JP3812215B2 - Thin film gas sensor - Google Patents

Thin film gas sensor Download PDF

Info

Publication number
JP3812215B2
JP3812215B2 JP09695299A JP9695299A JP3812215B2 JP 3812215 B2 JP3812215 B2 JP 3812215B2 JP 09695299 A JP09695299 A JP 09695299A JP 9695299 A JP9695299 A JP 9695299A JP 3812215 B2 JP3812215 B2 JP 3812215B2
Authority
JP
Japan
Prior art keywords
layer
gas
sensing
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09695299A
Other languages
Japanese (ja)
Other versions
JP2000292399A (en
Inventor
卓弥 鈴木
克巳 小野寺
文宏 井上
孝一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP09695299A priority Critical patent/JP3812215B2/en
Publication of JP2000292399A publication Critical patent/JP2000292399A/en
Application granted granted Critical
Publication of JP3812215B2 publication Critical patent/JP3812215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、電池駆動を念頭においた低消費電力型の薄膜ガスセンサに関する。
【0002】
【従来の技術】
一般的にガスセンサは、ガス漏れ警報器などの用途に用いられ、ある特定ガス、例えば、CO、CH4、C38、CH3OH等を選択的に感知するデバイスであり、その性格上、高感度、高選択性、高応答性、高信頼性、低消費電力が必要不可決である。
【0003】
ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガスの検知を目的としたものと、燃焼機器の不完全燃焼ガスの検知を目的としたもの、または、両方の機能を合わせ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くない。このような事情から普及率の向上をはかるべく、設置性の改善、具体的には、電池駆動としコードレス化することが望まれている。
【0004】
ガスセンサの電池駆動を実現するためにはガスセンサの低消費電力化が最も重要であるが、接触燃焼式や半導体式のガスセンサでは、ガス感知膜を200℃〜500℃の高温に加熱する必要がある。SnO2などの粉体を焼結して作製したガス感知膜では、スクリーン印刷等の方法を用いても感知膜の厚みを薄くするには限界があるため、これを電池で駆動した場合、感知膜の熱容量が大きすぎて、これを加熱するための電力で電池の消耗が大きくて実用とはならなかった。
【0005】
そこで、ヒーター、ガス感知膜を微小薄膜で形成し、さらに、微細加工プロセスにより支持基板をダイヤフラム様の構造として低熱容量化を図った薄膜ガスセンサの実現が待たれている。
【0006】
【発明が解決しようとする課題】
薄膜ガスセンサを電池で駆動する場合、低熱容量・高応答性の要求から、ガス感知膜の長さ(電極間隔)は200μm以下にする必要がある。このようにガス感知膜を微小化すると、感知膜と電極間のコンタクト抵抗の割合が増加し、ガス感知の感度が低下するという問題があった。また、従来の薄膜ガスセンサには、感知ガス中でのガス感知膜の抵抗値(Rg)が高いため、感知時に測定ノイズが大きくなりS/N比が低下するという問題もあった。
【0007】
ガス漏れ警報器の検知対象となる、CO、CH4等の可燃性ガスの酸素との反応時間は30ms以内であるため、ヒーターによるガス感知膜の昇温時間も30ms以内であることが要求される。通常、ガス漏れ警報器は20〜60秒の一定周期に一回の検知が必要であり、この周期に合わせてガス感知膜を室温から200〜500℃の高温に加熱する。ヒーターの応答が遅い場合は、ガス感知に遅れが生じ、ヒーターのオン時間をそれだけ長くしなければならない。ヒーターのオン時間が長くなる分、オフ時間も含めた平均消費電力が増大し、電池寿命を低下させることになる。
【0008】
ヒーターが円盤状でダイヤフラム様の支持基板の中心にあると考えた場合、ヒーターの半径をrh、ヒーターへの投入パワーをPとすると、ヒーターによる加熱温度をΔTだけ昇温するのに要する時間thは、投入パワー×時間=熱容量×温度変化 の関係から、th=C・ΔT・rh 2/P (C:比例定数)となる。したがって、加熱の応答時間はヒーターの半径の2乗に比例して決まる。th=30msでrh=200μmとすると、ヒーター部の大きさ以下にすべきガス感知膜部は、200μm以下にする必要がある。
【0009】
また、ガス感知膜に半導体を用いた場合、感知膜とこれに接続される金属の感知電極との界面には、通常ショットキーバリアーが形成され、感知膜部の1対の電極間の抵抗は、感知膜の内部抵抗(感知膜抵抗)と、感知膜と電極間のコンタクト抵抗との和となる。感知膜部の電極間隔が十分大きい時には、感知膜抵抗に対しコンタクト抵抗は十分無視できるほど小さいが、電極間隔が200μm以下では全抵抗に対しコンタクト抵抗の割合が無視できないほど大きくなる。コンタクト抵抗はガスによって変化しないため、この抵抗が大きくなるとガス感知感度が低下することになる。特に半導体薄膜からなるガス感知膜に触媒を添加した場合、触媒が半導体中のアクセプタとしても働くため、ガス感知膜のドナー密度が低下し、コンタクト抵抗が大きくなっていた。
