JP4022822B2 - Thin film gas sensor - Google Patents

Thin film gas sensor Download PDF

Info

Publication number
JP4022822B2
JP4022822B2 JP2003370935A JP2003370935A JP4022822B2 JP 4022822 B2 JP4022822 B2 JP 4022822B2 JP 2003370935 A JP2003370935 A JP 2003370935A JP 2003370935 A JP2003370935 A JP 2003370935A JP 4022822 B2 JP4022822 B2 JP 4022822B2
Authority
JP
Japan
Prior art keywords
layer
gas
film
catalyst
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370935A
Other languages
Japanese (ja)
Other versions
JP2005134251A (en
Inventor
健二 国原
卓弥 鈴木
吉田  誠
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003370935A priority Critical patent/JP4022822B2/en
Publication of JP2005134251A publication Critical patent/JP2005134251A/en
Application granted granted Critical
Publication of JP4022822B2 publication Critical patent/JP4022822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、電池駆動を念頭においた低消費電力型薄膜ガスセンサに関する。   The present invention relates to a low power consumption thin film gas sensor with battery driving in mind.

一般的にガスセンサは、ガス漏れ警報器などの用途に用いられ、ある特定ガス、例えばCO,CH4,C38,C25OH等に選択的に感応するデバイスであり、その性格上、高感度,高選択性,高応答性,高信頼性,低消費電力が必要不可欠である。
ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的としたものと、燃焼機器の不完全燃焼ガス検知を目的としたもの、または、両方の機能を合わせ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くない。そういった事情から、普及率の向上を図るべく設置性の改善、具体的には電池駆動としコードレス化することが望まれている。
In general, a gas sensor is a device that is selectively used for a specific gas such as CO, CH 4 , C 3 H 8 , C 2 H 5 OH, etc. In addition, high sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable.
By the way, gas leak alarms that are widely used for household use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or However, the penetration rate is not so high due to cost and installation problems. Under such circumstances, it is desired to improve the installation property, specifically, to be battery-driven and cordless in order to improve the diffusion rate.

電池駆動を実現するためには低消費電力化が最も重要であるが、接触燃焼用や半導体式のガスセンサでは、100℃〜500℃の高温に加熱し検知する必要がある。これから、SnO2などの粉体を焼結した従来の方法では、スクリーン印刷等の方法を用いても厚みを薄くするには限界があり、電池駆動に用いるには熱容量が大きすぎた。そこで、ヒーター,感知膜を1μm以下の薄膜で形成し、さらに、微細加工プロセスによりダイアフラム構造などの低熱容量構造とした薄膜ガスセンサの実現が待たれていた。その結果、低熱容量構造とした薄膜ガスセンサが例えば特許文献1で提案された。 Low power consumption is the most important for realizing battery driving. However, in catalytic combustion and semiconductor type gas sensors, it is necessary to detect by heating to a high temperature of 100 ° C. to 500 ° C. Thus, in the conventional method in which powder such as SnO 2 is sintered, there is a limit to reducing the thickness even if a method such as screen printing is used, and the heat capacity is too large to be used for battery driving. Therefore, the realization of a thin film gas sensor in which a heater and a sensing film are formed with a thin film of 1 μm or less and a low heat capacity structure such as a diaphragm structure by a fine processing process has been awaited. As a result, a thin film gas sensor having a low heat capacity structure has been proposed in Patent Document 1, for example.

ところで、ダイアフラム構造などの低熱容量構造とした低消費電力薄膜ガスセンサを適用したガス漏れ警報器においても、電池の交換無しで5年以上の寿命を持たすためには薄膜ガスセンサのパルス駆動が必須となる。通常、ガス漏れ警報器は30〜150秒の一定周期に一回の検知が必要であり、この周期に合わせ検知部を室温から100℃〜500℃の高温に加熱する。上記の電池の交換無しで5年以上の寿命要請にこたえるため、この加熱時間は数100msが目標となる。   By the way, even in a gas leak alarm device to which a low power consumption thin film gas sensor having a low heat capacity structure such as a diaphragm structure is applied, pulse driving of the thin film gas sensor is indispensable in order to have a life of 5 years or more without replacing the battery. . Usually, the gas leak alarm needs to be detected once in a fixed cycle of 30 to 150 seconds, and the detector is heated from room temperature to a high temperature of 100 ° C. to 500 ° C. according to this cycle. In order to meet the life requirement of 5 years or longer without replacing the battery, the heating time is targeted to be several hundred ms.

パルス駆動の薄膜ガスセンサにおいても、低消費電力化のためには検出温度の低温化,検出時間の短縮,検出サイクルの長期化(通電をオフする時間を長くする)が重要である。
また、オフ時間にセンサ表面に付着する水分その他の吸着物を脱離させ、SnO2表面をクリーニングすることが、電池駆動(パルス駆動)の薄膜ガスセンサの経時安定性を向上させる上で重要であり、検出前に一旦センサ温度を400℃〜500℃に加熱(時間〜100msec)し、その直後に、それぞれのガスの検出温度でガス検知を行なっている。
Even in a pulse-driven thin film gas sensor, it is important to lower the detection temperature, shorten the detection time, and lengthen the detection cycle (lengthen the time for turning off the energization) in order to reduce power consumption.
It is also important to improve the time-dependent stability of the battery-driven (pulse-driven) thin film gas sensor by desorbing moisture and other adsorbates adhering to the sensor surface during the off time and cleaning the SnO 2 surface. The sensor temperature is once heated to 400 ° C. to 500 ° C. (time to 100 msec) before detection, and immediately after that, gas detection is performed at the detection temperature of each gas.

