is not affected by alcohol gas.

【0002】[0002]

【従来の技術】ガスセンサの一つとして酸化スズや酸化
亜鉛等の酸化物半導体を用いるものが知られている。こ
れら酸化物半導体の電気抵抗は大気中において300な
いし500℃程度に加熱されると粒子表面に大気中の酸
素が活性化吸着し、高抵抗化するが還元性ガスである被
検ガス中で吸着酸素が除去され抵抗値が減少する。この
ような性質を利用して酸化物半導体を利用するガスセン
サがガス漏れ警報器用に利用されている。
2. Description of the Related Art As one of gas sensors, one using an oxide semiconductor such as tin oxide or zinc oxide is known. When the electrical resistance of these oxide semiconductors is heated to about 300 to 500 ° C. in the atmosphere, oxygen in the atmosphere is activated and adsorbed on the surface of the particles, and the resistance increases but is adsorbed in the test gas that is a reducing gas. Oxygen is removed and the resistance value decreases. A gas sensor using an oxide semiconductor by utilizing such properties is used for a gas leak alarm.

【0003】図4は従来のガスセンサを示す平面図であ
る。図5は図4に示す従来のガスセンサのB−B矢視断
面図である。基板1の一方の主面に感ガス層3と触媒層
4がまた他の主面にはヒータ8が設けられる。感ガス層
3の電気抵抗の変化は電極2を介してリード線7により
取り出される。またヒータ8にはリード線9を介してヒ
ータ用の電圧が印加される。
FIG. 4 is a plan view showing a conventional gas sensor. FIG. 5 is a sectional view of the conventional gas sensor shown in FIG. The gas sensitive layer 3 and the catalyst layer 4 are provided on one main surface of the substrate 1, and the heater 8 is provided on the other main surface. The change in electric resistance of the gas sensitive layer 3 is taken out by the lead wire 7 via the electrode 2. A voltage for the heater is applied to the heater 8 via a lead wire 9.

【0004】ヒータ8はガスセンサを所定の温度に加熱
してガスセンサを駆動する。上述のガスセンサにおいて
感ガス層は白金を担持した酸化スズSnO2の薄膜であり、
触媒層は白金の超薄膜である。上述のガスセンサはアル
コールのような有機溶剤ガスと水素ガスに感度を有して
いる。
The heater 8 heats the gas sensor to a predetermined temperature and drives the gas sensor. In the above gas sensor, the gas sensitive layer is a thin film of tin oxide SnO 2 supporting platinum,
The catalyst layer is an ultrathin film of platinum. The gas sensor described above is sensitive to organic solvent gas such as alcohol and hydrogen gas.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来のガスセンサは有機溶剤ガスに対しても水素ガ
スに対しても感度を有するために水素ガスを選択的に検
知できないという問題があった。図6は従来のガスセン
サにつきガス感度の温度依存性を示す線図である。
However, the conventional gas sensor as described above has a problem that it cannot detect hydrogen gas selectively because it has sensitivity to both organic solvent gas and hydrogen gas. FIG. 6 is a diagram showing the temperature dependence of gas sensitivity for a conventional gas sensor.

【0006】水素とアルコールに対する感度は大差がな
い。この発明は上述の点に鑑みてなされその目的は有機
溶剤ガスを選択的に燃焼させることにより、有機溶剤ガ
スの干渉がない水素ガスセンサを提供することにある。
There is no great difference in sensitivity to hydrogen and alcohol. The present invention has been made in view of the above points, and an object thereof is to provide a hydrogen gas sensor that does not interfere with the organic solvent gas by selectively burning the organic solvent gas.