【0010】
したがって、この発明の課題は、電池駆動を可能する薄膜ガスセンサにおけるガス感知感度を高めるとともにノイズの小さいS/N比を高めることにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明では、薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイヤフラム様の支持基板上に、薄膜のヒーター層を形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上に半導体薄膜によりガス感知層を形成し、このガス感知層に接して所定間隔置いて1対の金属からなる感知電極間を設けてなる薄膜ガスセンサにおいて、ガス感知層を、触媒を含む第1層と触媒を含まない第2層との二層構造とし、前記感知電極層を前記第1層には接合せず、前記第2層の両端だけに接合したことを特徴とする。
【0012】
請求項1の発明においては、ガス感知層をSnO2薄膜により構成し、その第1層に触媒としてPtまたはPd添加することができる(請求項2の発明)。
【0013】
請求項1または2の発明においては、ガス感知層をSnO2薄膜により構成し、その第2層にドナーとなる+5価あるいは+6価となる元素、具体的にはAs、Sb、TaあるいはNbを添加することができる(請求項3または4の発明)。
【0014】
請求項1ないし4の何れかの発明においては、前記ガス感知層の第1層の膜厚を0.2〜2.0μmとし、前記第2層の膜厚を0.01μm以上でかつ第1層の膜厚以下とすることができる(請求項5の発明)。
【0015】
請求項1又は2の発明においては、前記触媒の添加量を、0.1〜10wt%とすることができる(請求項6の発明)。
【0016】
請求項3または4の発明においては、前記ドナーとなる元素の添加量を、0.1〜10wt%とすることができる(請求項7の発明)。
【0017】
【発明の実施の形態】
図1は、この発明の実施の形態を説明するために、薄膜ガスセンサを概略的に示す縦断面図である。
【0018】
図1において、10は、支持基板であり、当初は両面に熱酸化SiO2膜12を備えたSi基板11と、その表面に順次プラズマCVD法で形成された、支持膜および熱絶縁膜となるSi34膜13およびSiO2膜14とを備える。この支持基板の上面に、スパッタ法により、Ni−Cr膜からなるヒーター層1がほぼ中央に、そしてSiO2膜からなる電気絶縁層2が全面に順次形成される。
【0019】
この電気絶縁層2の上に、接合強度を高めるためのPrまたはAu膜からなる接合層3を介してガス感知層の感知電極となる、1対のTaまたはTi膜からなる感知電極層4、4がヒーター層1の上方の位置に所定の間隔をおいてスパッタ法により形成される。
【0020】
次に、この1対の電極層4、4を渡るようにスパッタ法によりSnO2膜からなるガス感知層6が絶縁層2の上に形成される。このガス感知層は上部の第1層61と下部の第2層62の2層で構成される。
【0021】
前記接合層3および感知電極層4、4のRFマグネトロンスパッタ装置による成膜条件は、両方とも同じで、Arガス圧力を1Pa、基板温度を300℃、RFパワーを2W/cm2とし、膜厚を接合層3は500Åに、感知電極4,4は2000Åに仕上げた。
【0022】
ガス感知層6の第1層61および第2層62とも、RFマグネトロンスパッタ装置を用いて反応スパッタリング方法より成膜し、その成膜条件は、いずれもAr+O2ガスの圧力を2Pa、基板温度を150〜300℃、RFパワーを2W/cm2とした。ターゲットは、第1層には、Ptを6.0wt%含むSnO2を用い、第2層には、添加物を含まない純粋のSnO2を用い、第2層から第1層の順に成膜する。膜厚は、第1層を4500Å、第2層を500Åに仕上げた。
【0023】
このように仕上げられたのち、支持基板10の裏面側(図1の下方側)からエッチングにより図1には図示されない裏面側のSiO2膜を除去する共にSi基板11の外周部または両端部を残して中央部を表面側のSiO2膜12まで除去し、支持基板10を外周部または両端部が厚くて中央が薄いダイヤフラム様の構造とする。
【0024】
【実施例】
上記のように構成したこの発明による薄膜ガスセンサの特性を測定するために表1に示すように、実施例としてガス感知層を、Ptを6.0wt%含むSnO2からなる第1層と添加物を含まない純粋のSnO2からなる第2層とからなる2層構造とし、感知電極の間隔をそれぞれ100μm(実施例1)、200μm(実施例2)および2000μm(実施例3)にしたものを用意し、これに対する比較例として、ガス感知層を、Ptを6.0wt%含むSnO2からなる層のみで構成されて単層構造とし、感知電極の間隔を実施例と同様にそれぞれ100μm(比較例1)、200μm(比較例2)および2000μm(比較例3)にしたものを用意した。
【0025】
これらの実施例と、比較例とを大気中およびCH4を2000ppm含んだガス中において、それぞれのセンサの感知電極間の抵抗を測定し、ガス感知感度を求めた。ガス感知感度は、大気中で測定したセンサの抵抗R0と感知ガス中で測定したセンサの抵抗Rgとの比R0/Rgで表わしたものである。
【0026】
表1に示すように、コンタクト層の無い比較例1〜3では、電極間隔の大きい比較例3に対し、電極間隔の小さい比較例1、2はガス感知感度が1/5程度に低下している。しかしながら、コンタクト層の有る実施例1〜3では、電極間隔に関わらずほぼ一定で十分なガス感知感度を確保できている。
【0027】
【表1】