図2に一般的な薄膜ガスセンサの断面構造を示す。
両面に熱酸化膜が付いたSiウエハ1上に、ダイアフラム構造の支持層および熱絶縁層2としてSi34とSiO2膜を順次CVD法にて形成する。次にヒーター層3,SiO2絶縁層4の順にスパッタ法で形成する。その上に、接合層5,感知層電極6,感知層7を形成する。成膜はRFマグネトロンスパッタリング装置を用い、通常のスパッタリング法によって行なう。成膜条件は接合層(TaまたはTi)5,感知層電極(PtまたはAu)6とも同じで、Arガス圧力1Pa、基板温度300℃、RFパワー2W/cm2、膜厚は接合層5/感知層電極6=500Å/2000Åである。
FIG. 2 shows a cross-sectional structure of a general thin film gas sensor.
Si 3 N 4 and SiO 2 films are successively formed by CVD on the Si wafer 1 with the thermal oxide films on both sides as a support layer having a diaphragm structure and a thermal insulating layer 2. Next, the heater layer 3 and the SiO 2 insulating layer 4 are formed in this order by sputtering. A bonding layer 5, a sensing layer electrode 6, and a sensing layer 7 are formed thereon. Film formation is performed by an ordinary sputtering method using an RF magnetron sputtering apparatus. The film formation conditions are the same for both the bonding layer (Ta or Ti) 5 and the sensing layer electrode (Pt or Au) 6, Ar gas pressure 1 Pa, substrate temperature 300 ° C., RF power 2 W / cm 2 , film thickness is bonding layer 5 / The sensing layer electrode 6 = 500/2000 mm.

次に、感知層7を成膜し、感知層7の上にはAl23などの多孔質金属酸化物に触媒を担持した選択燃焼層が、スクリーン印刷法により塗布され、500℃で1時間以上焼成される。選択燃焼層の大きさは感知層7を十分に覆えること、焼成後の厚さが20ないし30μm程度になることが望ましい。最後に、Siウエハ1の裏面からエッチングによりシリコンを除去し、ダイアフラム構造とする。 Next, a sensing layer 7 is formed, and a selective combustion layer in which a catalyst is supported on a porous metal oxide such as Al 2 O 3 is applied on the sensing layer 7 by a screen printing method. Baked for more than an hour. The size of the selective combustion layer is preferably sufficient to cover the sensing layer 7 and the thickness after firing is preferably about 20 to 30 μm. Finally, silicon is removed from the back surface of the Si wafer 1 by etching to form a diaphragm structure.

このような構造の薄膜ガスセンサの寿命を、電池の交換無しで5年以上保証するためには、ヒーター層3の間欠駆動が必須となる。CO検出用のCOセンサとして用いる場合には、150秒に一回の検知が必要であり、さらにオフ時間に感知層7の表面に付着した水分その他の吸着物を脱離させるために、感知層7の表面を一旦クリーニングすることが経時安定性を向上する上で重要である。そこで、薄膜COセンサでは、CO検出前にヒーター層3の温度をクリーニングの目的で、50〜200msecの間400〜500℃に一旦加熱し、その直後に、CO検出温度である100℃前後に200〜1000msecの間保持すると言う温度パターンによりCO検出を行なっている。   In order to guarantee the life of the thin film gas sensor having such a structure for 5 years or longer without replacement of the battery, intermittent driving of the heater layer 3 is essential. When used as a CO sensor for CO detection, detection is required once every 150 seconds, and in order to desorb moisture and other adsorbates adhering to the surface of the sensing layer 7 during the off time, the sensing layer In order to improve the temporal stability, it is important to clean the surface of No. 7 once. Therefore, in the thin film CO sensor, the temperature of the heater layer 3 is once heated to 400 to 500 ° C. for 50 to 200 msec for the purpose of cleaning before CO detection, and immediately after that, the temperature is about 200 ° C., which is the CO detection temperature. CO detection is performed by a temperature pattern of holding for ˜1000 msec.

このような薄膜ガスセンサをCO検出用のCOセンサとして用いる場合、COに対する感度が良好であることはもちろんのこと、CH4やH2などの異種ガスに対する選択性や、センサの長期寿命を保証する耐久性など種々の要求を満たさなければならない。
ここで、CH4選択性といえば、CH4=4000ppm時とCO=100ppm時のセンサ抵抗値の比、H2選択性はH2=1000ppm時とCO=100ppm時のセンサ抵抗値の比で定義する。
When such a thin film gas sensor is used as a CO sensor for CO detection, not only the sensitivity to CO is good, but also selectivity for different gases such as CH 4 and H 2 and the long life of the sensor are guaranteed. Various requirements such as durability must be satisfied.
Here, the CH 4 selectivity is defined by the ratio of the sensor resistance value at CH 4 = 4000 ppm and CO = 100 ppm, and the H 2 selectivity is defined by the ratio of the sensor resistance value at H 2 = 1000 ppm and CO = 100 ppm. To do.

また、SnO2センサのガス検知原理はSnO2表面に化学吸着した吸着酸素(O2-)とCH4,H2,COなどの可燃ガスが反応(酸化)し、吸着酸素(O2-)にトラップされていた電子が自由電子としてSnO2結晶中に注入され抵抗値が変化(低下)することを利用したものである。以下に、各検知ガスとの反応式を示す。
CH4,+4O2-(ad)⇒CO2+2H2O+8e …(1)
2+O2-(ad)⇒H2O+2e …(2)
CO+O2-(ad)⇒CO2+2e …(3)
The gas detection principle of the SnO 2 sensor is that the adsorbed oxygen (O 2− ) chemically adsorbed on the SnO 2 surface reacts (oxidizes) with combustible gas such as CH 4 , H 2 , and CO, and the adsorbed oxygen (O 2− ). This utilizes the fact that the electrons trapped in are injected as free electrons into the SnO 2 crystal and the resistance value changes (decreases). Below, the reaction formula with each detection gas is shown.
CH 4 , + 4O 2− (ad) ⇒CO 2 + 2H 2 O + 8e (1)
H 2 + O 2− (ad) ⇒H 2 O + 2e (2)
CO + O 2- (ad) ⇒ CO 2 + 2e (3)

薄膜ガスセンサのガス検知膜のSnO2は、幾何学的サイズが小さいほど熱容量が低くなるため、低消費電力化に有利ではあるが長期安定性,微細加工精度,薄膜成膜方法/時間などの制約により、現実的サイズとしては〜数100μm□で、厚みは数μm程度となる。
また、薄膜ガスセンサのSnO2膜としては、特公平06−043978号公報で開示されているように、スパッタ法で成膜されたSnO2がセンサ特性,量産性の点で最も優れている。
The SnO 2 of the gas detection film of the thin film gas sensor has a lower heat capacity as the geometric size is smaller. Therefore, it is advantageous for low power consumption, but it has limitations such as long-term stability, fine processing accuracy, and thin film deposition method / time. Thus, the practical size is ˜several hundred μm □, and the thickness is about several μm.
As the SnO 2 film of the thin film gas sensor, as disclosed in Japanese Patent Publication No. 06-043978, SnO 2 formed by sputtering is most excellent in terms of sensor characteristics and mass productivity.