【0007】[0007]

【課題を解決するための手段】上述の目的はこの発明に
よれば基板上に電極と感ガス層と触媒層と酸化燃焼層と
ヒータとを有し、基板の第一の主面は、対をなす電極
と、前記電極と基板上に選択的に形成された感ガス層
と、感ガス層上に積層された触媒層と、触媒層上に積層
された酸化燃焼層を備え、基板の第二の主面は、対をな
す電極と、前記電極と基板上に選択的に形成されたヒー
タを備え、感ガス層はスパッタで調製されたn型金属酸
化物半導体の薄膜であり、触媒層は貴金属の超薄膜であ
り、酸化燃焼層は貴金属を担持したn型金属酸化物半導
体の厚膜であるとすることにより達成される。
According to the present invention, the above object has an electrode, a gas sensitive layer, a catalyst layer, an oxidizing combustion layer and a heater on a substrate, and the first main surface of the substrate is The electrode, the gas-sensing layer selectively formed on the electrode and the substrate, the catalyst layer laminated on the gas-sensing layer, and the oxidation combustion layer laminated on the catalyst layer. The second main surface is provided with a pair of electrodes and a heater selectively formed on the electrodes and the substrate, and the gas-sensitive layer is a thin film of an n-type metal oxide semiconductor prepared by sputtering, and the catalyst layer Is an ultrathin film of a noble metal, and the oxidation combustion layer is achieved by setting it as a thick film of an n-type metal oxide semiconductor supporting a noble metal.

【0008】[0008]

【作用】酸化燃焼層は有機溶剤ガスを選択的に燃焼して
水素ガスと可燃性ガスを感ガス層に導く。感ガス層はス
パッタで形成された柱状の結晶であり、可燃性ガスは感
ガス層の内部に拡散することができない。触媒層は水素
ガスを活性化して感ガス層における酸素との置換を促進
する。
The oxidizing combustion layer selectively burns the organic solvent gas to guide the hydrogen gas and the combustible gas to the gas sensitive layer. The gas-sensitive layer is a columnar crystal formed by sputtering, and the flammable gas cannot diffuse inside the gas-sensitive layer. The catalyst layer activates hydrogen gas and promotes replacement with oxygen in the gas-sensitive layer.

【0009】[0009]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。 実施例1 図1はこの発明の実施例に係る水素ガスセンサを示す平
面図である。図2は図1に示す水素ガスセンサのA−A
矢視断面図である。
Embodiments of the present invention will now be described with reference to the drawings. Embodiment 1 FIG. 1 is a plan view showing a hydrogen gas sensor according to an embodiment of the present invention. FIG. 2 is an AA of the hydrogen gas sensor shown in FIG.
FIG.

【0010】このガスセンサは水素ガスに対して高感度
且つ選択的である。基板1は厚さ0.5mm、3mm×
3mmの研磨されたアルミナ焼結体が用いられる。基板
は熱伝導性の良好な絶縁物であればアルミナに限定され
るものではない。基板1の第一の主面には電極2,感ガ
ス層3,触媒層4,酸化燃焼層5が順次積層される。基
板1の第二の主面には電極2Aと酸化ルテニウムRuO2
らなるヒータ8が形成される。
This gas sensor is highly sensitive and selective to hydrogen gas. Substrate 1 has a thickness of 0.5 mm, 3 mm ×
A 3 mm polished alumina sinter is used. The substrate is not limited to alumina as long as it is an insulator having good thermal conductivity. An electrode 2, a gas sensitive layer 3, a catalyst layer 4, and an oxidative combustion layer 5 are sequentially laminated on the first main surface of the substrate 1. On the second main surface of the substrate 1, a heater 8 composed of an electrode 2A and ruthenium oxide RuO 2 is formed.

【0011】このような水素ガスセンサは以下のように
して調製される。基板1の第一と第二の主面にはメタル
マスクを用い、公知のRFスパッタリング法で厚さ0.
2μmの白金からなる電極2,2Aが形成される。RF
スパッタリングはAr圧力0.5Pa、基板温度350
℃、電力4W/cm2 の条件で行われた。基板1の第二
の主面にはヒータ8が白金を用いRFスパッタリング法
により厚さ1μmに形成される。
Such a hydrogen gas sensor is prepared as follows. A metal mask is used for the first and second main surfaces of the substrate 1, and a thickness of 0.
Electrodes 2 and 2A made of platinum of 2 μm are formed. RF
Sputtering is performed at an Ar pressure of 0.5 Pa and a substrate temperature of 350.
It was performed under the conditions of a temperature of 4 ° C. and a power of 4 W / cm 2 . The heater 8 is formed on the second main surface of the substrate 1 using platinum by RF sputtering to have a thickness of 1 μm.