Figure 0003812215
図2に、実施例1〜3および比較例1〜3のCH4を2000ppm含むガス中での電極間の抵抗Rgと電極間隔(L)との関係を示す。図2の(a)は全体を、(b)は微小部分を拡大して示す。ガス感知層が単層構造の比較例の場合、グラフにY切片(感度直線とRg軸との交点)があることがわかる。このY切片は、電極間隔によらない抵抗分であり、ガス感知層と感知電極との界面に存在するコンタクト抵抗と考えられる。このコンタクト抵抗は、L=2000μmのRgに対しては、1/10程度であり無視できるが、L≦200μmではRgの1/2程度以上を占めており、空気中、感知ガス中によらず存在するため、L≦200μmで感度低下を引き起こしているものと考えられる。
【0028】
一方、ガス感知層が2層構造の実施例の場合、Y切片が比較例の場合の
1/10程度に低下していることがわかる。つまり、ガス感知層を2層構造とすることでコンタクト抵抗が1/10程度に低下し、その結果、電極間隔に関わらず十分なガス感知感度が確保できるものと考えられる。
【0029】
このように構成された薄膜ガスセンサにおいて、感知電極4、4とガス感知層6との接合部のように、金属と半導体が接触する際の半導体の界面に生じる空乏層の幅Wは、一般に次の式のようにあらわされる。
【0030】
【数1】
Figure 0003812215
ここで、εs:半導体の誘電率、q:半導体の電荷、Nd:半導体のドナー密度、Vbi:半導体の内蔵電位、V:電圧、k:ボルツマン定数、T:絶対温度、である。
【0031】
この式から明らかなように、半導体中のドナー密度Ndを増すほど、空乏層の幅Wは狭まり、それだけ金属と半導体のコンタクト抵抗が減少する。
【0032】
すなわち、半導体と電極金属の界面にはショットキーバリアが形成されやすく、これがコンタクト抵抗を大きく増大させる。オーミックな界面を形成してコンタクト抵抗を抑制するためには、界面に主要部よりも多くのキャリアを注入したn+層(第2層)を挟むことが効果的である。
【0033】
そこで、この発明では、ガス感知層6を2層構造とし、主要部の第1層61と電極4、4との間に、Ptを含まないSnO2からなる第2層62を設ける。Ptは触媒としてだけなくアクセプタとしても働くので、これをドープしないことにより、キャリア密度、すなわちドナー密度が相対的に増加し、第2層62の抵抗が感知層6の主要部の第1層61より低抵抗となり、感知電極4、4間のコンタクト抵抗が第1層61の抵抗に対して無視できる程度に小さくなり、電極間隔が200μm以下の微小な素子であってもガス感知感度を確保することができる。
【0034】
ガス感知層の第2層コンタクト層としては、As、Sb、Ta、あるいはNbの+5価、あるいは+6価の元素を0.2〜5.0wt%添加したSnO2を用いても、上記実施例と同様の効果が得られる。As、Sb、Ta、あるいはNbはSnO2にドナーとして取りこまれるため、キャリアー密度が増加するためである。
【0035】
次に、この発明におけるガス感知層の、第1層と第2層の最適な厚さの割合を確かめるために、ガス感知層全体の膜厚を5000Åに規定して第1層と第2層の比率だけを変えて、その他は上記実施例と同様の方法で、表2に示すような実施例2、4、5および比較例4、5、6を作製した。これらのサンプルの感知電極の間隔はすべて200μmである。これらのサンプルについて、CH4ガスを2000ppm含むガス中におけるガス感知感度(R0/Rg)をよび感知電極間抵抗を測定し、その結果を図3および図4に示す。
【0036】
【表2】
Figure 0003812215
図3から、第2層の膜厚が増すとガス感知感度が低下し、第2層の膜厚が2500Å、すなわち、膜厚比:第1層/第2層が1以下では、ガス感知感度は、今回目標とした5を下回ることが分る。
【0037】
一方、図4に示されるように、ガス感知層が単層構造(比較例4)の場合は、ガス感知層のCH4ガスを2000ppm含む検知ガス中での抵抗Rgが、10MΩ以上となるが、ガス感知層を2層構造(実施例2、4、5および比較例5、6)にするとRgが1MΩ以下となり、1桁以上も低下し、ガス感知層の2層構造が、ガス感知層の感知ガス中での抵抗Rgの低減に顕著に作用する。
【0038】
【発明の効果】
この発明によれば、ガス感知層を、触媒を含む第1層と触媒を含まない第2層を有する二層構造とし、第2層の両端に感知電極を設けることによって、感知電極間のコンタクト抵抗がガス感知層自体の抵抗に対し無視できるほど小さくなり、電極間隔が200μm以下という微小なガス感知膜であってもガス感知感度を十分確保でき、かつガス感知層の検知ガス中での抵抗Rgを低下させることができるので、ノイズの検知を低減でき、検知に十分なS/N比を得ることが可能となるの効果が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態を説明するための概略縦断面図である。
【図2】検知ガス中での感知電極間隔Lと感知電極間抵抗Rgとの関係を説明する図である。
【図3】検知ガス中でのガス感知層の第2層の膜厚とガス感知感度(R0/Rg)との関係を示す図である。
【図4】検知ガス中でのガス感知層の第2層の膜厚と感知電極間抵抗(Rg)との関係を示す図である。
【符号の説明】
1:ヒータ、2:電気絶縁層、3:接合層、4、4:感知電極、6:ガス感知層、61:第1層、62:第2層、10:支持基板、11:Si基板、12:熱酸化SiO2膜、13:CVD−Si34膜、14:CVD−SiO2膜。[0001]
[Industrial application fields]
The present invention relates to a low power consumption thin film gas sensor with battery driving in mind.