COセンサにおいては、CH4選択性,H2選択性は高いほど良いが、上記反応式から分かるようにCH4,H2,COがいずれも可燃性ガスのため、センサは同様の抵抗変化をする。したがって、COセンサにおいてCH4,H2には反応せず、COにだけ反応すると言うガス種選択性を向上させるため、様々な工夫がなされている。 In the CO sensor, the higher the CH 4 selectivity and H 2 selectivity are, the better. However, as can be seen from the above reaction formula, since CH 4 , H 2 and CO are all flammable gases, the sensor exhibits the same resistance change. To do. Therefore, in order to improve the gas type selectivity that the CO sensor does not react with CH 4 and H 2 but reacts only with CO, various ideas have been made.

CH4選択性に関しては、SnO2とCOは低温(〜100℃)で反応(センシング/抵抗低下)するが、CH4は反応温度が高い(〜400℃)ことを利用し、センサを低温動作(〜100℃)させることで、その選択性を確保する。
2選択性に関しては、SnO2とH2、SnO2とCOとの反応温度には大きな差異がないため、上記のような検知温度による差を利用した方法は、有効ではない。H2選択性はSnO2を被覆するように形成した貴金属触媒を多孔質Al23に担持した触媒フィルタ(選択燃焼層)のガス種に対する接触酸化力の差異を利用する。すなわち、選択燃焼層でH2ガスを選択的に燃焼し、SnO2へのH2ガスの到達を抑制する。一方、COガスは選択燃焼層では燃焼が抑制されるため、H2選択性が向上する。
Regarding CH 4 selectivity, SnO 2 and CO react at low temperature (~ 100 ° C) (sensing / resistance decrease), but CH 4 operates at low temperature by utilizing the high reaction temperature (~ 400 ° C). (˜100 ° C.) ensures the selectivity.
Regarding the H 2 selectivity, there is no significant difference in the reaction temperature between SnO 2 and H 2 , and SnO 2 and CO. Therefore, the method using the difference depending on the detection temperature as described above is not effective. The H 2 selectivity utilizes the difference in catalytic oxidation power with respect to the gas species of a catalyst filter (selective combustion layer) in which a noble metal catalyst formed so as to cover SnO 2 is supported on porous Al 2 O 3 . That is, H 2 gas is selectively burned in the selective combustion layer, and the arrival of H 2 gas to SnO 2 is suppressed. On the other hand, since CO gas is suppressed in the selective combustion layer, the H 2 selectivity is improved.

以上のような対応により、CH4選択性やH2選択性が確保されているものの、環境の温湿度,長期安定性などを考慮した場合、充分なマージンを持っているとは言えない。
電池駆動型CO用ガスセンサのように間欠通電を行なうセンサにおいては、一旦、400℃以上の高温に加熱(クリーニング)後、センサ温度を100℃に急冷し1秒以内に、COガス検知を行なう。400℃以上の高温クリーニング時に、選択燃焼層でCO,H2は完全燃焼するが、CH4のほとんどは選択層を通過しSnO2へ到達する。一方、100℃ではCH4は選択燃焼層では燃焼せず、ほとんどは選択層を通過しSnO2へ到達するが、低温のためSnO2と反応しない。
Although the CH 4 selectivity and the H 2 selectivity are secured by the above-described measures, it cannot be said that there is a sufficient margin when considering the environmental temperature and humidity, long-term stability, and the like.
In a sensor that performs intermittent energization such as a battery-driven CO gas sensor, after heating (cleaning) to a high temperature of 400 ° C. or higher, the sensor temperature is rapidly cooled to 100 ° C., and CO gas detection is performed within one second. During high temperature cleaning at 400 ° C. or higher, CO and H 2 are completely burned in the selective combustion layer, but most of CH 4 passes through the selective layer and reaches SnO 2 . On the other hand, at 100 ° C., CH 4 does not burn in the selective combustion layer and almost passes through the selective layer and reaches SnO 2 , but does not react with SnO 2 because of low temperature.

このような電池駆動型ガスセンサにおいては、400℃のクリーニング時にCH4をセンシングし抵抗低下が起こるため、その後センサ温度を100℃に急冷しても高温での抵抗低下を引きずり、あたかも、100℃でCH4を検出しているような抵抗値を示す。以上が、電池駆動型ガスセンサにおけるCH4選択性のマージン不足の理由と推定される。一方、H2選択性に関しては、400℃以上の高温に加熱(クリーニング)した時には選択燃焼層でCO,H2は完全燃焼し、センサには抵抗低下が無い(センシングしない)ため、CH4を場合のような問題は発生しない。COガス検知温度(100℃)では選択燃焼層でのCOの燃焼割合は低く、H2の燃焼割合が多いため、主にCOがSnO2へ到達することでH2選択性を得ているが、選択燃焼層内でCOとH2の完全な選択燃焼ができないため、H2選択性のマージン不足の原因となっている。 In such a battery-powered gas sensor, since CH 4 is sensed during 400 ° C. cleaning and the resistance decreases, even if the sensor temperature is rapidly cooled to 100 ° C., the resistance decreases at a high temperature, as if at 100 ° C. The resistance value is such that CH 4 is detected. The above is presumed to be the reason for the lack of CH 4 selectivity margin in the battery-driven gas sensor. On the other hand, as for the H 2 selectivity properties, CO selected combustion layer upon heating (cleaning) to temperatures higher than 400 ° C., H 2 is complete combustion, there is no resistance decreases the sensor (not sensing) Therefore, the CH 4 The problem does not occur. At the CO gas detection temperature (100 ° C.), the combustion ratio of CO in the selective combustion layer is low and the combustion ratio of H 2 is large, so that H 2 selectivity is obtained mainly by CO reaching SnO 2 . Since CO and H 2 cannot be completely selectively burned in the selective combustion layer, the margin of H 2 selectivity is insufficient.