【0012】本実施例ではヒータ、電極は白金を用いて
いるがこれに限定されるものではなく、SiC,TaN
2 の化合物やRuO2 等の酸化物も使用できる。次に酸
化スズからなる感ガス層3がメタルマスクを用い、RF
マグネトロンスパッタリング法により厚さ0.5ないし
1.0μm、1mm×1.5mmの大きさに形成され
た。RFスパッタリングはガス圧1ないし10Pa、A
r/O2 比2:1、基板温度400℃、電力4W/cm
2 の条件で行われた。
In this embodiment, platinum is used for the heater and the electrodes, but the present invention is not limited to this, and SiC, TaN may be used.
Oxide such as second compound or RuO 2 may be used. Next, the gas sensitive layer 3 made of tin oxide was used for RF with a metal mask.
It was formed to a thickness of 0.5 to 1.0 μm and a size of 1 mm × 1.5 mm by the magnetron sputtering method. RF sputtering is gas pressure 1 to 10 Pa, A
r / O 2 ratio 2: 1, substrate temperature 400 ° C., power 4 W / cm
It was done under the conditions of 2 .

【0013】スパッタリングで酸化スズSnO2の薄膜を形
成するときは柱状の酸化スズSnO2結晶が得られる。柱状
の酸化スズSnO2結晶はガス圧が高いときに有効に生成す
る。図7はスパッタにより生成した酸化スズSnO2の結晶
構造を示す写真である。写真は3.5万倍の倍率であ
る。柱状の酸化スズSnO2結晶の間隙は水素ガスが拡散す
る有効径を有する。しかしながらこの有効径は可燃性ガ
スを拡散させることができない。可燃性ガスは従って吸
着酸素ガスの置換により感ガス層の抵抗を低下させるこ
とがないのでガスセンサは可燃性ガスに応答しない。
When a tin oxide SnO 2 thin film is formed by sputtering, columnar tin oxide SnO 2 crystals are obtained. The columnar tin oxide SnO 2 crystals are effectively formed when the gas pressure is high. FIG. 7 is a photograph showing the crystal structure of tin oxide SnO 2 produced by sputtering. The photograph shows a magnification of 35,000 times. The gap between the columnar tin oxide SnO 2 crystals has an effective diameter in which hydrogen gas diffuses. However, this effective diameter cannot diffuse the flammable gas. The flammable gas therefore does not reduce the resistance of the gas-sensitive layer by displacement of the adsorbed oxygen gas, so that the gas sensor does not respond to the flammable gas.

【0014】成膜後リアクティブイオンエッチング装置
に酸素ガスを導入し、膜表面を酸素プラズマによりエッ
チング処理する。この処理は酸化スズSnO2薄膜の表面の
凹凸を大きくしてガスセンサの水素に対する感度を高め
る。続いて触媒層4がPtを用いRFマグネトロンスパ
ッタリングにより感ガス層3の上に1nmないし10n
mの厚さに形成された。RFマグネトロンスパッタリン
グの条件はガス圧1Pa、スパッタガスはArまたはO
2 、基板温度400℃、電力1W/cm2 であった。触
媒層は水素ガスを活性化して感ガス層における酸素との
置換を促進する。
After film formation, oxygen gas is introduced into the reactive ion etching apparatus, and the film surface is etched by oxygen plasma. This treatment increases the surface roughness of the tin oxide SnO 2 thin film and increases the sensitivity of the gas sensor to hydrogen. Subsequently, the catalyst layer 4 is formed of Pt by RF magnetron sputtering, and 1 nm to 10 n is formed on the gas sensitive layer 3.
It was formed to a thickness of m. The RF magnetron sputtering conditions are a gas pressure of 1 Pa and a sputtering gas of Ar or O.
2 , the substrate temperature was 400 ° C., and the power was 1 W / cm 2 . The catalyst layer activates hydrogen gas and promotes replacement with oxygen in the gas-sensitive layer.

【0015】酸化スズの粉末を乾燥空気中で良く乾燥し
てからボールミルにて所定の粒度に粉砕する。粉砕され
た酸化スズの粉体を塩化白金酸の水溶液に加え混練して
乾燥し白金を1ないし5%担持した酸化スズの粉体を調
製した。この粉体を600℃で3h熱処理し、触媒を分
解させる。触媒の担持された酸化スズをボールミルにて
粉砕し、エチルシリケート,エチルセルロース,カルビ
トールを適量加えて混練しペーストを得た。得られたペ
ーストを50μmの厚さになるようスクリーン印刷し、
120℃で2h乾燥して酸化燃焼層5を得た。
The tin oxide powder is thoroughly dried in dry air and then crushed to a predetermined particle size by a ball mill. The pulverized tin oxide powder was added to an aqueous solution of chloroplatinic acid, kneaded and dried to prepare a tin oxide powder carrying 1 to 5% of platinum. This powder is heat-treated at 600 ° C. for 3 hours to decompose the catalyst. The catalyst-supported tin oxide was crushed with a ball mill, and an appropriate amount of ethyl silicate, ethyl cellulose and carbitol were added and kneaded to obtain a paste. Screen-print the resulting paste to a thickness of 50 μm,
Oxidized combustion layer 5 was obtained by drying at 120 ° C. for 2 hours.

【0016】得られた三層構造体を600℃で3h焼結
した。電極2,2Aにはリード線7,9がそれぞれ接続
される。得られた厚膜ガスセンサは図示しない警報回路
に接続される。図3はこの発明の実施例に係る水素ガス
センサにつきガス感度の温度依存性を示す線図である。
The three-layer structure obtained was sintered at 600 ° C. for 3 hours. Lead wires 7 and 9 are connected to the electrodes 2 and 2A, respectively. The obtained thick film gas sensor is connected to an alarm circuit (not shown). FIG. 3 is a diagram showing the temperature dependence of gas sensitivity in the hydrogen gas sensor according to the embodiment of the present invention.

【0017】図6に示す特性に比し、アルコール感度が
大きく低下して水素に対して選択的なガスセンサとなっ
ている。 実施例2 酸化燃焼層を以下のようにして形成する他は実施例1と
同様にして水素ガスセンサを調製した。
Compared with the characteristics shown in FIG. 6, the alcohol sensitivity is greatly reduced and the gas sensor is selective to hydrogen. Example 2 A hydrogen gas sensor was prepared in the same manner as in Example 1 except that the oxidizing combustion layer was formed as follows.

【0018】比表面積が150m2 /g,平均粒径が3
μmのγ−アルミナ粉体に白金1重量%を含有する塩化
白金酸水溶液を含浸させ、乾燥して600℃で2h乾燥
してγ−アルミナに白金を担持させた粉体を調製する。
この粉体に水を加えてペーストとし100μm厚さとな
るように被覆した。室温で乾燥したのち、アルミナゾル
をしみ込ませ乾燥後730℃で30分加熱して酸化燃焼
層5を形成した。
Specific surface area of 150 m 2 / g, average particle size of 3
A [mu] m [gamma] -alumina powder is impregnated with a chloroplatinic acid aqueous solution containing 1% by weight of platinum, dried, and dried at 600 [deg.] C. for 2 hours to prepare a powder in which [gamma] -alumina is supported with platinum.
Water was added to this powder to form a paste, which was coated to a thickness of 100 μm. After drying at room temperature, alumina sol was impregnated and dried and then heated at 730 ° C. for 30 minutes to form an oxidation combustion layer 5.

【0019】γ−アルミナ担体に白金を加えて酸化燃焼
層とする場合は酸化燃焼層において可燃性ガスが一部燃
焼して水素ガスに対する選択性が一層高まる。
When platinum is added to the γ-alumina carrier to form an oxidation combustion layer, the combustible gas partially burns in the oxidation combustion layer, and the selectivity for hydrogen gas is further increased.