[0002]
[Prior art]
Generally, a gas sensor is a device that is used for applications such as a gas leak alarm and selectively senses a specific gas such as CO, CH 4 , C 3 H 8 , CH 3 OH, etc. High sensitivity, high selectivity, high responsiveness, high reliability, and low power consumption are inevitable.
[0003]
By the way, the gas leak alarms that are widely used for household use are intended for detection of combustible gas for city gas and propane gas, and for the detection of incomplete combustion gas in combustion equipment. Although there are things that have both functions together, the penetration rate is not so high due to cost and installation problems. Under these circumstances, in order to improve the diffusion rate, it is desired to improve the installation property, specifically, to be battery-driven and cordless.
[0004]
Low power consumption of the gas sensor is the most important for realizing the battery drive of the gas sensor. However, in the catalytic combustion type or semiconductor type gas sensor, it is necessary to heat the gas sensing film to a high temperature of 200 ° C. to 500 ° C. . A gas sensing film made by sintering powder such as SnO 2 has a limit in reducing the thickness of the sensing film even if a screen printing method is used. The heat capacity of the film was too large, and the power consumed to heat the film consumed the battery so much that it was not practical.
[0005]
Therefore, it is awaited to realize a thin film gas sensor in which a heater and a gas sensing film are formed by a minute thin film and a support substrate is formed into a diaphragm-like structure by a microfabrication process to reduce the heat capacity.
[0006]
[Problems to be solved by the invention]
When the thin film gas sensor is driven by a battery, the length of the gas sensing film (electrode interval) needs to be 200 μm or less because of the demand for low heat capacity and high response. When the gas sensing film is miniaturized as described above, there is a problem that the ratio of contact resistance between the sensing film and the electrode is increased, and the gas sensing sensitivity is lowered. In addition, the conventional thin film gas sensor has a problem that since the resistance value (Rg) of the gas sensing film in the sensing gas is high, measurement noise increases during sensing and the S / N ratio decreases.
[0007]
Since the reaction time of the combustible gas such as CO, CH 4 and the like, which is a detection target of the gas leak alarm, with oxygen is within 30 ms, the temperature rising time of the gas sensing film by the heater is also required to be within 30 ms. The Normally, the gas leak alarm needs to be detected once in a fixed period of 20 to 60 seconds, and the gas sensing film is heated from room temperature to a high temperature of 200 to 500 ° C. according to this period. If the heater response is slow, gas sensing will be delayed and the heater on time must be increased accordingly. As the heater on-time becomes longer, the average power consumption including the off-time increases, and the battery life decreases.
[0008]
When it is considered that the heater is in the center of a disk-like diaphragm-like support substrate, the time required to raise the heating temperature by the heater by ΔT, where r h is the radius of the heater and P is the power applied to the heater. t h is the input power × time = the relationship in heat capacity × temperature change, t h = C · ΔT · r h 2 / P: a (C proportionality constant). Therefore, the heating response time is determined in proportion to the square of the heater radius. Assuming that t h = 30 ms and r h = 200 μm, the gas sensing film portion that should be smaller than the size of the heater portion needs to be 200 μm or less.
[0009]
When a semiconductor is used for the gas sensing film, a Schottky barrier is usually formed at the interface between the sensing film and the metal sensing electrode connected to the sensing film, and the resistance between the pair of electrodes in the sensing film part is The sum of the internal resistance of the sensing film (sensing film resistance) and the contact resistance between the sensing film and the electrode. When the electrode distance of the sensing film portion is sufficiently large, the contact resistance is sufficiently small to be negligible with respect to the sensing film resistance, but when the electrode distance is 200 μm or less, the ratio of the contact resistance to the total resistance becomes so large that it cannot be ignored. Since the contact resistance does not change depending on the gas, if this resistance increases, the gas sensing sensitivity will decrease. In particular, when a catalyst is added to a gas sensing film made of a semiconductor thin film, the catalyst also functions as an acceptor in the semiconductor, so that the donor density of the gas sensing film is lowered and the contact resistance is increased.
[0010]
Accordingly, an object of the present invention is to increase the gas sensing sensitivity and increase the S / N ratio with low noise in a thin film gas sensor capable of battery driving.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, in the invention of claim 1, the outer periphery or both ends of the thin film-like support film are supported by the Si substrate, and the outer periphery or both ends are thick and the center is thinly formed. A thin film heater layer is formed on the substrate, the thin film heater layer is covered with an electrical insulating film, a gas sensing layer is formed thereon with a semiconductor thin film, and a pair of gaps is formed in contact with the gas sensing layer at a predetermined interval. In the thin film gas sensor provided with the sensing electrodes made of metal, the gas sensing layer has a two-layer structure of a first layer containing a catalyst and a second layer not containing a catalyst, and the sensing electrode layer is the first layer. It is characterized by being bonded only to both ends of the second layer .
[0012]
In the first aspect of the present invention, the gas sensing layer is formed of a SnO 2 thin film, and Pt or Pd can be added to the first layer as a catalyst (the second aspect of the invention).
[0013]
In the first or second aspect of the present invention, the gas sensing layer is composed of a SnO 2 thin film, and a +5 valent or +6 valent element serving as a donor, specifically, As, Sb, Ta or Nb is formed in the second layer. It can be added (Invention of Claim 3 or 4).
[0014]
In the invention according to any one of claims 1 to 4, the thickness of the first layer of the gas sensing layer is set to 0.2 to 2.0 μm, the thickness of the second layer is set to 0.01 μm or more, and It can be made below the film thickness of a layer (invention of Claim 5).
[0015]
In invention of Claim 1 or 2, the addition amount of the said catalyst can be 0.1-10 wt% (invention of Claim 6).
[0016]
In invention of Claim 3 or 4, the addition amount of the element used as the donor can be 0.1-10 wt% (Invention of Claim 7).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view schematically showing a thin film gas sensor for explaining an embodiment of the present invention.
[0018]
In FIG. 1, reference numeral 10 denotes a support substrate, which initially becomes a Si substrate 11 having a thermally oxidized SiO 2 film 12 on both sides, and a support film and a thermal insulating film sequentially formed on the surface by plasma CVD. Si 3 N 4 film 13 and SiO 2 film 14 are provided. On the upper surface of the support substrate, the heater layer 1 made of a Ni—Cr film is sequentially formed in the center, and the electrical insulating layer 2 made of a SiO 2 film is sequentially formed on the entire surface by sputtering.
[0019]
A sensing electrode layer 4 made of a pair of Ta or Ti films serving as a sensing electrode of the gas sensing layer via a bonding layer 3 made of Pr or Au film for increasing the bonding strength on the electrical insulating layer 2. 4 is formed by sputtering at a predetermined interval above the heater layer 1.
[0020]
Next, a gas sensing layer 6 made of an SnO 2 film is formed on the insulating layer 2 by sputtering so as to cross the pair of electrode layers 4 and 4. This gas sensing layer is composed of two layers, an upper first layer 61 and a lower second layer 62.
[0021]
The film forming conditions of the bonding layer 3 and the sensing electrode layers 4 and 4 by the RF magnetron sputtering apparatus are the same, the Ar gas pressure is 1 Pa, the substrate temperature is 300 ° C., the RF power is 2 W / cm 2 , and the film thickness. The bonding layer 3 was finished to 500 mm, and the sensing electrodes 4 and 4 were finished to 2000 mm.
[0022]
Both the first layer 61 and the second layer 62 of the gas sensing layer 6 are formed by a reactive sputtering method using an RF magnetron sputtering apparatus. The film forming conditions are as follows: the pressure of Ar + O 2 gas is 2 Pa, the substrate temperature is 150 to 300 ° C., the RF power was 2W / cm 2. As the target, SnO 2 containing 6.0 wt% Pt is used for the first layer, and pure SnO 2 containing no additive is used for the second layer. The target is formed in the order from the second layer to the first layer. To do. The film thickness was 4500 mm for the first layer and 500 mm for the second layer.
[0023]
After finishing in this way, the SiO 2 film on the back surface not shown in FIG. 1 is removed by etching from the back surface side (lower side in FIG. 1) of the support substrate 10 and the outer peripheral portion or both end portions of the Si substrate 11 are removed. The central portion is removed up to the SiO 2 film 12 on the surface side, and the support substrate 10 has a diaphragm-like structure with a thick outer peripheral portion or both end portions and a thin central portion.
[0024]
【Example】
In order to measure the characteristics of the thin film gas sensor according to the present invention configured as described above, as shown in Table 1, as an example, the gas sensing layer was formed as a first layer made of SnO 2 containing 6.0 wt% Pt and an additive. And having a two-layer structure composed of a second layer made of pure SnO 2 containing no SnO 2 , with sensing electrode intervals of 100 μm (Example 1), 200 μm (Example 2) and 2000 μm (Example 3), respectively As a comparative example for this, the gas sensing layer is composed of only a layer made of SnO 2 containing 6.0 wt% Pt and has a single-layer structure, and the sensing electrode spacing is 100 μm as in the embodiment (comparison) Examples 1), 200 μm (Comparative Example 2) and 2000 μm (Comparative Example 3) were prepared.
[0025]
In these examples and the comparative example, the resistance between the sensing electrodes of each sensor was measured in the atmosphere and in a gas containing 2000 ppm of CH 4 to determine the gas sensing sensitivity. The gas sensing sensitivity is expressed by a ratio R 0 / Rg of the sensor resistance R 0 measured in the atmosphere and the sensor resistance Rg measured in the sensing gas.
[0026]
As shown in Table 1, in Comparative Examples 1 to 3 having no contact layer, Comparative Example 1 and 2 having a small electrode interval are lower by about 1/5 in gas sensing sensitivity than Comparative Example 3 having a large electrode interval. Yes. However, in Examples 1 to 3 having the contact layer, a sufficient gas sensing sensitivity can be secured regardless of the electrode interval.
[0027]
[Table 1]
Figure 0003812215
Figure 2 shows the relationship between the resistance Rg and the electrode spacing between electrodes in a gas containing 2000ppm of CH 4 of Examples 1 to 3 and Comparative Examples 1 to 3 (L). FIG. 2A shows the whole, and FIG. 2B shows an enlarged small portion. When the gas sensing layer is a comparative example having a single layer structure, it can be seen that the graph has a Y-intercept (intersection of the sensitivity line and the Rg axis). This Y-intercept is a resistance component that does not depend on the electrode interval, and is considered to be a contact resistance existing at the interface between the gas sensing layer and the sensing electrode. This contact resistance is about 1/10 with respect to Rg of L = 2000 μm and can be ignored. However, when L ≦ 200 μm, it occupies about 1/2 or more of Rg, regardless of whether it is in the air or in the sensing gas. Therefore, it is considered that the sensitivity is lowered when L ≦ 200 μm.
[0028]
On the other hand, when the gas sensing layer is an example having a two-layer structure, it can be seen that the Y-intercept is reduced to about 1/10 that of the comparative example. That is, it is considered that the contact resistance is reduced to about 1/10 by making the gas sensing layer have a two-layer structure, and as a result, sufficient gas sensing sensitivity can be ensured regardless of the electrode spacing.
[0029]
In the thin film gas sensor configured as described above, the width W of the depletion layer generated at the semiconductor interface when the metal and the semiconductor are in contact, such as the junction between the sensing electrodes 4 and 4 and the gas sensing layer 6, is generally It is expressed as
[0030]
[Expression 1]
Figure 0003812215
Here, ε s is the dielectric constant of the semiconductor, q is the charge of the semiconductor, N d is the donor density of the semiconductor, V bi is the built-in potential of the semiconductor, V is the voltage, k is the Boltzmann constant, and T is the absolute temperature.
[0031]
As is clear from this equation, as the donor density N d in the semiconductor increases, the width W of the depletion layer decreases, and the contact resistance between the metal and the semiconductor decreases accordingly.
[0032]
That is, a Schottky barrier is easily formed at the interface between the semiconductor and the electrode metal, which greatly increases the contact resistance. In order to suppress the contact resistance by forming an ohmic interface, it is effective to sandwich an n + layer (second layer) in which more carriers are injected than the main part at the interface.
[0033]
Therefore, in the present invention, the gas sensing layer 6 has a two-layer structure, and the second layer 62 made of SnO 2 containing no Pt is provided between the first layer 61 and the electrodes 4 and 4 of the main part. Since Pt acts not only as a catalyst but also as an acceptor, by not doping it, the carrier density, that is, the donor density, is relatively increased, and the resistance of the second layer 62 becomes the first layer 61 of the main part of the sensing layer 6. The resistance is lower, the contact resistance between the sensing electrodes 4 and 4 is negligibly small with respect to the resistance of the first layer 61, and gas sensing sensitivity is ensured even for a minute element having an electrode interval of 200 μm or less. be able to.
[0034]
As the second contact layer of the gas sensing layer, SnO 2 to which 0.2 to 5.0 wt% of an element of +5 or +6 of As, Sb, Ta, or Nb is added may be used. The same effect can be obtained. This is because As, Sb, Ta, or Nb is incorporated in SnO 2 as a donor, so that the carrier density increases.
[0035]
Next, in order to confirm the optimum ratio of the thickness of the first layer and the second layer of the gas sensing layer in the present invention, the total thickness of the gas sensing layer is set to 5000 mm, and the first layer and the second layer are defined. Other than the above ratio, Examples 2, 4, and 5 and Comparative Examples 4, 5, and 6 as shown in Table 2 were prepared in the same manner as in the above Example except for the ratio. The distance between the sensing electrodes of these samples is all 200 μm. For these samples, the gas sensing sensitivity (R 0 / Rg) and the resistance between sensing electrodes in a gas containing 2000 ppm of CH 4 gas were measured, and the results are shown in FIG. 3 and FIG.
[0036]
[Table 2]
Figure 0003812215
As shown in FIG. 3, the gas sensing sensitivity decreases as the thickness of the second layer increases, and the gas sensing sensitivity decreases when the thickness of the second layer is 2500 mm, that is, the thickness ratio: the first layer / second layer is 1 or less. Is below the target of 5.
[0037]
On the other hand, as shown in FIG. 4, when the gas sensing layer has a single layer structure (Comparative Example 4), the resistance Rg in the sensing gas containing 2000 ppm of CH 4 gas in the gas sensing layer is 10 MΩ or more. When the gas sensing layer has a two-layer structure (Examples 2, 4, 5 and Comparative Examples 5 and 6), Rg is 1 MΩ or less, which is lower by one digit or more, and the two-layer structure of the gas sensing layer is a gas sensing layer. It significantly affects the reduction of the resistance Rg in the sense gas.
[0038]
【The invention's effect】
According to the present invention, the gas sensing layer has a two-layer structure having a first layer containing a catalyst and a second layer not containing a catalyst, and the sensing electrodes are provided at both ends of the second layer, whereby contact between the sensing electrodes is achieved. The resistance is negligibly small with respect to the resistance of the gas sensing layer itself, and even a minute gas sensing film with an electrode interval of 200 μm or less can sufficiently secure the gas sensing sensitivity, and the resistance of the gas sensing layer in the sensing gas Since Rg can be reduced, the detection of noise can be reduced, and an effect that an S / N ratio sufficient for detection can be obtained can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view for explaining an embodiment of the present invention.
FIG. 2 is a diagram for explaining a relationship between a sensing electrode interval L and a sensing electrode resistance Rg in a sensing gas.
FIG. 3 is a diagram showing a relationship between a film thickness of a second layer of a gas sensing layer in a detection gas and gas sensing sensitivity (R 0 / Rg).
FIG. 4 is a diagram showing the relationship between the thickness of the second layer of the gas sensing layer in the sensing gas and the resistance between sensing electrodes (Rg).
[Explanation of symbols]
1: heater, 2: electrically insulating layer, 3: bonding layer, 4: 4: sensing electrode, 6: gas sensing layer, 61: first layer, 62: second layer, 10: support substrate, 11: Si substrate, 12: Thermally oxidized SiO 2 film, 13: CVD-Si 3 N 4 film, 14: CVD-SiO 2 film.

Claims (7)

薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイヤフラム様の支持基板上に、薄膜のヒーター層を形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上に半導体薄膜によりガス感知層を形成し、このガス感知層に接して所定間隔置いて1対の金属からなる感知電極層を設けてなる薄膜ガスセンサにおいて、ガス感知層を、触媒を含む第1層と触媒を含まない第2層との二層構造とし、前記感知電極層を前記第1層には接合せず、前記第2層の両端だけに接合したことを特徴とする薄膜ガスセンサ。A thin film heater layer is formed on a diaphragm-like support substrate in which the outer periphery or both ends of the thin film support film are supported by a Si substrate, and the outer periphery or both ends are thick and the center is thin. In the thin film gas sensor, the heater layer is covered with an electric insulating film, a gas sensing layer is formed thereon with a semiconductor thin film, and a sensing electrode layer made of a pair of metals is provided in contact with the gas sensing layer at a predetermined interval. The gas sensing layer has a two-layer structure of a first layer containing a catalyst and a second layer not containing a catalyst, and the sensing electrode layer is not joined to the first layer, but only at both ends of the second layer. A thin film gas sensor characterized by being joined. 前記ガス感知層がSnO2からなり、その第1層に触媒としてPtまたはPdを添加したことを特徴とする、請求項1に記載の薄膜ガスセンサ。 2. The thin film gas sensor according to claim 1, wherein the gas sensing layer is made of SnO2, and Pt or Pd is added to the first layer as a catalyst. 前記ガス感知層がSnO2からなり、その第2層に、ドナーとなる+5価、あるいは+6価となる元素を添加したことを特徴とする、請求項2に記載の薄膜ガスセンサ。The gas sensing layer consists SnO 2, its second layer, characterized in that the addition of elements to be +5, or +6 serves as a donor, a thin film gas sensor according to claim 2. 前記ドナーとして、As、Sb、Ta、あるいはNbを用いたことを特徴とする、請求項3に記載の薄膜ガスセンサ。The thin film gas sensor according to claim 3, wherein As, Sb, Ta, or Nb is used as the donor. 前記ガス感知層の第1層の膜厚を0.2〜2.0μmとし、前記第2層の膜厚を0.01μm以上でかつ第1層の膜厚以下としたことを特徴とする、請求項1ないし4の何れかに記載の薄膜ガスセンサ。The thickness of the first layer of the gas sensing layer is 0.2 to 2.0 μm, the thickness of the second layer is 0.01 μm or more and less than or equal to the thickness of the first layer, The thin film gas sensor according to any one of claims 1 to 4. 前記触媒の添加量を、0.1〜10wt%としたことを特徴とする、請求項1または2に記載の薄膜ガスセンサ。The thin film gas sensor according to claim 1 or 2, wherein the addition amount of the catalyst is 0.1 to 10 wt%. 前記ドナーとなる元素の添加量を、0.1〜10wt%としたことを特徴とする請求項3または4に記載の薄膜ガスセンサ。The thin film gas sensor according to claim 3 or 4, wherein an addition amount of the element serving as the donor is 0.1 to 10 wt%.
JP09695299A 1999-04-02 1999-04-02 Thin film gas sensor Expired - Lifetime JP3812215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09695299A JP3812215B2 (en) 1999-04-02 1999-04-02 Thin film gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09695299A JP3812215B2 (en) 1999-04-02 1999-04-02 Thin film gas sensor

Publications (2)

Publication Number Publication Date
JP2000292399A JP2000292399A (en) 2000-10-20
JP3812215B2 true JP3812215B2 (en) 2006-08-23

Family

ID=14178633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09695299A Expired - Lifetime JP3812215B2 (en) 1999-04-02 1999-04-02 Thin film gas sensor

Country Status (1)

Country Link
JP (1) JP3812215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954585B2 (en) 2005-03-23 2011-06-07 Honda Motor Co., Ltd. Swing-arm-type suspension device of vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575581B2 (en) * 2000-11-24 2010-11-04 大阪瓦斯株式会社 Gas sensor
JP4659295B2 (en) * 2001-08-27 2011-03-30 ウチヤ・サーモスタット株式会社 Metal oxide semiconductor gas sensor
JP2011063507A (en) * 2003-11-04 2011-03-31 Fuji Electric Holdings Co Ltd Tin-platinum double oxide and method for producing the same
JP4671163B2 (en) * 2003-11-04 2011-04-13 富士電機ホールディングス株式会社 Tin / tungsten double oxide and method for producing the same, and tin / lenium double oxide and method for producing the same
JP2007017217A (en) * 2005-07-06 2007-01-25 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP4833717B2 (en) 2006-03-31 2011-12-07 シチズンホールディングス株式会社 Contact combustion type gas sensor and its sensing element and compensating element
JP2008128773A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP4603001B2 (en) * 2007-03-09 2010-12-22 日本特殊陶業株式会社 Gas sensor element
JP2007279061A (en) * 2007-06-19 2007-10-25 Osaka Gas Co Ltd Pulse-driven thin-film gas sensor and manufacturing method therefor
JP4851610B2 (en) * 2010-05-07 2012-01-11 富士電機株式会社 Thin film gas sensor
KR20160120437A (en) * 2015-04-08 2016-10-18 남성원 Oxygen and carbon dioxide gas real-time detecting sensor and a method of manufacturing the gas sensors and the detection method of the gas composition within the packaging container using the same
CN110085002A (en) * 2019-04-20 2019-08-02 马继华 Gas pipeline detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954585B2 (en) 2005-03-23 2011-06-07 Honda Motor Co., Ltd. Swing-arm-type suspension device of vehicle

Also Published As

Publication number Publication date
JP2000292399A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP3812215B2 (en) Thin film gas sensor
JP4640960B2 (en) Thin film gas sensor
US8025843B2 (en) Hydrogen sensor
JP4022822B2 (en) Thin film gas sensor
JP4487206B2 (en) Gas alarm
JP4970584B2 (en) Thin film gas sensor
JP2005164566A (en) Thin-film gas sensor
JP2004037402A (en) Thin film gas sensor
JP4900319B2 (en) Thin film gas sensor, gas leak alarm, thin film gas sensor setting adjustment device, and thin film gas sensor setting adjustment method
JP2007017217A (en) Thin film gas sensor
JP4371772B2 (en) Thin film gas sensor
JP2000292395A (en) Thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP2000292398A (en) Thin film gas sensor
JP3077428B2 (en) Electrode structure of gas sensor and method of manufacturing the same
JP4851610B2 (en) Thin film gas sensor
JP5278086B2 (en) Thin film gas sensor and manufacturing method thereof
JP5065097B2 (en) Gas detection device and gas detection method
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP2955583B2 (en) Detection element for gas sensor
JP3931473B2 (en) Thin film gas sensor
JPH05322821A (en) Gas sensor
JPH1183777A (en) Thin film gas sensor
JP2003294670A (en) Thin film gas sensor
JP3469293B2 (en) Gas detection element and gas detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term