触媒をドープしたSnO2層への貴金属触媒の添加量を増加することにより、CH4選択性,H2選択性を高める方法として、出願人は特許文献2のような方法を提案している。これは、ドナーとなる+5価または+6価の元素を添加したSnO2層と、触媒をドープしたSnO2層とを組み合わせるものである。これにより、一応実用的な範囲に達しているが、5年間にわたる長期信頼性を確保するためには、更なる性能向上が求められている。特に、H2選択性に関しては、SnO2を用いた半導体式ガスセンサでは、徐々に水素に対する感度が向上する水素鋭敏化が発生しやすいため、その向上が重要である。 The applicant has proposed a method as described in Patent Document 2 as a method for increasing CH 4 selectivity and H 2 selectivity by increasing the amount of the noble metal catalyst added to the SnO 2 layer doped with the catalyst. This is to combine the SnO 2 layer with the addition of +5 or +6 valent element serving as a donor, and a SnO 2 layer catalyst was doped. As a result, the practical range has been reached, but further improvement in performance is required to ensure long-term reliability over five years. In particular, with respect to H 2 selectivity, in semiconductor gas sensors using SnO 2 , hydrogen sensitization, which gradually improves sensitivity to hydrogen, is likely to occur, so that improvement is important.

特開2000−298108号公報(第4頁、図1)JP 2000-298108 A (page 4, FIG. 1) 特開2000−292399号公報(第4−5頁、図1)JP 2000-292399 A (page 4-5, FIG. 1)

したがって、この発明の課題は、薄膜ガスセンサにおいて特にH2選択性を向上させることにある。 Accordingly, an object of the present invention is to improve H 2 selectivity particularly in a thin film gas sensor.

このような課題を解決するため、請求項1の発明では、薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様支持基板上に、薄膜のヒーターを形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上にガス感知膜用の1対の貴金属電極、およびSnO2を主成分とする薄膜からなるガス感知膜を形成した後、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を有し、かつ、前記ガス感知膜が、ガス感知膜用Pt電極側から第1層としてドナーとなる+5価または+6価の元素を添加したSnO2層、さらにその上に第2層として触媒となる元素を添加したSnO2層を積層した2層構造のガス感知膜を形成してなる薄膜ガスセンサにおいて、
ガス感知膜の前記第2層目の触媒となる元素を添加したSnO2層の上に、さらに、前記第2層目とは触媒添加量が異なる第3層目のSnO2層を設けたことを特徴とする。
In order to solve such a problem, in the invention of claim 1, the outer periphery or both ends of the thin film-like support film are supported by the Si substrate, and the outer periphery or both ends are thick and the central portion is thin. A thin film heater is formed on a support substrate, the thin heater layer is covered with an electrical insulating film, and a gas composed of a pair of noble metal electrodes for a gas sensing film and a thin film mainly composed of SnO 2. After forming the sensing film, the outermost surface has a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to completely cover the gas sensing film, and the gas sensing film comprises: SnO 2 layer with the addition of +5 or +6 elements of Pt electrode side gas sensing film serving as a donor as the first layer, and further laminating a SnO 2 layer was added an element as a catalyst as the second layer thereon Two-layer structure The thin film gas sensor by forming a scan sensing film,
A third SnO 2 layer having a catalyst addition amount different from that of the second layer is provided on the SnO 2 layer to which the element serving as a catalyst of the second layer of the gas sensing film is added. It is characterized by.

上記請求項1の発明においては、前記ガス感知膜の第1層のドナーとしてSb,As,TaまたはNbを添加することができ(請求項2の発明)、請求項1または2の発明においては、前記ガス感知膜の第2層の触媒としてPtまたはPdもしくはその混合物を添加し、触媒添加量が1at%以上で20at%未満、好ましくは10at%以上で15at%以下であることができる(請求項3の発明)。
これら請求項1〜3の発明においては、前記ガス感知膜の第3層の触媒としてPtまたはPdもしくはその混合物を添加し、触媒添加量が20at%以上であることができ(請求項4の発明)、請求項1または2の発明においては、前記ガス感知膜の第2層と第3層の触媒添加量について、第2層の触媒添加量が20at%以上であり、第3層の触媒添加量が1at%以上で20at%未満、好ましくは10at%以上で15at%以下であることができる(請求項5の発明)。
In the first aspect of the invention, Sb, As, Ta or Nb can be added as the donor of the first layer of the gas sensing film (the second aspect of the invention). In the first or second aspect of the invention, , Pt or Pd or a mixture thereof is added as a catalyst for the second layer of the gas sensing film, and the amount of catalyst added may be 1 at% or more and less than 20 at%, preferably 10 at% or more and 15 at% or less (claims). Item 3).
In the first to third aspects of the invention, Pt or Pd or a mixture thereof may be added as a catalyst for the third layer of the gas sensing film, and the amount of catalyst added may be 20 at% or more (the invention of claim 4). In the invention of claim 1 or 2, the catalyst addition amount of the second layer is 20 at% or more with respect to the catalyst addition amount of the second layer and the third layer of the gas sensing film, and the catalyst addition of the third layer The amount can be 1 at% or more and less than 20 at%, preferably 10 at% or more and 15 at% or less (Invention of Claim 5).

つまり、CO検出用薄膜ガスセンサの感知層を形成する第1層を、ドナーとなる+5価または6価の元素を添加したSnO2層、その上に形成する第2層を、Ptなどの貴金属を1at%以上で20at%未満ドープしたSnO2層、さらにその上に形成する第3層を、Ptなどの貴金属を20at%以上ドープしたSnO2層とから構成することにより、十分高いCH4(メタン)選択性とH2(水素)選択性を得るものである。 That is, the first layer that forms the sensing layer of the thin film gas sensor for CO detection is a SnO 2 layer to which a +5 or 6 valent element is added as a donor, and the second layer that is formed thereon is a precious metal such as Pt. A SnO 2 layer doped at 1 at% or more and less than 20 at%, and a third layer formed thereon are composed of a SnO 2 layer doped with a noble metal such as Pt at 20 at% or more, so that a sufficiently high CH 4 (methane ) Selectivity and H 2 (hydrogen) selectivity.