【0020】[0020]

【発明の効果】この発明によれば、基板上に電極と感ガ
ス層と触媒層と酸化燃焼層とヒータとを有し、基板の第
一の主面は、対をなす電極と、前記電極と基板上に選択
的に形成された感ガス層と、感ガス層上に積層された触
媒層と、触媒層上に積層された酸化燃焼層を備え、基板
の第二の主面は、対をなす電極と、前記電極と基板上に
選択的に形成されたヒータを備え、感ガス層はスパッタ
で調製されたn型金属酸化物半導体の薄膜であり、触媒
層は貴金属の超薄膜であり、酸化燃焼層は貴金属を担持
したn型金属酸化物半導体の厚膜であるとするので、酸
化燃焼層は有機溶剤ガスを選択的に燃焼して水素ガスと
可燃性ガスを感ガス層に導く。感ガス層はスパッタで形
成された柱状の結晶であり、可燃性ガスは感ガス層の内
部に拡散することができない。水素ガスは触媒層に活性
化されて感ガス層内部に導かれる。
According to the present invention, an electrode, a gas sensitive layer, a catalyst layer, an oxidative combustion layer, and a heater are provided on a substrate, and the first main surface of the substrate is a pair of electrodes and the electrode. A gas-sensitive layer selectively formed on the substrate, a catalyst layer laminated on the gas-sensitive layer, and an oxidation combustion layer laminated on the catalyst layer. And a heater selectively formed on the electrode and the substrate, the gas sensitive layer is a thin film of an n-type metal oxide semiconductor prepared by sputtering, and the catalyst layer is an ultrathin film of a noble metal. Since the oxidation combustion layer is a thick film of an n-type metal oxide semiconductor carrying a noble metal, the oxidation combustion layer selectively burns an organic solvent gas to guide hydrogen gas and a combustible gas to the gas sensitive layer. . The gas-sensitive layer is a columnar crystal formed by sputtering, and the flammable gas cannot diffuse inside the gas-sensitive layer. Hydrogen gas is activated by the catalyst layer and introduced into the gas sensitive layer.

【0021】このようにして有機溶剤ガスと可燃性ガス
は検知されず水素ガスのみに応答する高選択性且つ高感
度の水素ガスセンサが得られる。
In this way, a highly selective and highly sensitive hydrogen gas sensor which responds to only hydrogen gas without detecting organic solvent gas and combustible gas can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る水素ガスセンサを示す
平面図
FIG. 1 is a plan view showing a hydrogen gas sensor according to an embodiment of the present invention.

【図2】図1に示す水素ガスセンサのA−A矢視断面図FIG. 2 is a sectional view of the hydrogen gas sensor shown in FIG.

【図3】この発明の実施例に係る水素ガスセンサにつき
ガス感度の温度依存性を示す線図
FIG. 3 is a diagram showing temperature dependence of gas sensitivity of a hydrogen gas sensor according to an embodiment of the present invention.

【図4】従来のガスセンサを示す平面図FIG. 4 is a plan view showing a conventional gas sensor.

【図5】図4に示す従来のガスセンサのB−B矢視断面
5 is a sectional view of the conventional gas sensor shown in FIG. 4, taken along the line BB.

【図6】従来のガスセンサにつきガス感度の温度依存性
を示す線図
FIG. 6 is a diagram showing temperature dependence of gas sensitivity of a conventional gas sensor.

【図7】スパッタにより生成した酸化スズSnO2の結晶構
造を示す写真
FIG. 7 is a photograph showing the crystal structure of tin oxide SnO 2 produced by sputtering.

【符号の説明】 1 基板 2 電極 2A 電極 3 感ガス層 4 触媒層 5 酸化燃焼層 7 リード線 8 ヒータ 9 リード線[Explanation of reference numerals] 1 substrate 2 electrode 2A electrode 3 gas sensitive layer 4 catalyst layer 5 oxidation combustion layer 7 lead wire 8 heater 9 lead wire

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に電極と感ガス層と触媒層と酸化燃
焼層とヒータとを有し、 基板の第一の主面は、対をなす電極と、この電極と基板
上に選択的に形成された感ガス層と、感ガス層上に積層
された触媒層と、触媒層上に積層された酸化燃焼層を備
え、 基板の第二の主面は、対をなす電極と、この電極と基板
上に選択的に形成されたヒータを備え、 感ガス層はスパッタで調製されたn型金属酸化物半導体
の薄膜であり、 触媒層は貴金属の超薄膜であり、 酸化燃焼層は貴金属を担持したn型金属酸化物半導体の
厚膜であることを特徴とする水素ガスセンサ。
1. A substrate having an electrode, a gas sensitive layer, a catalyst layer, an oxidative combustion layer, and a heater, wherein a first main surface of the substrate is a pair of electrodes, and the electrode and the substrate are selectively placed on the substrate. A gas-sensitive layer formed on the gas-sensitive layer, a catalyst layer laminated on the gas-sensitive layer, and an oxidation combustion layer laminated on the catalyst layer, and the second main surface of the substrate is a pair of electrodes and a pair of electrodes. Equipped with electrodes and heaters selectively formed on the substrate, the gas sensitive layer is a thin film of n-type metal oxide semiconductor prepared by sputtering, the catalyst layer is an ultrathin film of precious metal, and the oxidation combustion layer is a precious metal. A hydrogen gas sensor, characterized by being a thick film of an n-type metal oxide semiconductor carrying.
【請求項2】請求項1記載のガスセンサにおいて、n型
金属酸化物半導体の薄膜は膜厚が1μm以下の酸化スズ
SnO2であることを特徴とする水素ガスセンサ。
2. The gas sensor according to claim 1, wherein the thin film of the n-type metal oxide semiconductor is tin oxide having a thickness of 1 μm or less.
A hydrogen gas sensor characterized by being SnO 2 .
【請求項3】請求項1記載のガスセンサにおいて、スパ
ッタはマグネトロンスパッタであることを特徴とする水
素ガスセンサ。
3. The hydrogen gas sensor according to claim 1, wherein the sputtering is magnetron sputtering.
【請求項4】請求項1記載のガスセンサにおいて、感ガ
ス層は1ないし10Paのガス圧でスパッタされてなる
ことを特徴とする水素ガスセンサ。
4. A hydrogen gas sensor according to claim 1, wherein the gas sensitive layer is formed by sputtering at a gas pressure of 1 to 10 Pa.
【請求項5】請求項1記載のガスセンサにおいて、感ガ
ス層は酸素プラズマ中で表面処理されてなることを特徴
とする水素ガスセンサ。
5. The hydrogen gas sensor according to claim 1, wherein the gas sensitive layer is surface-treated in oxygen plasma.
【請求項6】請求項1記載のガスセンサにおいて、触媒
層は膜厚が1ないし10nmの範囲にある白金の超薄膜
であることを特徴とする水素ガスセンサ。
6. The hydrogen gas sensor according to claim 1, wherein the catalyst layer is an ultrathin film of platinum having a film thickness in the range of 1 to 10 nm.
【請求項7】請求項1記載のガスセンサにおいて、n型
金属酸化物半導体の厚膜は、白金を担持した膜厚が40
ないし60μmの範囲にある酸化スズSnO2であることを
特徴とする水素ガスセンサ。
7. The gas sensor according to claim 1, wherein the thick film of the n-type metal oxide semiconductor has a thickness of 40 on which platinum is carried.
A hydrogen gas sensor characterized by being tin oxide SnO 2 in the range of 60 to 60 μm.
【請求項8】請求項7記載のガスセンサにおいて、白金
の担持量は1ないし5%の範囲にあることを特徴とする
水素ガスセンサ。
8. The hydrogen gas sensor according to claim 7, wherein the amount of platinum supported is in the range of 1 to 5%.
JP29265693A 1993-10-28 1993-10-28 Hydrogen gas sensor Pending JPH07128268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29265693A JPH07128268A (en) 1993-10-28 1993-10-28 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29265693A JPH07128268A (en) 1993-10-28 1993-10-28 Hydrogen gas sensor

Publications (1)

Publication Number Publication Date
JPH07128268A true JPH07128268A (en) 1995-05-19

Family

ID=17784609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29265693A Pending JPH07128268A (en) 1993-10-28 1993-10-28 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JPH07128268A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535651A (en) * 1999-01-15 2002-10-22 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Microfabricated thin film hydrogen gas sensor and method of making and using the same
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
WO2006003475A1 (en) * 2004-07-06 2006-01-12 Iti Scotland Limited A gas storage material, a method of gas storage, a process for manufacturing gas storage material and applications thereof
JP2007240462A (en) * 2006-03-10 2007-09-20 Tokyo Univ Of Science Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element
JP2007279061A (en) * 2007-06-19 2007-10-25 Osaka Gas Co Ltd Pulse-driven thin-film gas sensor and manufacturing method therefor
US7705376B2 (en) 2004-11-12 2010-04-27 Canon Kabushiki Kaisha Sensor and method of manufacturing the same
CN108663404A (en) * 2018-06-13 2018-10-16 佛山市澄澜点寸科技有限公司 A kind of combustible gas sensor
US10408779B2 (en) 2016-03-25 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Gas sensor including metal oxide layer and hydrogen detection method using gas sensor
JP2022022828A (en) * 2020-07-08 2022-02-07 株式会社東芝 Sensor and method for manufacturing the same
CN116018515A (en) * 2020-06-22 2023-04-25 股份公司大贤St Hydrogen detection sensor and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535651A (en) * 1999-01-15 2002-10-22 アドバンスド.テクノロジー.マテリアルス.インコーポレイテッド Microfabricated thin film hydrogen gas sensor and method of making and using the same
JP2004163192A (en) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology Combustible gas sensor
WO2006003475A1 (en) * 2004-07-06 2006-01-12 Iti Scotland Limited A gas storage material, a method of gas storage, a process for manufacturing gas storage material and applications thereof
US7705376B2 (en) 2004-11-12 2010-04-27 Canon Kabushiki Kaisha Sensor and method of manufacturing the same
US7749791B2 (en) 2004-11-12 2010-07-06 Canon Kabushiki Kaisha Sensor and method of manufacturing the same
JP2007240462A (en) * 2006-03-10 2007-09-20 Tokyo Univ Of Science Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element
JP2007279061A (en) * 2007-06-19 2007-10-25 Osaka Gas Co Ltd Pulse-driven thin-film gas sensor and manufacturing method therefor
US10408779B2 (en) 2016-03-25 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Gas sensor including metal oxide layer and hydrogen detection method using gas sensor
US10591432B2 (en) 2016-03-25 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Hydrogen detection method using gas sensor having a metal oxide layer
CN108663404A (en) * 2018-06-13 2018-10-16 佛山市澄澜点寸科技有限公司 A kind of combustible gas sensor
CN116018515A (en) * 2020-06-22 2023-04-25 股份公司大贤St Hydrogen detection sensor and method for manufacturing same
JP2022022828A (en) * 2020-07-08 2022-02-07 株式会社東芝 Sensor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3128114B2 (en) Nitrogen oxide detector
JP3350686B2 (en) Tin oxide gas sensor and manufacturing method
JPH07128268A (en) Hydrogen gas sensor
JP3075070B2 (en) Carbon monoxide gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP3191544B2 (en) Thick film type gas sensor
JPH07140101A (en) Incomplete combustion gas sensor
JPS6366448A (en) Gas detector
JPH06186191A (en) Thick-film gas sensor
JPH0444691B2 (en)
JPH06288953A (en) Thick-film gas sensor
JP3535398B2 (en) NOx measuring element for exhaust gas
JPH05322821A (en) Gas sensor
JPH04344450A (en) Gas sensor
JPH0221256A (en) Gas sensor
JPH0743331A (en) Thick film gas sensor
JP2946090B2 (en) Manufacturing method of ammonia gas sensor
JPH0382945A (en) Semiconductor gas sensor
JP2575479B2 (en) Gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH03162656A (en) Gas sensor
JPH07209234A (en) Semiconductor gas sensor
JPH0252247A (en) Gas sensor
JPS63279150A (en) Semiconductor type gas sensor
JPS63233358A (en) Gas sensor