JP2010185774A - Membrane gas sensor - Google Patents

Membrane gas sensor Download PDF

Info

Publication number
JP2010185774A
JP2010185774A JP2009030041A JP2009030041A JP2010185774A JP 2010185774 A JP2010185774 A JP 2010185774A JP 2009030041 A JP2009030041 A JP 2009030041A JP 2009030041 A JP2009030041 A JP 2009030041A JP 2010185774 A JP2010185774 A JP 2010185774A
Authority
JP
Japan
Prior art keywords
layer
gas sensor
thin film
gas
sensing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030041A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓弥 鈴木
Makoto Okamura
誠 岡村
Hisao Onishi
久男 大西
Toshiro Nakayama
敏郎 中山
Atsushi Nonaka
篤 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Electric Systems Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009030041A priority Critical patent/JP2010185774A/en
Publication of JP2010185774A publication Critical patent/JP2010185774A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane gas sensor not largely fluctuated in its characteristics even if used as a battery driving type gas sensor. <P>SOLUTION: In the membrane gas sensor constituted so that a pair of electrodes are formed on an electric insulating layer, a gas sensing layer 7 comprising a semiconductor membrane is formed on the electrodes and a selective combustion layer 8 is formed on the uppermost surface of the gas sensing layer 7, a catalyst diffusion preventing layer 9 is provided between the gas sensing layer 7 and the selective combustion layer 8 so as not to diffuse the noble metal catalyst of the selective combustion layer 8 to the gas sensing layer 7 even under a high-humidity environment to prevent the sensor characteristics of the membrane gas sensor from being largely changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電池駆動を念頭においた低消費電力型薄膜ガスセンサ、特にその改良に関する。   The present invention relates to a low power consumption thin film gas sensor with battery driving in mind, and more particularly to an improvement thereof.

一般的に、ガスセンサはガス漏れ警報器などの用途に用いられ、或る特定のガス、例えばCO,CH4,C38,CH3OHなどに選択的に感応するデバイスであり、その性格上、高感度,高選択性,高応答性,高信頼性,低消費電力が必要不可欠である。ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的とするものと、燃焼機器の不完全燃焼ガス検知を目的とするもの、または両方の機能を併せ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くはない。 In general, a gas sensor is used for applications such as a gas leak alarm, and is a device that selectively responds to a specific gas, such as CO, CH 4 , C 3 H 8 , and CH 3 OH. In addition, high sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable. By the way, the gas leak alarms that are widely used for household use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or There are some that have both functions, but the penetration rate is not so high due to cost and installation problems.

このような事情から、普及率の向上を図るべく、設置性の改善、具体的には電池駆動としコードレス化することが望まれている。電池駆動を実現するためには低消費電力化が最も重要であるが、接触燃焼式や半導体式のガスセンサでは、200℃〜500℃の高温に加熱して検知する必要がある。そこで、微細加工プロセスによりダイアフラム構造などの高断熱・低熱容量の構造とした薄膜ガスセンサの出現が待たれている。   Under such circumstances, in order to improve the penetration rate, it is desired to improve the installation property, specifically, to be battery-driven and cordless. Low power consumption is the most important for realizing battery drive, but in a catalytic combustion type or semiconductor type gas sensor, it is necessary to detect it by heating it to a high temperature of 200 ° C to 500 ° C. Therefore, the appearance of a thin film gas sensor having a high heat insulation and low heat capacity structure such as a diaphragm structure by a microfabrication process is awaited.

しかし、感知膜または感知層(感知層という)に半導体薄膜を用いた場合、感知層単体では複数の還元性ガス種に感応してしまい、或る特定のガスだけに選択的に感応することができない。そこで、感知層の上にPdまたはPtなどの貴金属触媒からなる選択燃焼層を設け、検知ガスよりも酸化活性の強いガスを燃焼させることが有効である。このような観点から、例えば特許文献1や2に示すような選択燃焼層を備えた薄膜ガスセンサが出現している。   However, when a semiconductor thin film is used for the sensing film or sensing layer (referred to as the sensing layer), the sensing layer alone is sensitive to a plurality of reducing gas species, and may be selectively sensitive to a specific gas. Can not. Therefore, it is effective to provide a selective combustion layer made of a noble metal catalyst such as Pd or Pt on the sensing layer and burn a gas having a stronger oxidation activity than the detection gas. From such a viewpoint, for example, a thin film gas sensor having a selective combustion layer as shown in Patent Documents 1 and 2 has appeared.