この発明によれば、3層構造の薄膜ガスセンサおいて、ガスを検知するSbド−プSnO2層(第1層)の上に、1at%以上で20at%未満の低Ptドープ層(第2層)と20at%以上の高Ptドープ層(第3層)、または、20at%以上の高Ptドープ層(第2層)と1at%以上で20at%未満の低Ptドープ層(第3層)の3層構造にすることで高いガス選択性、特にH2選択性を向上させられるようにする。 According to the present invention, in a thin film gas sensor having a three-layer structure, a low Pt doped layer (second layer) of 1 at% or more and less than 20 at% on an Sb-doped SnO 2 layer (first layer) for detecting gas. Layer) and a high Pt doped layer (third layer) of 20 at% or more, or a high Pt doped layer (second layer) of 20 at% or more and a low Pt doped layer (third layer) of 1 at% or more and less than 20 at% By using this three-layer structure, high gas selectivity, particularly H 2 selectivity can be improved.

図1はこの発明の実施の形態を示す断面構造図である。
図1からも明らかなように、感知層電極6を形成するところまで、および感知層7の形成後には、Al23などの多孔質金属酸化物に触媒を担持した選択燃焼層8をスクリーン印刷法により塗布し、500℃で1時間以上焼成するのは従来例と同じなので、以下では異なる点について説明する。
ターゲットとなる感知層7として、ドナードープの第1層9にはSbを0.5重量パーセント(wt%)有するSnO2を用いた。触媒ドープの第2層10にはSnO2ターゲット上にφ0.3mm×20mmのPtワイヤを20本並べたターゲットを、特にこの発明による高触媒ドープの第3層11には、SnO2ターゲット上にφ0.3mm×20mmのPtワイヤを60本並べたターゲットを用い、それぞれPt13.0at%,Pt27.0at%を含有するSnO2を得た。
FIG. 1 is a cross-sectional structural view showing an embodiment of the present invention.
As is apparent from FIG. 1, until the sensing layer electrode 6 is formed and after the sensing layer 7 is formed, the selective combustion layer 8 having a catalyst supported on a porous metal oxide such as Al 2 O 3 is screened. Since it is the same as that of the conventional example that it is applied by a printing method and baked at 500 ° C. for 1 hour or more, different points will be described below.
As the target sensing layer 7, SnO 2 having 0.5 weight percent (wt%) of Sb was used for the donor-doped first layer 9. The catalyst-doped second layer 10 has a target in which 20 Pt wires of φ0.3 mm × 20 mm are arranged on a SnO 2 target. In particular, the highly catalyst-doped third layer 11 according to the present invention has a target on the SnO 2 target. SnO 2 containing Pt 13.0 at% and Pt 27.0 at% was obtained using a target in which 60 Pt wires of φ0.3 mm × 20 mm were arranged.

成膜条件は、Ar+O2ガス圧力2Pa、基板温度150〜300℃、RFパワー2W/cm2、膜厚は第1,第2,第3層とも400nmである。さらに、最後に基板裏面よりドライエッチャーを用いてエッチングしてダイアフラム部のSi1を除去し、ダイアフラム構造とした。
また、感知層7の第1層9はドナーとしてSbを添加したSnO2膜であり、膜厚は400nmである。また、第2層10については添加した触媒はPtであり、膜中のPtドープ量はPt13.0at%、膜厚は400nmである。第3層11については添加した触媒はPtであり、膜中のPtドープ量はPt27.0at%、膜厚は400nmである。なお、Ptドープ量はX線光電子分光分析装置(ESCA)により測定した結果である。
The film formation conditions are Ar + O 2 gas pressure 2 Pa, substrate temperature 150 to 300 ° C., RF power 2 W / cm 2 , and film thicknesses of both the first, second and third layers are 400 nm. Further, finally, Si1 in the diaphragm portion was removed by etching using a dry etcher from the back surface of the substrate to obtain a diaphragm structure.
The first layer 9 of the sensing layer 7 is a SnO 2 film to which Sb is added as a donor, and the film thickness is 400 nm. For the second layer 10, the added catalyst is Pt, the Pt doping amount in the film is Pt 13.0 at%, and the film thickness is 400 nm. For the third layer 11, the added catalyst is Pt, the Pt doping amount in the film is Pt 27.0 at%, and the film thickness is 400 nm. The Pt doping amount is a result of measurement with an X-ray photoelectron spectrometer (ESCA).

このようにして得た素子をAとする。この素子Aに対する比較例として、上記の第1層,第2層までの成膜で素子化した素子B、第1層,第2層までの成膜でかつ第2層の膜厚を800nmで素子化した素子C、第1層,第2層までの成膜でかつPtドープ量はPt27.0at%、膜厚は400nmで素子化した素子Dをそれぞれ試作した。また、比較例として、上記の第1層のみで膜厚は400nm,1200nmで素子化したものを、素子E,Fとする。更なる比較例として、第1層目がSbを添加したSnO2膜で膜厚は400nmであり、第2層が膜中のPtドープ量はPt27.0at%、膜厚は400nm、第3層目が膜中のPtドープ量はPt13.0at%、膜厚は400nmである素子Gを試作した。加えて、第1層目がSbを添加したSnO2膜で膜厚は400nm、第3層目は膜中のPtドープ量がPt27.0at%で膜厚は400nmと同じで、膜厚が400nmの第2層目のPt濃度をPt5at%,Pt10at%,Pt15at%,Pt18at%と変化させて素子H,I,J,Kをそれぞれ試作した。試作した素子それぞれの各層膜厚/ドープ濃度を表1に示す。なお、膜厚はnm、Sb濃度はwt%、Pt濃度はat%でそれぞれ表わしている。 The element thus obtained is designated as A. As a comparative example for the element A, the element B is formed by the film formation up to the first layer and the second layer, the film formation is performed up to the first layer and the second layer, and the film thickness of the second layer is 800 nm. Element C was formed as an element, and the element D was formed as an element with film formation up to the first layer and the second layer, with a Pt doping amount of Pt 27.0 at%, and a film thickness of 400 nm. Further, as a comparative example, elements E and F are obtained by forming the elements with 400 nm and 1200 nm with only the first layer. As a further comparative example, the first layer is a SnO 2 film to which Sb is added, the film thickness is 400 nm, the second layer is Pt doped in the film with Pt 27.0 at%, the film thickness is 400 nm, the third layer An element G in which the eye has a Pt doping amount of Pt of 13.0 at% and a film thickness of 400 nm was fabricated. In addition, the first layer is a SnO 2 film to which Sb is added and the film thickness is 400 nm. The third layer is Pt 27.0 at% in the film, the film thickness is the same as 400 nm, and the film thickness is 400 nm. The elements H, I, J, and K were respectively prototyped by changing the Pt concentration of the second layer to Pt 5 at%, Pt 10 at%, Pt 15 at%, and Pt 18 at%. Table 1 shows the film thickness / dope concentration of each layer of the prototype device. The film thickness is expressed in nm, the Sb concentration in wt%, and the Pt concentration in at%.

Figure 0004022822
Figure 0004022822

各条件におけるガスセンサの諸特性を、各成膜条件で作製したサンプルの内で平均的な特性を有する1個について取り上げ、表2に示す。

Figure 0004022822
Various characteristics of the gas sensor under each condition are shown in Table 2 for one sample having an average characteristic among samples prepared under each film forming condition.
Figure 0004022822

表2で示す特性は、段落〔0008〕のような温度パターンにて検知した結果である。諸特性としては、H2(水素)選択性とCH4(メタン)選択性を比較した。CH4選択性はCH4=4000ppm時と、CO=100ppm時のセンサ抵抗値の比、H2選択性は
2=1000ppm時と、CO=100ppm時のセンサ抵抗値の比で定義する。なお、バランスガスは空気である。ガス選択性は対象ガスのみを選択的に検知する指標であり、ガス漏れ警報器に搭載した場合に他のガスにより誤報を発することを極力防止するためには、値がすくなくとも「1」以上が必要であり、経時変化,環境条件などを加味した場合、5以上の大きい値となることが望まれている。
The characteristics shown in Table 2 are the results of detection with a temperature pattern as in paragraph [0008]. As characteristics, H 2 (hydrogen) selectivity and CH 4 (methane) selectivity were compared. CH 4 selectivity is defined as the ratio of sensor resistance values when CH 4 = 4000 ppm and CO = 100 ppm, and H 2 selectivity is defined as the ratio of sensor resistance values when H 2 = 1000 ppm and CO = 100 ppm. The balance gas is air. Gas selectivity is an index that selectively detects only the target gas, and when it is mounted on a gas leak alarm, in order to prevent misreporting by other gases as much as possible, at least "1" or more is required. It is necessary, and when a change with time, environmental conditions, and the like are taken into consideration, it is desired that the value be 5 or more.

この発明による素子Aを従来素子Bと比較すると、メタン選択性に変化はないが、水素選択性が約2倍に向上した。素子Dは第2層へのPtドープ量を27at%まで増加したものであるが、従来素子Bと比較すると、メタン選択性が低下していることが分かる。素子Cは第2層へのPtドープ量は13at%のままで膜厚を倍に増加したものであるが、従来素子Bと比較すると、メタン選択性は若干向上しているが従来素子と同様であることが分かる。Ptドープ層のない素子E,Fでは水素選択性,メタン選択性ともに小さい。素子Gは、素子Aに対し第2層と第3層のPt濃度を逆の関係にしたものであるが、この発明の素子Aと同様の高い水素選択性を持つことが分かる。また、素子A,H,I,J,Kを比べると、メタン選択性に関し、素子A,I,Jが5以上のメタン選択性を有する最も良好な特性を示すことが分かる   When the device A according to the present invention was compared with the conventional device B, the methane selectivity was not changed, but the hydrogen selectivity was improved about twice. The element D is obtained by increasing the amount of Pt doping to the second layer to 27 at%, but it can be seen that the methane selectivity is lower than that of the conventional element B. The element C is the one in which the Pt doping amount to the second layer is 13 at% and the film thickness is doubled, but the methane selectivity is slightly improved as compared with the conventional element B, but the same as the conventional element. It turns out that it is. In the devices E and F having no Pt doped layer, both hydrogen selectivity and methane selectivity are small. The element G is obtained by reversing the Pt concentrations of the second layer and the third layer with respect to the element A, but it can be seen that the element G has the same high hydrogen selectivity as the element A of the present invention. Further, when comparing the elements A, H, I, J, and K, it can be seen that the elements A, I, and J have the best characteristics with methane selectivity of 5 or more with respect to methane selectivity.

以上の結果から、つぎのことが分かる。
(1)素子BとDの比較および素子A,H,I,J,Kの比較から第2層へのPtドープ量には10〜15at%のように最適範囲があることが分かる。
(2)また、素子BとCの比較から第2層目の膜厚を増加すると、水素選択性もメタン選択性も若干向上する。膜厚を厚くしていくとセンサのガス応答に遅れが出てくるため、あまり厚くすることは応答の点で好ましくない。
(3)素子AとGの比較から第2層目と第3層目のPt濃度を逆にしても、この発明による素子Aと同等の特性が得られる。
From the above results, the following can be understood.
(1) From the comparison between the elements B and D and the comparison between the elements A, H, I, J, and K, it can be seen that there is an optimal range of 10 to 15 at% for the Pt doping amount to the second layer.
(2) When the film thickness of the second layer is increased from the comparison between the elements B and C, the hydrogen selectivity and the methane selectivity are slightly improved. If the film thickness is increased, the sensor gas response will be delayed. Therefore, it is not preferable to increase the film thickness in terms of response.
(3) From the comparison of the elements A and G, even if the Pt concentrations in the second layer and the third layer are reversed, the same characteristics as those of the element A according to the present invention can be obtained.