特開2000−298108号公報JP 2000-298108 A 特許第3988999号公報Japanese Patent No. 3898999

ところで、電池駆動形ガスセンサで低消費電力を実現するためには、デューティ比(ヒーターをONにしている時間の割合)が1/300〜1/100程度の間欠動作が必要である。そのため、高湿度環境下では、ON時間に比べ十分長いOFF時間中に感知層および選択燃焼層に吸着された水分が、短時間の加熱では離脱し切れずに残存し、その水分が選択燃焼層の表面に担持されたPdまたはPt等の貴金属触媒を遊離させ、その貴金属触媒が水分を媒介としてガス感知層表面まで拡散し、センサの特性が大きく変動するという問題が生じる。   By the way, in order to realize low power consumption with a battery-driven gas sensor, an intermittent operation with a duty ratio (ratio of time during which the heater is turned on) of about 1/300 to 1/100 is required. Therefore, in a high-humidity environment, the moisture adsorbed on the sensing layer and the selective combustion layer during the OFF time that is sufficiently longer than the ON time remains without being separated by short-time heating, and the moisture remains in the selective combustion layer. The noble metal catalyst such as Pd or Pt supported on the surface of the catalyst is liberated, the noble metal catalyst diffuses to the surface of the gas sensing layer through moisture, and the characteristics of the sensor greatly vary.

したがって、この発明の課題は、電池駆動形ガスセンサとして用いる場合でも、その特性が大きく変動しないガスセンサを提供することにある。   Accordingly, an object of the present invention is to provide a gas sensor whose characteristics do not vary greatly even when used as a battery-driven gas sensor.

請求項1の発明では、電気絶縁層上に一対の電極を形成し、その上に半導体薄膜からなるガス感知層を形成し、さらにその最表面に多孔質金属酸化物と貴金属触媒からなる選択燃焼層を形成した薄膜ガスセンサにおいて、
前記選択燃焼層とガス感知層との間に触媒拡散防止層を設けることを特徴とする。
この請求項1の発明においては、前記触媒拡散防止層として、ガス感知層よりも電気抵抗率が高い多孔質層を用いることができる(請求項2の発明)。
According to the first aspect of the present invention, a pair of electrodes are formed on the electrical insulating layer, a gas sensing layer made of a semiconductor thin film is formed thereon, and selective combustion comprising a porous metal oxide and a noble metal catalyst is further formed on the outermost surface. In a thin film gas sensor with a layer formed,
A catalyst diffusion prevention layer is provided between the selective combustion layer and the gas sensing layer.
In the first aspect of the present invention, a porous layer having an electric resistivity higher than that of the gas sensing layer can be used as the catalyst diffusion preventing layer (the second aspect of the present invention).

請求項1または2の発明においては、前記多孔質金属酸化物としては貴金属触媒を含まないAl2O3,Cr2O3,Fe2O3,Ni2O3,ZnO,SiO2などの金属酸化物を用い、貴金属触媒としてはPdまたはPtを持いることができ(請求項3の発明)、また、請求項1〜3の発明においては、前記半導体薄膜として、SnO2,In2O3,ZnO,TiO2などの金属酸化物を用いることができる(請求項4の発明)。 In the invention of claim 1 or 2, the porous metal oxide is a metal such as Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Ni 2 O 3 , ZnO, or SiO 2 that does not contain a noble metal catalyst. An oxide is used and Pd or Pt can be used as a noble metal catalyst (the invention of claim 3), and in the inventions of claims 1 to 3, the semiconductor thin film is SnO 2 , In 2 O 3. Metal oxides such as ZnO and TiO 2 can be used (Invention of Claim 4).

この発明によれば、選択燃焼層とガス感知層との間に、ガス感知層よりも電気抵抗率が高い多孔質の触媒拡散防止層を設けるようにしたので、高湿度環境下でも安定で信頼性の高い薄膜ガスセンサを得ることが可能となる。   According to the present invention, since the porous catalyst diffusion preventing layer having a higher electrical resistivity than the gas sensing layer is provided between the selective combustion layer and the gas sensing layer, it is stable and reliable even in a high humidity environment. It is possible to obtain a thin film gas sensor with high performance.

図1に、この発明が適用される薄膜ガスセンサの一般的な断面構造を示す。
図示のように、両面に熱酸化膜が付いたSi基板(図ではSiウエハ)1上に、ダイアフラム構造の支持層及び熱絶縁層2としてSi34とSiO2膜を順次プラズマCVD法にて形成する。次にPt-Wヒーター層3、SiO2絶縁層4の順にスパッタ法で形成する。その上に接合層5、感知層電極6、感知層7を形成する。成膜はRFマグネトロンスパッタリング装置を用い、通常のスパッタリング法によって行なう。成膜条件は接合層(TaまたはTi)5、感知層電極(PtまたはAu)6とも同じで、Arガス圧力1Pa、基板温度300度、RFパワー2W/cm2、膜厚は接合層5/感知層電極6=500Å/2000Åである。
FIG. 1 shows a general sectional structure of a thin film gas sensor to which the present invention is applied.
As shown in the figure, a Si 3 N 4 and SiO 2 film is sequentially applied to the Si substrate (Si wafer in the figure) 1 with a thermal oxide film on both sides as a support layer of a diaphragm structure and a thermal insulating layer 2 by plasma CVD. Form. Next, the Pt—W heater layer 3 and the SiO 2 insulating layer 4 are formed in this order by sputtering. A bonding layer 5, a sensing layer electrode 6, and a sensing layer 7 are formed thereon. Film formation is performed by an ordinary sputtering method using an RF magnetron sputtering apparatus. The film formation conditions are the same for the bonding layer (Ta or Ti) 5 and the sensing layer electrode (Pt or Au) 6, Ar gas pressure 1 Pa, substrate temperature 300 degrees, RF power 2 W / cm 2 , film thickness is bonding layer 5 / Sensing layer electrode 6 = 500 mm / 2000 mm.

次に、感知層7であるSnO2を成膜する。成膜にはRFマグネトロンスパッタリング装置を用い、反応性スパッタリング法によって行なう。ターゲットにはSbを0.1重量パーセント%(wt%)有するSnO2を用いる。成膜条件はAr+ O2ガス圧力2Pa、基板温度150~300℃、RFパワー2W/cm2、膜厚0.4μmである。感知層7の大きさは50ないし200μm角程度、厚さは0.2ないし1.6μm程度が望ましい。
<実施例1>
図2Aのように、γ‐アルミナ(平均粒径2〜3μm)にエチレングリコールモノエチルエーテルを同重量添加してペーストとし、感知層7であるSnO2の真上に厚さ5μmの触媒拡散防止層9をスクリーン印刷で形成し、さらに100℃に保った乾燥機で溶媒成分を乾燥させる。触媒拡散防止層9が十分乾燥した後、選択燃焼層8を形成する。
Next, SnO 2 which is the sensing layer 7 is formed. Film formation is performed by a reactive sputtering method using an RF magnetron sputtering apparatus. For the target, SnO 2 having 0.1 weight percent (wt%) of Sb is used. The film formation conditions are Ar + O 2 gas pressure 2 Pa, substrate temperature 150 to 300 ° C., RF power 2 W / cm 2 , and film thickness 0.4 μm. The size of the sensing layer 7 is preferably about 50 to 200 μm square and the thickness is preferably about 0.2 to 1.6 μm.
<Example 1>
As shown in Fig. 2A, the same weight of ethylene glycol monoethyl ether was added to γ-alumina (average particle size 2 to 3 µm) to form a paste, and 5 µm thick catalyst diffusion prevention just above SnO 2 as the sensing layer 7 The layer 9 is formed by screen printing, and the solvent component is further dried by a drier kept at 100 ° C. After the catalyst diffusion preventing layer 9 is sufficiently dried, the selective combustion layer 8 is formed.

選択燃焼層8は、Pdを7.0wt%添加したγ‐アルミナ(平均粒径2〜3μm)にエチレングリコールモノエチルエーテルを同重量、さらにシリカゾルバインダを5〜20wt%添加してペーストとし、厚さ30μmをスクリーン印刷で形成し、その後500℃で一時間焼成する。ただし、選択燃焼層8は触媒拡散防止層9を十分覆い尽くすように、直径を触媒拡散防止層9よりも大きくする。   The selective combustion layer 8 has a thickness obtained by adding the same weight of ethylene glycol monoethyl ether to γ-alumina (average particle diameter of 2 to 3 μm) to which 7.0 wt% of Pd is added, and further adding 5 to 20 wt% of a silica sol binder. 30 μm is formed by screen printing and then baked at 500 ° C. for 1 hour. However, the selective combustion layer 8 has a diameter larger than that of the catalyst diffusion preventing layer 9 so as to sufficiently cover the catalyst diffusion preventing layer 9.

<実施例2>
また、触媒拡散防止層9としては、ガス感知層7形成後に続いて、Al2O3やSiO2(図2BではSiO2)の金属酸化物を感知膜であるSnO2と同様の条件で、RFマグネトロンスパッタリング装置を用いて図2Bのように、0.2μm形成したものを用いても同様の効果を得ることができる。さらに、実施例1,2とも前記触媒拡散防止層としては、ガス感知層よりも電気抵抗率が高い多孔質層を用いることで、高湿度環境下にあっても選択燃焼層の貴金属触媒層がガス感知層まで拡散しないようにすることが望ましい。
<Example 2>
As the catalyst diffusion barrier layer 9, followed after gas sensing layer 7 formed under the same conditions as SnO 2 is sensitive membrane of metal oxides as Al 2 O 3 and SiO 2 (SiO 2 in FIG. 2B), The same effect can be obtained by using an RF magnetron sputtering apparatus with a thickness of 0.2 μm as shown in FIG. 2B. Further, in both Examples 1 and 2, the catalyst diffusion preventing layer is a porous layer having a higher electrical resistivity than the gas sensing layer, so that the noble metal catalyst layer of the selective combustion layer can be used even in a high humidity environment. It is desirable not to diffuse into the gas sensing layer.

なお、実施例1,2で触媒拡散防止層9,選択燃焼層8を形成した後は、基板裏面よりSiを除去し、図1に示すようなダイアフラム構造とするのは、従来例と同様である。また、上記触媒拡散防止層9の多孔質層としてはAl2O3やSiO2の外にCr2O3,Fe2O3,Ni2O3,ZnOなどの多孔質金属酸化物を用いても、同様の効果を得ることができる。 In addition, after forming the catalyst diffusion prevention layer 9 and the selective combustion layer 8 in Examples 1 and 2, Si is removed from the back surface of the substrate, and the diaphragm structure as shown in FIG. is there. In addition to Al 2 O 3 and SiO 2 , porous metal oxides such as Cr 2 O 3 , Fe 2 O 3 , Ni 2 O 3 and ZnO are used as the porous layer of the catalyst diffusion preventing layer 9. The same effect can be obtained.

図3に、高湿(40℃80%RH)で10日間通電した前後での、メタン3000ppm中のセンサ抵抗の変化態様例を示す。ここでは、通電前のセンサ抵抗値を基準に通電後のセンサ抵抗の変化を比を以って対数表示している。
選択燃焼層に一様にPd7.0wt%を含む図2Cの比較例では、「×」で示すように高湿通電の前後でセンサ抵抗が大きく上昇しているのに対し、触媒拡散防止層を設けた図2A,2Bに示す実施例1,2では、センサ抵抗はほとんど変化していないことが分かる(「○」印,「●」印参照)。つまり、実施例1,2では高湿中で通電しても安定なセンサ特性が得られることを示している。高湿中では、図2Cの比較例だけにセンサ抵抗の上昇が見られるが、これはSnO2近傍に拡散してきた触媒がガス感知層へ悪影響を及ぼしているためである。
FIG. 3 shows an example of changes in sensor resistance in 3000 ppm of methane before and after energization for 10 days at high humidity (40 ° C. and 80% RH). Here, the change in sensor resistance after energization is logarithmically expressed as a ratio based on the sensor resistance value before energization.
In the comparative example of FIG. 2C in which the selective combustion layer uniformly contains Pd 7.0 wt%, the sensor resistance greatly increases before and after the high-humidity energization as shown by “x”, whereas the catalyst diffusion prevention layer is provided. In Examples 1 and 2 shown in FIGS. 2A and 2B provided, it can be seen that the sensor resistance hardly changes (see “◯” mark and “●” mark). That is, Examples 1 and 2 show that stable sensor characteristics can be obtained even when energized in high humidity. In high humidity, only the comparative example of FIG. 2C shows an increase in sensor resistance because the catalyst that has diffused in the vicinity of SnO 2 has an adverse effect on the gas sensing layer.

この発明で用いられるガスセンサを示す断面図Sectional drawing which shows the gas sensor used by this invention この発明の第1の実施例を示す断面図Sectional drawing which shows 1st Example of this invention この発明の第2の実施例を示す断面図Sectional drawing which shows 2nd Example of this invention 触媒拡散防止層を持たない従来例を示す断面図Sectional view showing a conventional example having no catalyst diffusion preventing layer この発明によるガスセンサを従来例と比較して説明するための特性図Characteristics chart for explaining the gas sensor according to the present invention in comparison with the conventional example

1…Si基板(Siウエハ)、2…支持層および熱絶縁層、3…ヒーター層、4…絶縁層、5…接合層、6…感知膜電極、7…感知層、8…選択燃焼層、9…触媒拡散防止層。   DESCRIPTION OF SYMBOLS 1 ... Si substrate (Si wafer), 2 ... Support layer and thermal insulation layer, 3 ... Heater layer, 4 ... Insulation layer, 5 ... Bonding layer, 6 ... Sensing membrane electrode, 7 ... Sensing layer, 8 ... Selective combustion layer, 9: Catalyst diffusion prevention layer.

Claims (4)

電気絶縁層上に一対の電極を形成し、その上に半導体薄膜からなるガス感知層を形成し、さらにその最表面に多孔質金属酸化物と貴金属触媒からなる選択燃焼層を形成した薄膜ガスセンサにおいて、
前記選択燃焼層とガス感知層との間に触媒拡散防止層を設けることを特徴とする薄膜ガスセンサ。
In a thin film gas sensor in which a pair of electrodes are formed on an electrically insulating layer, a gas sensing layer made of a semiconductor thin film is formed thereon, and a selective combustion layer made of a porous metal oxide and a noble metal catalyst is formed on the outermost surface. ,
A thin film gas sensor, wherein a catalyst diffusion preventing layer is provided between the selective combustion layer and the gas sensing layer.
前記触媒拡散防止層として、ガス感知層よりも電気抵抗率が高い多孔質層を用いることを特徴とする請求項1に記載の薄膜ガスセンサ。 The thin film gas sensor according to claim 1, wherein a porous layer having a higher electrical resistivity than the gas sensing layer is used as the catalyst diffusion preventing layer. 前記多孔質金属酸化物としては貴金属触媒を含まないAl2O3,Cr2O3,Fe2O3,Ni2O3,ZnO,SiO2などの金属酸化物を用い、貴金属触媒としてはPdまたはPtを持いることを特徴とする請求項1または2に記載の薄膜ガスセンサ。 As the porous metal oxide, metal oxides such as Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Ni 2 O 3 , ZnO, and SiO 2 that do not contain a noble metal catalyst are used, and Pd is used as the noble metal catalyst. Or it has Pt, The thin film gas sensor of Claim 1 or 2 characterized by the above-mentioned. 前記半導体薄膜として、SnO2,In2O3,ZnO,TiO2などの金属酸化物を用いることを特徴とする請求項1〜3のいずれか1つに記載の薄膜ガスセンサ。 The thin film gas sensor according to claim 1, wherein a metal oxide such as SnO 2 , In 2 O 3 , ZnO, or TiO 2 is used as the semiconductor thin film.
JP2009030041A 2009-02-12 2009-02-12 Membrane gas sensor Pending JP2010185774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030041A JP2010185774A (en) 2009-02-12 2009-02-12 Membrane gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030041A JP2010185774A (en) 2009-02-12 2009-02-12 Membrane gas sensor

Publications (1)

Publication Number Publication Date
JP2010185774A true JP2010185774A (en) 2010-08-26

Family

ID=42766519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030041A Pending JP2010185774A (en) 2009-02-12 2009-02-12 Membrane gas sensor

Country Status (1)

Country Link
JP (1) JP2010185774A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112718A (en) * 2010-11-22 2012-06-14 Ngk Spark Plug Co Ltd Gas sensor
WO2012105639A1 (en) * 2011-02-03 2012-08-09 富士電機株式会社 Gas detection device and gas detection method
JP2012163437A (en) * 2011-02-07 2012-08-30 Fuji Electric Co Ltd Thin film gas sensor
CN107238646A (en) * 2016-03-28 2017-10-10 Tdk株式会社 Detector and the electrochemical element for possessing detector
CN110186960A (en) * 2019-05-06 2019-08-30 武汉理工大学 A kind of highly selective SnO_2 gas sensor based on superficial silicon dioxide Si modification

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382945A (en) * 1989-08-25 1991-04-08 Fuji Electric Co Ltd Semiconductor gas sensor
JPH06160326A (en) * 1992-04-23 1994-06-07 Nippon Ceramic Co Ltd Semiconductor thin film gas sensor
JPH1082755A (en) * 1996-08-07 1998-03-31 Lg Electron Inc Hydrocarbon gas sensor and manufacture thereof
JPH11237298A (en) * 1997-12-04 1999-08-31 Lg Electronics Inc Gas leakage measurement and alarm device
JP2000298108A (en) * 1999-04-13 2000-10-24 Osaka Gas Co Ltd Gas sensor
JP2005017182A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Thin film gas sensor and method for manufacturing the same
JP2007333625A (en) * 2006-06-16 2007-12-27 Casio Comput Co Ltd Hydrogen sensor, dynamo device and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382945A (en) * 1989-08-25 1991-04-08 Fuji Electric Co Ltd Semiconductor gas sensor
JPH06160326A (en) * 1992-04-23 1994-06-07 Nippon Ceramic Co Ltd Semiconductor thin film gas sensor
JPH1082755A (en) * 1996-08-07 1998-03-31 Lg Electron Inc Hydrocarbon gas sensor and manufacture thereof
JPH11237298A (en) * 1997-12-04 1999-08-31 Lg Electronics Inc Gas leakage measurement and alarm device
JP2000298108A (en) * 1999-04-13 2000-10-24 Osaka Gas Co Ltd Gas sensor
JP2005017182A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Thin film gas sensor and method for manufacturing the same
JP2007333625A (en) * 2006-06-16 2007-12-27 Casio Comput Co Ltd Hydrogen sensor, dynamo device and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112718A (en) * 2010-11-22 2012-06-14 Ngk Spark Plug Co Ltd Gas sensor
WO2012105639A1 (en) * 2011-02-03 2012-08-09 富士電機株式会社 Gas detection device and gas detection method
JP5319027B2 (en) * 2011-02-03 2013-10-16 富士電機株式会社 Gas detection device and gas detection method
JP2012163437A (en) * 2011-02-07 2012-08-30 Fuji Electric Co Ltd Thin film gas sensor
CN107238646A (en) * 2016-03-28 2017-10-10 Tdk株式会社 Detector and the electrochemical element for possessing detector
CN110186960A (en) * 2019-05-06 2019-08-30 武汉理工大学 A kind of highly selective SnO_2 gas sensor based on superficial silicon dioxide Si modification

Similar Documents

Publication Publication Date Title
JP5961016B2 (en) Gas detector
JP2011169634A (en) Thin film gas sensor
WO2020031909A1 (en) Mems type semiconductor gas detection element
JP2010185774A (en) Membrane gas sensor
JP5143591B2 (en) Gas detection device and gas detection method
JP2017223557A (en) Gas sensor
JP5312174B2 (en) Gas sensor and gas detector
JP2006300560A (en) Hydrogen permeable membrane, hydrogen sensor and hydrogen sensing method
JP3988999B2 (en) Thin film gas sensor and manufacturing method thereof
JP4450773B2 (en) Thin film gas sensor
JP4022822B2 (en) Thin film gas sensor
JP4641832B2 (en) Thin film gas sensor
JP2005164566A (en) Thin-film gas sensor
JP5240767B2 (en) Thin film gas sensor and manufacturing method thereof
JP4136811B2 (en) Thin film gas sensor and manufacturing method thereof
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2011027752A (en) Thin film gas sensor
JP5278086B2 (en) Thin film gas sensor and manufacturing method thereof
JP3976265B2 (en) Thin film gas sensor
JP6284300B2 (en) Thin film gas sensor
JP3925847B2 (en) Thin film gas sensor
JP2005098947A (en) Thin-film gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP2005134165A (en) Thin film gas sensor
JP2016217751A (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205