Ptドープ層にはCOの酸化燃焼を抑制し、選択的に水素,メタンを酸化燃焼する機能を期待している。表2の素子BとDの比較から、Ptドープ量が13at%と27at%の層で、水素とメタンの酸化燃焼力が顕著に異なることが分かる。そこで、Ptドープ量が13at%と27at%の層について、X線回折による構造解析、水素とメタンガスに対する触媒活性(酸化活性)の評価を行なった。X線回折による構造解析では、13at%PtドープSnO2では、SnO2による回折ピークが明確に認められるが、Ptによる回折ピークが認められないなどから、SnO2結晶中にPtが固溶していることが分かった。一方、27at%PtドープSnO2では、SnO2,Ptによる回折ピークが認められず、Pt−Sn−Oの混合物のような状態と推定されている。 The Pt doped layer is expected to have a function of suppressing oxidative combustion of CO and selectively oxidizing and burning hydrogen and methane. From comparison between the elements B and D in Table 2, it can be seen that the oxidative combustion power of hydrogen and methane is remarkably different between the layers having the Pt doping amount of 13 at% and 27 at%. Therefore, structural analysis by X-ray diffraction and evaluation of catalytic activity (oxidation activity) with respect to hydrogen and methane gas were performed on the layers with Pt doping amounts of 13 at% and 27 at%. In the structural analysis by X-ray diffraction, in 13at% Pt-doped SnO 2 , the diffraction peak due to SnO 2 is clearly recognized, but since the diffraction peak due to Pt is not recognized, Pt is dissolved in the SnO 2 crystal. I found out. On the other hand, in 27 at% Pt-doped SnO 2 , a diffraction peak due to SnO 2 and Pt is not observed, and it is estimated that the state is like a mixture of Pt—Sn—O.

また、水素とメタンガスに対する触媒活性(酸化活性)の評価では、13at%PtドープSnO2では高いメタン酸化活性を示すが、27at%PtドープSnO2ではメタン酸化活性が低いことが分かった。水素に対しては両方とも活性を示すが、27at%PtドープSnO2の方がより高い活性を示した。13at%PtドープSnO2がメタンに対して高い酸化活性を示すのは、SnO2中に高分散で固溶した触媒金属(Pt原子)とSnO2のシナジー効果と推定される。一方、27at%PtドープSnO2ではPt−Sn−Oの混合物となり、SnO2結晶としての化学的性質(触媒活性)が抑制され、結果的にSnO2と触媒金属のシナジー効果が抑制されたためと推定される。Pt−Sn−Oの混合物ではPtの性質が強く出るため、水素に対する酸化活性が強くなるものと推定される。これらの理由から、表2の結果が得られたと考えられる。 Further, in the evaluation of catalytic activity (oxidation activity) for hydrogen and methane gas, it was found that 13 at% Pt-doped SnO 2 showed high methane oxidation activity, but 27 at% Pt-doped SnO 2 showed low methane oxidation activity. Both showed activity against hydrogen, but 27 at% Pt-doped SnO 2 showed higher activity. Indicate 13 atomic% Pt-doped high oxidation activity SnO 2 is relative to methane is estimated to catalyst metal dissolved in a highly dispersed in SnO 2 (Pt atoms) and synergy SnO 2. On the other hand, 27at% Pt-doped SnO 2 becomes a mixture of Pt-Sn-O, and the chemical properties (catalytic activity) as SnO 2 crystals are suppressed, and as a result, the synergy effect of SnO 2 and the catalytic metal is suppressed. Presumed. It is presumed that the Pt—Sn—O mixture has a strong Pt property and therefore has a strong oxidation activity against hydrogen. For these reasons, it is considered that the results shown in Table 2 were obtained.

以上では、ガスを検知するSbド−プSnO2層(第1層)の上に、1at%以上20at%未満の低Ptドープ層(第2層)と、20at%以上の高Ptドープ層(第3層)を形成するとして説明したが、上記第2層,第3層を繰り返すようにしても良い。また、第1層のドナーとしては上記のSbの代わりに、As,TaまたはNbを用いることができ、第2層,第3層のPtの代わりに、Pdまたはこれらの混合物を用いることができる。 In the above, a low Pt doped layer (second layer) of 1 at% or more and less than 20 at% and a high Pt doped layer (20 at% or more) (on the Sb doped SnO 2 layer (first layer) for detecting gas) Although the third layer is described as being formed, the second layer and the third layer may be repeated. As the first layer donor, As, Ta or Nb can be used in place of Sb, and Pd or a mixture thereof can be used in place of Pt in the second and third layers. .

この発明の実施の形態を示す構造断面図Structural sectional view showing an embodiment of the present invention 従来例を示す構造断面図Structural cross-sectional view showing a conventional example

符号の説明Explanation of symbols

1…Siウエハ(シリコン基板)、2…支持層および熱絶縁層、3…ヒーター層、4…SiO2絶縁層、5…接合層、6…感知層電極、7…感知層、8…選択燃焼層、9…ドナー添加SnO2層(第1層)、10…触媒添加SnO2層(第2層)、11…高触媒添加SnO2層(第1層)。
1 ... Si wafer (silicon substrate), 2 ... support layer and heat insulating layer, 3 ... heater layer, 4 ... SiO 2 insulating layer, 5 ... bonding layer, 6 ... sensing layer electrode, 7 ... sensitive layer, 8 ... selection combustion Layers 9, donor-added SnO 2 layer (first layer) 10, catalyst-added SnO 2 layer (second layer) 11, high-catalyst-added SnO 2 layer (first layer)

Claims (5)

薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様支持基板上に、薄膜のヒーターを形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上にガス感知膜用の1対の貴金属電極、およびSnO2を主成分とする薄膜からなるガス感知膜を形成した後、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を有し、かつ、前記ガス感知膜が、ガス感知膜用Pt電極側から第1層としてドナーとなる+5価または+6価の元素を添加したSnO2層、さらにその上に第2層として触媒となる元素を添加したSnO2層を積層した2層構造のガス感知膜を形成してなる薄膜ガスセンサにおいて、
ガス感知膜の前記第2層目の触媒となる元素を添加したSnO2層の上に、さらに、前記第2層目とは触媒添加量が異なる第3層目のSnO2層を設けたことを特徴とする薄膜ガスセンサ。
A thin film heater is formed on a diaphragm-like support substrate in which the outer peripheral portion or both end portions of the thin support film are supported by a Si substrate, and the outer peripheral portion or both end portions are thick and the central portion is thin. The layer is covered with an electrical insulating film, and a gas sensing film consisting of a pair of noble metal electrodes for gas sensing film and a thin film mainly composed of SnO 2 is formed thereon, and then the gas sensing film is completely formed on the outermost surface. And a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to cover the gas, and the gas sensing film serves as a donor as a first layer from the Pt electrode side for the gas sensing film. In a thin film gas sensor formed by forming a gas sensing film having a two-layer structure in which a SnO 2 layer to which a valent or +6 valent element is added and a SnO 2 layer to which an element serving as a catalyst is added as a second layer are laminated thereon,
A third SnO 2 layer having a catalyst addition amount different from that of the second layer is provided on the SnO 2 layer to which the element serving as a catalyst of the second layer of the gas sensing film is added. A thin film gas sensor.
前記ガス感知膜の第1層のドナーとしてSb,As,TaまたはNbを添加したことを特徴とする請求項1に記載の薄膜ガスセンサ。   The thin film gas sensor according to claim 1, wherein Sb, As, Ta, or Nb is added as a donor of the first layer of the gas sensing film. 前記ガス感知膜の第2層の触媒としてPtまたはPdもしくはその混合物を添加し、触媒添加量が1at%以上で20at%未満、好ましくは10at%以上で15at%以下であることを特徴とする請求項1または2に記載の薄膜ガスセンサ。   Pt or Pd or a mixture thereof is added as a catalyst for the second layer of the gas sensing film, and the amount of catalyst added is 1 at% or more and less than 20 at%, preferably 10 at% or more and 15 at% or less. Item 3. The thin film gas sensor according to Item 1 or 2. 前記ガス感知膜の第3層の触媒としてPtまたはPdもしくはその混合物を添加し、触媒添加量が20at%以上であることを特徴とする請求項1ないし3のいずれかに記載の薄膜ガスセンサ。   The thin film gas sensor according to any one of claims 1 to 3, wherein Pt, Pd or a mixture thereof is added as a catalyst of the third layer of the gas sensing film, and a catalyst addition amount is 20 at% or more. 前記ガス感知膜の第2層と第3層の触媒添加量について、第2層の触媒添加量が20at%以上であり、第3層の触媒添加量が1at%以上で20at%未満、好ましくは10at%以上で15at%以下であることを特徴とする請求項1または2に記載の薄膜ガスセンサ。

Regarding the catalyst addition amount of the second layer and the third layer of the gas sensing film, the catalyst addition amount of the second layer is 20 at% or more, and the catalyst addition amount of the third layer is 1 at% or more and less than 20 at%, preferably The thin film gas sensor according to claim 1, wherein the gas gas sensor is 10 at% or more and 15 at% or less.

JP2003370935A 2003-10-30 2003-10-30 Thin film gas sensor Expired - Fee Related JP4022822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370935A JP4022822B2 (en) 2003-10-30 2003-10-30 Thin film gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370935A JP4022822B2 (en) 2003-10-30 2003-10-30 Thin film gas sensor

Publications (2)

Publication Number Publication Date
JP2005134251A JP2005134251A (en) 2005-05-26
JP4022822B2 true JP4022822B2 (en) 2007-12-19

Family

ID=34647793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370935A Expired - Fee Related JP4022822B2 (en) 2003-10-30 2003-10-30 Thin film gas sensor

Country Status (1)

Country Link
JP (1) JP4022822B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063507A (en) * 2003-11-04 2011-03-31 Fuji Electric Holdings Co Ltd Tin-platinum double oxide and method for producing the same
JP4671163B2 (en) * 2003-11-04 2011-04-13 富士電機ホールディングス株式会社 Tin / tungsten double oxide and method for producing the same, and tin / lenium double oxide and method for producing the same
JP4640960B2 (en) * 2005-07-12 2011-03-02 富士電機システムズ株式会社 Thin film gas sensor
KR100791812B1 (en) 2006-07-03 2008-01-04 한국과학기술연구원 Tin oxide nanowire-based gas sensor and method for manufacturing the same
JP5120881B2 (en) * 2007-10-23 2013-01-16 富士電機株式会社 Combustible gas detector
US8739604B2 (en) * 2007-12-20 2014-06-03 Amphenol Thermometrics, Inc. Gas sensor and method of making
JP5312174B2 (en) * 2008-04-25 2013-10-09 富士電機株式会社 Gas sensor and gas detector
JP5127750B2 (en) * 2009-03-19 2013-01-23 フィガロ技研株式会社 Gas sensor and gas detection method
JP4970584B2 (en) * 2010-11-08 2012-07-11 富士電機株式会社 Thin film gas sensor
WO2014155594A1 (en) * 2013-03-28 2014-10-02 富士電機株式会社 Tin/platinum complex oxide and method for manufacturing same
JP6176523B2 (en) * 2013-06-03 2017-08-09 富士電機株式会社 Thin film gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005134251A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4640960B2 (en) Thin film gas sensor
US9945803B2 (en) Gas detecting device and method thereof
JP4056987B2 (en) Hydrogen sensor and hydrogen detection method
JP4022822B2 (en) Thin film gas sensor
JP3988999B2 (en) Thin film gas sensor and manufacturing method thereof
JP5041837B2 (en) Thin film gas sensor and manufacturing method thereof
JP3812215B2 (en) Thin film gas sensor
JP4487206B2 (en) Gas alarm
JP4450773B2 (en) Thin film gas sensor
JP4376093B2 (en) Thin film gas sensor
JP2010185774A (en) Membrane gas sensor
JP3075070B2 (en) Carbon monoxide gas sensor
JP2007017217A (en) Thin film gas sensor
JP4371772B2 (en) Thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP4851610B2 (en) Thin film gas sensor
JP4136811B2 (en) Thin film gas sensor and manufacturing method thereof
JP2000292395A (en) Thin film gas sensor
JP2008128773A (en) Thin film gas sensor
JP2005098947A (en) Thin-film gas sensor
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP3976265B2 (en) Thin film gas sensor
JP4401145B2 (en) Method for manufacturing thin film gas sensor
JPH05322821A (en) Gas sensor
JP2007279061A (en) Pulse-driven thin-film gas sensor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Ref document number: 4022822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees