JP3077428B2 - Electrode structure of gas sensor and method of manufacturing the same - Google Patents

Electrode structure of gas sensor and method of manufacturing the same

Info

Publication number
JP3077428B2
JP3077428B2 JP04343258A JP34325892A JP3077428B2 JP 3077428 B2 JP3077428 B2 JP 3077428B2 JP 04343258 A JP04343258 A JP 04343258A JP 34325892 A JP34325892 A JP 34325892A JP 3077428 B2 JP3077428 B2 JP 3077428B2
Authority
JP
Japan
Prior art keywords
sensitive film
heating resistor
forming
temperature
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04343258A
Other languages
Japanese (ja)
Other versions
JPH06167472A (en
Inventor
幸弘 福田
伸洋 五島
敬之 土田
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP04343258A priority Critical patent/JP3077428B2/en
Publication of JPH06167472A publication Critical patent/JPH06167472A/en
Application granted granted Critical
Publication of JP3077428B2 publication Critical patent/JP3077428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属酸化物半導体に対す
るガスの吸脱着による抵抗値の変化を利用し、且つ加熱
用素子を有するガスセンサの電極構造及びその製造法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a gas sensor utilizing a change in resistance value due to adsorption and desorption of a gas to and from a metal oxide semiconductor and having a heating element and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体式ガスセンサはシート状、
線状又はコイル状の加熱体を基板等の支持体上に形成
し、感応部であるガス感応膜(半導体膜)及びこの感応
膜の抵抗を測定する電極は上記加熱体と相対する別の基
板面に置くか、又は加熱体上に絶縁物を挟んでその上に
重ねる三層構造としていた。
2. Description of the Related Art Conventionally, a semiconductor gas sensor has a sheet shape,
A linear or coil-shaped heating element is formed on a support such as a substrate, and a gas-sensitive film (semiconductor film) as a sensitive part and an electrode for measuring the resistance of the sensitive film are provided on another substrate facing the heating element. It has a three-layer structure in which it is placed on a surface or is placed on a heating element with an insulator interposed therebetween.

【0003】また従来品は感応部と加熱体との間にアル
ミナ基板等を挟んだ構造か、あるいは加熱体の上に絶縁
層及び感応部を積層した構造であったため、測温部を感
応部に接して設置することが困難であり、温度測定を行
わないか又は測温部を感応部から離れた位置に置いてい
た。
Further, the conventional product has a structure in which an alumina substrate or the like is interposed between a sensing part and a heating body, or a structure in which an insulating layer and a sensing part are laminated on a heating body. It is difficult to install the sensor in contact with the temperature sensor, and the temperature is not measured or the temperature measuring unit is placed at a position away from the sensitive unit.

【0004】[0004]

【発明が解決しようとする課題】上記の構造上、感応部
を加熱するために支持体基板全体を加熱する方法が考え
られたがエネルギーロスが大きかった。また感応部のみ
を加熱する機構のものも存在したが、加熱用抵抗体と基
板との接触面積が大きいため熱が基板側へ逃げ、結局無
駄なエネルギーを消費していた。
Due to the above structure, a method of heating the entire support substrate to heat the sensitive portion has been considered, but the energy loss is large. There is also a mechanism that heats only the sensitive part, but because the contact area between the heating resistor and the substrate is large, heat escapes to the substrate side, and eventually wastes energy.

【0005】また従来は感応部と加熱用抵抗体とをそれ
ぞれ別の工程で形成していたため、両者を積層する場合
の位置合せが困難である上、このような積層構造である
ためにセンサ全体を小型化することが難しいという弱点
があった。
Conventionally, the sensitive portion and the heating resistor are formed in separate steps, so that it is difficult to align the two when they are laminated, and because of such a laminated structure, the entire sensor is formed. There was a disadvantage that it was difficult to reduce the size.

【0006】さらに感応部の温度制御については、感応
部の抵抗は温度に依存して変化するため感応部の温度を
一定に保つ必要があるが、前記のように測温部を設けて
いないか又は設置していても感応部からの距離があるた
め、感応部の温度を一定に保つことが困難であり、その
ためガスセンサの精度も向上しなかった。加熱方法につ
いても、前記のように感応部と測温部とが離れているた
め、熱応答性が悪くパルス的(断続的)な加熱を行うこ
とは難しかった。
Further, regarding the temperature control of the sensitive part, it is necessary to keep the temperature of the sensitive part constant because the resistance of the sensitive part changes depending on the temperature. Or, even if it is installed, it is difficult to keep the temperature of the sensitive part constant because there is a distance from the sensitive part, so that the accuracy of the gas sensor has not been improved. As for the heating method, since the sensitive part and the temperature measuring part are separated from each other as described above, it is difficult to perform pulse-like (intermittent) heating due to poor thermal response.

【0007】また前記の積層構造では、感応部と加熱抵
抗体の間に熱伝導率の低い絶縁層があるため加熱抵抗体
の熱が均一に伝わらず、感応部の温度も不均一となり、
その結果ガスセンサの精度に悪影響を与えていた。
Further, in the above-mentioned laminated structure, since the insulating layer having a low thermal conductivity is provided between the sensitive part and the heating resistor, the heat of the heating resistor is not transmitted uniformly, and the temperature of the sensitive part becomes uneven.
As a result, the accuracy of the gas sensor was adversely affected.

【0008】[0008]

【課題を解決するための手段】上記の問題を解決するた
めの第一の手段として、加熱用抵抗体と、感応膜用電極
とが、厚さ方向において少なくとも両者の一部が重なる
ように絶縁体を介して配置されるガスセンサ電極構造と
し、好ましくは加熱用抵抗体と感応膜用電極とを、絶縁
体を介して櫛歯状に交互に配置されるガスセンサ電極構
造とした。
As a first means for solving the above problem, a heating resistor and a sensitive film electrode are insulated so that at least a part of the both overlaps in the thickness direction. Preferably, the gas sensor electrode structure is arranged via a body, and preferably, the heating resistor and the sensitive film electrode are alternately arranged in a comb-like manner via an insulator.

【0009】第一の手段のガスセンサ電極構造は次の方
法で製造される。すなわち、絶縁基板上に、金属抵抗膜
を形成してこれを加熱用抵抗体に加工する第一の工程
と、この絶縁基板及び加熱用抵抗体の両者を共に被覆す
る絶縁層を形成し、さらにその表面を感応膜用電極の形
成用材料で被覆する第二の工程と、この表面を樹脂もし
くは液状ガラス成分含有物で被覆する第三の工程と、前
記の多層被覆した基板をエッチングによって平坦化し、
前記加熱用抵抗体と、前記感応膜用電極とを、厚さ方向
において少なくとも両者の一部が重なるように絶縁体を
介して配置させる第四の工程と、前記平坦化した基板を
感応膜形成用材料で被覆する第五の工程によって製造さ
れる。
The gas sensor electrode structure of the first means is manufactured by the following method. That is, a first step of forming a metal resistor film on an insulating substrate and processing it into a heating resistor, and forming an insulating layer covering both the insulating substrate and the heating resistor, A second step of coating the surface with a material for forming a sensitive film electrode, a third step of coating the surface with a resin or a liquid glass component-containing material, and flattening the multilayer-coated substrate by etching. ,
A fourth step of arranging the heating resistor and the sensitive film electrode via an insulator so that at least a part thereof overlaps in the thickness direction, and forming a sensitive film on the flattened substrate. It is manufactured by a fifth step of coating with a material for use.

【0010】また問題を解決するための第二の手段とし
て、加熱用抵抗体と、半導体感応膜との間に、温度感知
用の感温膜を配置したガスセンサ電極構造とし、好まし
くは感温膜の温度を測定するための感温膜用電極を、加
熱用抵抗体と、厚さ方向において少なくとも両者の一部
が重なるように絶縁体を介して配置されるガスセンサ電
極構造とし、さらに好ましくは加熱用抵抗体と感温膜用
電極とを、絶縁体を介して櫛歯状に交互に配置したガス
センサ電極構造とした。
As a second means for solving the problem, a gas sensor electrode structure in which a temperature sensing film is disposed between a heating resistor and a semiconductor sensing film, preferably a temperature sensing film The temperature-sensitive film electrode for measuring the temperature of the heating resistor, the heating resistor, a gas sensor electrode structure disposed via an insulator so that at least a part of both overlap in the thickness direction, more preferably heating A gas sensor electrode structure in which resistors for temperature sensing and electrodes for a temperature-sensitive film were alternately arranged in a comb-like manner with an insulator interposed therebetween.

【0011】第二の手段のガスセンサ電極構造は次の方
法で製造される。すなわち、絶縁基板上に、金属抵抗膜
を形成してこれを加熱用抵抗体に加工する第一の工程
と、この絶縁基板及び加熱用抵抗体の両者を共に被覆す
る絶縁層を形成し、さらにその表面を感温膜用電極の形
成材料で被覆する第二の工程と、この表面を樹脂もしく
は液状ガラス成分含有物で被覆する第三の工程と、前記
の多層被覆した基板をエッチングによって平坦化し、前
記加熱用抵抗体と、前記感温膜用電極とを、厚さ方向に
おいて少なくとも両者の一部が重なるように絶縁体を介
して配置させる第四の工程と、前記平坦化した基板を感
温膜形成用材料で被覆し、さらにその上に絶縁層を形成
する第五の工程と、この絶縁層の表面を感応膜形成用材
料で被覆する第六の工程と、この感応膜に接続する感応
膜用電極を設置する第七によって製造される。
The gas sensor electrode structure of the second means is manufactured by the following method. That is, a first step of forming a metal resistor film on an insulating substrate and processing it into a heating resistor, and forming an insulating layer covering both the insulating substrate and the heating resistor, A second step of coating the surface with a material for forming a temperature-sensitive film electrode, a third step of coating the surface with a resin or a liquid glass component-containing material, and flattening the multilayer-coated substrate by etching. A fourth step of arranging the heating resistor and the temperature-sensitive film electrode via an insulator such that at least a part of the heating resistor and the electrode for the temperature-sensitive film are overlapped with each other in the thickness direction; A fifth step of coating with a warm film forming material and further forming an insulating layer thereon, a sixth step of coating the surface of the insulating layer with a sensitive film forming material, and connecting to the sensitive film Manufactured by Seventh installing electrodes for sensitive membranes It is.

【0012】[0012]

【作用】第一の手段については、感応部電極を自己整合
で形成するため加熱抵抗体との重ねあわせが容易とな
り、素子全体の大きさを小さくすることができる。ここ
で自己整合とは、加熱抵抗体と感応部電極との位置関係
が一連の工程によって自動的に決まるため調整操作が不
要であることを意味する。また加熱体と感応部が薄い絶
縁層を挟み直接接触することにより、感応部の加熱効率
が良くなり消費電力を低く抑えることができる。さらに
感応部を形成する面の平坦化を行うため従来問題になっ
ていた段差による感応膜の切断を防止することができ
る。
In the first means, since the sensitive portion electrode is formed in a self-aligned manner, it is easy to overlap with the heating resistor, and the size of the entire device can be reduced. Here, the self-alignment means that the adjusting operation is unnecessary because the positional relationship between the heating resistor and the sensitive part electrode is automatically determined by a series of steps. In addition, since the heating element and the sensitive section are in direct contact with each other with the thin insulating layer interposed therebetween, the heating efficiency of the sensitive section is improved and power consumption can be reduced. Further, since the surface on which the sensitive portion is formed is flattened, it is possible to prevent the sensitive film from being cut due to a step, which has conventionally been a problem.

【0013】第二の手段については、感温部電極を自己
整合で形成するため、加熱抵抗体との位置合せが容易と
なり素子全体の大きさを小さくすることができる。また
加熱体と感応部との間に測温部があるため加熱体と感応
部の温度を直接測定することができる。さらに測温部に
熱伝導率の良い材料を使用することによって、消費電力
を小さくすることができる。
In the second means, since the temperature sensing portion electrodes are formed in a self-aligned manner, the positioning with the heating resistor is facilitated, and the size of the entire device can be reduced. Further, since there is a temperature measuring section between the heating element and the sensitive section, the temperature of the heating element and the sensitive section can be directly measured. Further, by using a material having good thermal conductivity for the temperature measuring section, power consumption can be reduced.

【0014】[0014]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1〜図5は第一の手段に係るガス
センサ電極構造製造工程の各段階を順に説明するもので
ああって、このうち図1(a)〜図5(a)は各工程の平面図
であり、図1(b)〜図5(b)は図1(a)〜図5(a)のA−A
線における断面図である。また図6〜図12は第二の手
段に係るガスセンサ電極構造製造工程の各段階を順に説
明するものであって、このうち図6(a)〜図12(a)は各
工程の平面図であり、図6(b)〜図12(b)は図6(a)〜
図12(a)のB−B線における断面図である。さらに図
13は感温用サーミスタが安定するまでの応答時間を示
したものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIGS. 1 to 5 sequentially explain each step of the gas sensor electrode structure manufacturing process according to the first means, and FIGS. 1 (a) to 5 (a) are plan views of each process. FIGS. 1 (b) to 5 (b) are AA in FIGS. 1 (a) to 5 (a).
It is sectional drawing in a line. FIGS. 6 to 12 are diagrams for sequentially explaining each step of the gas sensor electrode structure manufacturing process according to the second means, and FIGS. 6A to 12A are plan views of each process. FIGS. 6 (b) to 12 (b) show FIGS. 6 (a) to
It is sectional drawing in the BB line of FIG.12 (a). FIG. 13 shows a response time until the temperature-sensing thermistor is stabilized.

【0015】まず図1〜図5に基づいて第一の手段に係
る実施例を説明する。図1は加熱用抵抗体2の形成を説
明するものであり、ガラス製の絶縁基板1上にタングス
テン製金属抵抗膜を形成し、これを加工して加熱用抵抗
体2とする。絶縁基板1としては絶縁性を有していれば
どのようなものでも使用可能であり、上記のガラス基板
の他にアルミナ基板、シリコンを酸化した基板等が挙げ
られる。加熱用抵抗体2の材料としては上記のWの他
に、Ti、Cu、Al、Si、Pt、Au等が挙げられる。こ
の加熱用抵抗体2の幅は2〜100μmが好ましい。
First, an embodiment according to the first means will be described with reference to FIGS. FIG. 1 illustrates the formation of the heating resistor 2. A tungsten metal resistor film is formed on an insulating substrate 1 made of glass, and is processed into a heating resistor 2. As the insulating substrate 1, any substrate having an insulating property can be used, and in addition to the above glass substrate, an alumina substrate, a substrate obtained by oxidizing silicon, or the like can be used. Examples of the material of the heating resistor 2 include Ti, Cu, Al, Si, Pt, and Au, in addition to W described above. The width of the heating resistor 2 is preferably 2 to 100 μm.

【0016】図2は絶縁基板1及び加熱用抵抗体2の両
者を共に被覆するSiO2製絶縁層3及び、この絶縁層3
の表面をさらに被覆するタングステン製の感応膜用電極
の形成用材料4を説明するものである。絶縁層3として
は上記の他にSi34、Ta25等で比抵抗が106Ω・cm
以上のものを使用することが好ましい。また絶縁層3の
厚みは0.1μm〜5μmが好ましい。絶縁層3はスパッ
タリング法、CVD法、スピンコート法、その他の方法
で形成することが出来るが、本例ではスパッタリング法
を使用した。また感応膜用電極の形成用材料4は本例で
は蒸着法によって形成したが、そのほかにスパッタリン
グ法、CVD法等を用いることができる。感応膜用電極
の形成用材料4としてはWの他に例えばTi、Al、N
i、Cu、Pt、Auを使用することができる。
FIG. 2 shows a SiO 2 insulating layer 3 covering both the insulating substrate 1 and the heating resistor 2, and the insulating layer 3.
The material 4 for forming an electrode for a sensitive film made of tungsten which further covers the surface of FIG. The insulating layer 3 is made of Si 3 N 4 , Ta 2 O 5 or the like, and has a specific resistance of 10 6 Ω · cm.
It is preferable to use the above. The thickness of the insulating layer 3 is preferably 0.1 μm to 5 μm. The insulating layer 3 can be formed by a sputtering method, a CVD method, a spin coating method, or another method. In this example, the sputtering method was used. Although the material 4 for forming the electrode for the sensitive film is formed by the vapor deposition method in this example, a sputtering method, a CVD method, or the like can be used instead. As the material 4 for forming the sensitive film electrode, in addition to W, for example, Ti, Al, N
i, Cu, Pt, and Au can be used.

【0017】図3は、後の平坦化の準備のために仮被膜
6を形成する工程を示すものである。仮被膜6は回転塗
布等の塗布方法により、樹脂或いは液状ガラス成分含有
物等の被膜を形成したものである。仮被膜6を形成する
ことによって後の平坦化を目的通りに行うことが可能で
ある。
FIG. 3 shows a step of forming a temporary coating 6 in preparation for later flattening. The temporary coating 6 is formed by forming a coating such as a resin or a liquid glass component-containing material by a coating method such as spin coating. By forming the temporary coating 6, flattening later can be performed as intended.

【0018】図4は絶縁基板1表面の平坦化及び感応膜
用電極4a、4bを形成する工程を示すものである。平
坦化を行うためには仮被膜6で覆われた絶縁基板1をプ
ラズマ雰囲気中で仮被膜6及び感応膜用電極形成用材料
4をエッチングする。その際エッチング速度比を調節し
て、加熱用抵抗体2の上の感応膜用電極形成用材料4は
完全に除去され、加熱抵抗体2と厚さ方向で重なる場
所、すなわち加熱抵抗体2を挟む領域の感応膜用電極形
成用材料4は残るようにする。この結果、図4(a)で明
らかなように、感応膜用電極は4aと4bに別れるが、
これらは絶縁層3を介して加熱用抵抗体2と櫛歯状に交
互に並ぶ(自己整合)。すなわち加熱用抵抗体2と感応
膜用電極4a、4bとの位置関係が自動的に決まるため
調整を行う工程は不要であり、また位置ずれの生ずる心
配がない。さらに加熱抵抗体2と感応膜用電極4a、4
bとが厚さ方向で少なくとも一部が重なるように絶縁基
板1上に配置されるため、素子全体を薄くすることが可
能である。
FIG. 4 shows a process of flattening the surface of the insulating substrate 1 and forming the sensitive film electrodes 4a and 4b. In order to planarize the insulating substrate 1 covered with the temporary coating 6, the temporary coating 6 and the material 4 for forming an electrode for a sensitive film are etched in a plasma atmosphere. At this time, by adjusting the etching rate ratio, the material 4 for forming a sensitive film electrode on the heating resistor 2 is completely removed, and the portion overlapping the heating resistor 2 in the thickness direction, that is, the heating resistor 2 is removed. The electrode forming material 4 for the sensitive film in the sandwiched region is left. As a result, as shown in FIG. 4 (a), the sensitive film electrode is divided into 4a and 4b.
These are alternately arranged in a comb shape with the heating resistor 2 via the insulating layer 3 (self-alignment). That is, since the positional relationship between the heating resistor 2 and the sensitive film electrodes 4a and 4b is automatically determined, the step of performing the adjustment is unnecessary, and there is no fear of the occurrence of positional displacement. Further, the heating resistor 2 and the sensitive film electrodes 4a, 4
b is arranged on the insulating substrate 1 so that at least a part thereof overlaps in the thickness direction, so that the entire device can be made thinner.

【0019】図5は感応膜5の形成工程を示すものであ
る。本例ではスパッタリング法によりZn被膜を形成す
る。端子部は金属マスク処理によってこの被膜が形成さ
れないようにした。感応膜5を形成するに好適な材料と
しては上記の他Ni、Co、Fe、Ti、Zr、Sn、W、L
a等の金属酸化物もしくはこれらの複合膜又はこれら金
属酸化物にPt等の添加物を加えたもの等が挙げられ
る。感応膜5の形成方法としては上記のスパッタリング
法の他に蒸着法、ゾルゲル法等を挙げることができる。
感応膜5は絶縁層3を挟んで加熱抵抗体2と接するが、
絶縁層の厚さは0.1〜5μmと薄いため実質的に直接
接触していると変らない熱伝導があり、加熱用消費電力
の浪費を防ぐことができる。さらに感応膜5は平坦化の
済んだ面上に形成されるため、段差による切断等が生ず
る心配がない。
FIG. 5 shows a process for forming the sensitive film 5. In this example, a Zn film is formed by a sputtering method. This coating was not formed on the terminal portion by the metal mask treatment. Suitable materials for forming the sensitive film 5 include Ni, Co, Fe, Ti, Zr, Sn, W, L
Metal oxides such as a or composite films thereof, or those obtained by adding an additive such as Pt to these metal oxides. Examples of the method for forming the sensitive film 5 include a vapor deposition method and a sol-gel method in addition to the above-described sputtering method.
The sensitive film 5 is in contact with the heating resistor 2 with the insulating layer 3 interposed therebetween.
Since the thickness of the insulating layer is as thin as 0.1 to 5 μm, there is no change in heat conduction when substantially in direct contact, and waste of power consumption for heating can be prevented. Further, since the sensitive film 5 is formed on the flattened surface, there is no risk of cutting due to a step.

【0020】次に図6〜図13に基づいて第二の手段に
係る実施例を説明する。図6は加熱用抵抗体8の形成工
程を説明するものであり、ガラス製の絶縁基板7上にタ
ングステン製金属抵抗膜をスパッタリング法によって蒸
着形成し、これを加工して加熱用抵抗体8とする。絶縁
基板7としては絶縁性を有していればどのようなもので
も使用可能であり、上記のガラスの他にアルミナ基板、
シリコン・ウエハーで表面をを酸化した基板、加熱用抵
抗体8の温度に耐え得る樹脂によって作成した基板等が
挙げられるが、平坦面を有しかつ熱伝導率の低いもので
あることが好ましい。加熱用抵抗体8の材料としては上
記のWの他に、Si、Ti、Al、Pt、Ni、Cr、Sn、
Au、Ag、Pd、Cu及びこれらの合金等が使用可能であ
るが、機器の小型化の面から、耐マイグレーション性に
優れた高抵抗材料が好ましい。また加熱用抵抗体8の幅
は2〜100μmが好ましく、その厚みは0.2〜10
μmが好ましい。
Next, an embodiment according to the second means will be described with reference to FIGS. FIG. 6 illustrates a step of forming the heating resistor 8. A tungsten metal resistor film is formed by vapor deposition on a glass insulating substrate 7, and is processed to form a heating resistor 8. I do. Any material can be used as the insulating substrate 7 as long as it has an insulating property. In addition to the above glass, an alumina substrate,
Examples of the substrate include a silicon wafer whose surface is oxidized and a substrate made of a resin that can withstand the temperature of the heating resistor 8. It is preferable that the substrate has a flat surface and low thermal conductivity. As the material of the heating resistor 8, in addition to W described above, Si, Ti, Al, Pt, Ni, Cr, Sn,
Au, Ag, Pd, Cu and alloys thereof can be used, but a high resistance material having excellent migration resistance is preferable from the viewpoint of miniaturization of equipment. The width of the heating resistor 8 is preferably 2 to 100 μm, and the thickness thereof is 0.2 to 10 μm.
μm is preferred.

【0021】図7は絶縁基板7及び加熱用抵抗体8の両
者を共に被覆するSiO2製絶縁層9a及び、この絶縁層
9aの表面をさらに被覆するタングステン製の感温膜用
電極の形成用材料10の形成工程を説明するものであ
る。絶縁層9aとしては上記の他にSi34、Ta25
TiO2、もしくは加熱用抵抗体8の温度に耐えられる樹
脂等であって比抵抗が106Ω・cm以上のものを使用する
ことが好ましい。また絶縁層9aの厚みは0.1μm〜
5μmが好ましい。絶縁層9aはスパッタリング法、C
VD法、スピンコート法、蒸着法、ゾルゲル法、ディッ
プ法及び加熱用抵抗体8の表面を酸化して絶縁層とする
方法等で形成することが出来るが、本例ではCVD法を
使用した。また感温膜用電極の形成用材料10は本例で
は蒸着法によって形成したが、そのほかにスパッタリン
グ法、CVD法等を用いることができる。感温膜用電極
の形成用材料10としてはWの他に例えばTi、Al、N
i、Cr、Sn、Ag、Cu、Siを使用することができる。
FIG. 7 shows a SiO 2 insulating layer 9a covering both the insulating substrate 7 and the heating resistor 8 and a tungsten temperature-sensitive film electrode for further covering the surface of the insulating layer 9a. 4 illustrates a step of forming the material 10. As the insulating layer 9a, in addition to the above, Si 3 N 4 , Ta 2 O 5 ,
It is preferable to use TiO 2 or a resin or the like that can withstand the temperature of the heating resistor 8 and has a specific resistance of 10 6 Ω · cm or more. The thickness of the insulating layer 9a is 0.1 μm or more.
5 μm is preferred. The insulating layer 9a is formed by sputtering, C
It can be formed by a VD method, a spin coating method, an evaporation method, a sol-gel method, a dipping method, a method of oxidizing the surface of the heating resistor 8 to form an insulating layer, and the like. In this example, the CVD method was used. The material 10 for forming the temperature-sensitive film electrode is formed by a vapor deposition method in this example, but a sputtering method, a CVD method, or the like can be used instead. The material 10 for forming the temperature-sensitive film electrode may be, for example, Ti, Al, N in addition to W.
i, Cr, Sn, Ag, Cu, and Si can be used.

【0022】図8は、後の平坦化の準備のために仮被膜
11を形成する工程を示すものである。仮被膜11は回
転塗布等の塗布方法により、樹脂或いは液状ガラス成分
含有物等の被膜を形成したものである。仮被膜11の膜
厚は加熱用抵抗体8の形成により生じた絶縁基板7上の
高低差(段差)の1.1〜1.3倍、さらには1.15
〜1.25倍で、段差が平坦化される最小膜厚が好まし
い。仮被膜11を形成することによって後の平坦化を目
的通りに行うことが可能である。
FIG. 8 shows a step of forming a temporary coating 11 in preparation for later flattening. The temporary coating 11 is formed by forming a coating such as a resin or a liquid glass component-containing material by a coating method such as spin coating. The thickness of the temporary coating 11 is 1.1 to 1.3 times the height difference (step) on the insulating substrate 7 caused by the formation of the heating resistor 8, and further 1.15.
The minimum film thickness at which the step is flattened by 1.25 times is preferable. By forming the temporary coating 11, flattening later can be performed as intended.

【0023】図9は絶縁基板7表面の平坦化及び感温膜
用電極10a、10bを形成する工程を示すものであ
る。平坦化を行うためには酸素プラズマ雰囲気中で仮被
膜11をエッチングする。加熱用抵抗体8上面部の仮被
膜11が完全に除去され、かつ各加熱用抵抗体8間の仮
被膜11が残存する状態でエッチングを終了する。次に
加熱用抵抗体8上面に露出した感温膜用電極形成用材料
10を薬品等によってエッチングし、さらに酸素プラズ
マ等で残りの仮被膜11を除去する。上記の感温膜用電
極の形成は以下の方法によっても実現できる。すなわち
仮被膜11及び加熱用抵抗体8を同時にエッチングする
方法であるが、エッチング速度比を調節して、加熱用抵
抗体8の上面部の感温膜用電極形成用材料10は完全に
除去され、加熱抵抗体8と厚さ方向で重なる場所、すな
わち加熱抵抗体8を挟む領域の感温膜用電極形成用材料
10は残るようにする。これらどちらの方法によって
も、結果として図9(a)に示すように感温膜用電極は1
0aと10bに別れ、両者は絶縁層9aを介して加熱用
抵抗体8と櫛歯状に交互に並ぶ(自己整合)。すなわち
加熱用抵抗体8と感温膜用電極10a、10bとの位置
関係は自動的に決まるため調整を行う工程が不要であ
り、また位置ずれの生ずる心配がない。さらに加熱抵抗
体8と感応膜用電極10a、10bとが厚さ方向で少な
くとも一部が重なるように絶縁基板7上に配置されるた
め、素子全体を薄くかつ微小化することが可能である。
FIG. 9 shows a process of flattening the surface of the insulating substrate 7 and forming the electrodes 10a and 10b for the temperature-sensitive film. To perform planarization, the temporary coating 11 is etched in an oxygen plasma atmosphere. The etching is terminated when the temporary coating 11 on the upper surface of the heating resistor 8 is completely removed and the temporary coating 11 between the heating resistors 8 remains. Next, the temperature-sensitive film electrode forming material 10 exposed on the upper surface of the heating resistor 8 is etched with a chemical or the like, and the remaining temporary film 11 is removed with oxygen plasma or the like. The formation of the temperature-sensitive film electrode can also be realized by the following method. That is, the temporary film 11 and the heating resistor 8 are simultaneously etched. However, by adjusting the etching rate ratio, the temperature-sensitive film electrode forming material 10 on the upper surface of the heating resistor 8 is completely removed. The material 10 for forming an electrode for a temperature-sensitive film in a place overlapping with the heating resistor 8 in the thickness direction, that is, in a region sandwiching the heating resistor 8 is left. As a result, as shown in FIG.
0a and 10b, which are alternately arranged in a comb-tooth shape with the heating resistor 8 via the insulating layer 9a (self-alignment). That is, since the positional relationship between the heating resistor 8 and the temperature-sensitive film electrodes 10a and 10b is automatically determined, a step of performing adjustment is unnecessary, and there is no fear of occurrence of positional displacement. Further, since the heating resistor 8 and the sensitive film electrodes 10a and 10b are arranged on the insulating substrate 7 so that at least a part thereof overlaps in the thickness direction, it is possible to make the whole element thinner and smaller.

【0024】図10は感温膜12及び絶縁層9bの形成
工程を示すものである。本例では感温膜12としてスパ
ッタリング法により被膜を形成した。感温膜12を形成
するに好適な材料としては上記の他Mn、Co、Ni、F
e、Cu等の2〜4成分系の遷移金属酸化物あるいはSi
C、Sn、Se等の非酸化物が挙げられる。感温膜12の
形成方法としては上記のスパッタリング法の他に蒸着
法、ゾルゲル法等を挙げることができる。感温膜12の
表面に形成する絶縁層9bはSiO2製としたが、Si3
4、Ta25等であって比抵抗が106Ω・cm以上のものを
使用することが好ましい。また絶縁層9bの厚みは0.
1μm〜5μmが好ましい。絶縁層9bはスパッタリング
法の他、CVD法、スピンコート法等によって形成する
ことができる。
FIG. 10 shows a process for forming the temperature-sensitive film 12 and the insulating layer 9b. In this example, a film was formed as the temperature-sensitive film 12 by a sputtering method. Materials suitable for forming the temperature-sensitive film 12 include Mn, Co, Ni, F
e, Cu or other two- or four-component transition metal oxide or Si
Non-oxides such as C, Sn, and Se can be used. Examples of the method for forming the temperature-sensitive film 12 include a vapor deposition method and a sol-gel method in addition to the above-described sputtering method. The insulating layer 9b formed on the surface of the temperature sensitive film 12 was made of SiO 2, Si 3 N
4 , Ta 2 O 5 or the like having a specific resistance of 10 6 Ω · cm or more is preferably used. In addition, the thickness of the insulating layer 9b is 0.1.
1 μm to 5 μm is preferred. The insulating layer 9b can be formed by a CVD method, a spin coating method, or the like in addition to the sputtering method.

【0025】図11は感応膜13の形成工程を示すもの
である。本例ではスパッタリング法によりZn被膜を形
成する。端子部は金属マスク処理によってこの被膜が形
成されないようにした。感応膜11を形成するに好適な
材料としては上記の他Ni、Co、Fe、Ti、Zr、Sn、
W、La等の金属酸化物、これらの複合膜、これらの金
属膜にPt等の添加物を加えたもの等が挙げられる。ま
た形成方法としては上記のスパッタリング法の他に蒸着
法、ゾルゲル法等を挙げることができる。以上の工程の
結果、加熱用抵抗体8と感応膜13との間に感温膜12
が挟まれる構造になるため、加熱用抵抗体8及び感応膜
13の温度を実質的に直接測定することが可能であり、
被測温体に対する測温体の感温時間差(応答時間)が短
縮される。
FIG. 11 shows a process of forming the sensitive film 13. In this example, a Zn film is formed by a sputtering method. This coating was not formed on the terminal portion by the metal mask treatment. Materials suitable for forming the sensitive film 11 include Ni, Co, Fe, Ti, Zr, Sn,
Examples thereof include metal oxides such as W and La, composite films thereof, and those obtained by adding an additive such as Pt to these metal films. In addition, as a forming method, an evaporation method, a sol-gel method, or the like can be given in addition to the above-described sputtering method. As a result of the above steps, the temperature-sensitive film 12 is placed between the heating resistor 8 and the sensitive film 13.
Is sandwiched, so that the temperatures of the heating resistor 8 and the sensitive film 13 can be substantially directly measured,
The temperature sensing time difference (response time) of the temperature measuring object to the temperature measuring object is reduced.

【0026】図12は感応膜13上にタングステン製の
感応膜用電極14を形成した様子を示すものである。本
例では図12(a)に示したように感応膜用電極14aと
14bとが距離を置いて互いに噛み合う配置とした。感
応膜用電極14は蒸着法によって形成したが、そのほか
にスパッタリング法、CVD法、厚膜印刷法等を用いる
ことができる。感応膜用電極14の形成用材料としては
Wの他に例えばTi、Al、Ni、Cr、Sn、Ag、Cu、
Au、Pt、Pdを使用することができる。
FIG. 12 shows a state in which a sensitive film electrode 14 made of tungsten is formed on the sensitive film 13. In this example, as shown in FIG. 12A, the sensitive film electrodes 14a and 14b are arranged so as to mesh with each other at a distance. Although the sensitive film electrode 14 is formed by a vapor deposition method, a sputtering method, a CVD method, a thick film printing method, or the like can be used in addition thereto. As a material for forming the sensitive film electrode 14, in addition to W, for example, Ti, Al, Ni, Cr, Sn, Ag, Cu,
Au, Pt, and Pd can be used.

【0027】第二の手段によって製造した電極構造を有
するガスセンサと、従来型の構造を有するガスセンサに
感温用サーミスタを装着したものの2点を用いて、加熱
用抵抗体に電流を流し始めてから感温用サーミスタが安
定するまでの時間(応答時間)を測定し、この結果を図
13に示した。曲線Iは本例に係るガスセンサの結果を
示し、曲線IIは従来品の結果を示したものである。図
13から明白なように本例では僅か2秒で感温用サーミ
スタが安定しているのに対し、従来品の場合は安定する
までに13秒を要した。
A gas sensor having an electrode structure manufactured by the second means and a gas sensor having a conventional structure provided with a temperature-sensitive thermistor are used to detect the temperature after starting to supply a current to the heating resistor. The time (response time) until the warming thermistor was stabilized was measured, and the result is shown in FIG. Curve I shows the result of the gas sensor according to this example, and curve II shows the result of the conventional product. As is apparent from FIG. 13, the temperature-sensing thermistor is stable in only 2 seconds in this example, whereas it takes 13 seconds for the conventional product to be stable.

【0028】[0028]

【発明の効果】以上説明したように、第一の手段に関す
る発明については、感応膜用電極を自己整合で形成する
ため加熱抵抗体との位置合せが容易となり、素子全体を
微小化することができる。また加熱用抵抗体と感応部が
近接しているため、感応部の加熱効率が良くなり消費電
力を低く抑えることができる。さらに感応部を形成する
面を平坦化するため段差による感応膜の切断を防止する
ことができる。
As described above, in the invention relating to the first means, since the electrode for the sensitive film is formed by self-alignment, the alignment with the heating resistor becomes easy, and the whole element can be miniaturized. it can. Further, since the heating resistor and the sensitive part are close to each other, the heating efficiency of the sensitive part is improved, and the power consumption can be reduced. Further, since the surface on which the sensitive portion is formed is flattened, it is possible to prevent the sensitive film from being cut due to a step.

【0029】第二の手段に関する発明については、感温
膜用電極を自己整合で形成するため加熱抵抗体との位置
合せが容易となり、素子全体を微小化することができ
る。また加熱用抵抗体と感応膜との間に感温膜が挟まれ
る構造になるため、加熱用抵抗体及び感応膜の温度を実
質的に直接測定することが可能であり、被測温体に対す
る測温体の感温時間差(応答時間)が短縮される。
In the invention relating to the second means, since the temperature-sensitive film electrode is formed in a self-alignment manner, the alignment with the heating resistor becomes easy, and the entire device can be miniaturized. In addition, since the temperature-sensitive film is sandwiched between the heating resistor and the sensitive film, the temperature of the heating resistor and the sensitive film can be substantially directly measured. The temperature sensing time difference (response time) of the thermometer is shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るガスセンサ電極構造の加熱用抵抗
体形成の工程を示す平面図(a)、及び(a)のA−A線拡大
断面図(b)
FIG. 1A is a plan view showing a step of forming a heating resistor of a gas sensor electrode structure according to the present invention, and FIG. 1B is an enlarged sectional view taken along line AA of FIG.

【図2】同、絶縁層及び感応膜用電極形成の工程を示す
平面図(a)、及び(a)のA−A線拡大断面図(b)
FIG. 2 is a plan view (a) showing a process of forming an insulating layer and an electrode for a sensitive film, and an enlarged cross-sectional view taken along line AA of FIG. 2 (a).

【図3】同、仮被膜形成の工程を示す平面図(a)、及び
(a)のA−A線拡大断面図(b)
FIG. 3 is a plan view (a) showing a process of forming a temporary coating, and
(a) AA line enlarged sectional view (b)

【図4】同、平坦化及びそれに伴う感応膜用電極自己整
合の工程を示す平面図(a)、及び(a)のA−A線拡大断面
図(b)
FIG. 4 is a plan view (a) showing a process of flattening and a self-alignment of the electrode for a sensitive film accompanying the planarization, and an enlarged cross-sectional view taken along line AA of FIG. 4 (a).

【図5】同、感応膜形成の工程を示す平面図(a)、及び
(a)のA−A線拡大断面図(b)
FIG. 5 is a plan view (a) showing a step of forming a sensitive film, and
(a) AA line enlarged sectional view (b)

【図6】本発明に係るガスセンサ電極構造(感温膜入
り)の加熱用抵抗体形成の工程を示す平面図(a)、及び
(a)のB−B線拡大断面図(b)
FIG. 6 is a plan view (a) showing a step of forming a heating resistor of a gas sensor electrode structure (containing a temperature-sensitive film) according to the present invention, and
(a) B-B line enlarged sectional view (b)

【図7】同、絶縁層及び感温膜用電極形成の工程を示す
平面図(a)、及び(a)のB−B線拡大断面図(b)
FIG. 7 is a plan view (a) showing a process of forming an insulating layer and an electrode for a temperature-sensitive film, and an enlarged cross-sectional view taken along line BB of FIG. 7 (a).

【図8】同、仮被膜形成の工程を示す平面図(a)、及び
(a)のB−B線拡大断面図(b)
FIG. 8 is a plan view (a) showing a step of forming a temporary coating, and
(a) B-B line enlarged sectional view (b)

【図9】同、平坦化及びそれに伴う感温膜用電極自己整
合の工程を示す平面図(a)、及び(a)のB−B線拡大断面
図(b)
FIG. 9 is a plan view (a) showing the process of flattening and the accompanying self-alignment of the electrode for a temperature-sensitive film, and an enlarged sectional view taken along the line BB of FIG. 9 (a).

【図10】同、感温膜及び絶縁層形成の工程を示す平面
図(a)、及び(a)のB−B線拡大断面図(b)
10A and 10B are a plan view showing a process of forming a temperature-sensitive film and an insulating layer, and an enlarged cross-sectional view taken along line BB of FIG. 10A.

【図11】同、感応膜形成の工程を示す平面図、及び
(a)のB−B線拡大断面図(b)
FIG. 11 is a plan view showing a step of forming a sensitive film, and
(a) B-B line enlarged sectional view (b)

【図12】同、感応膜用電極形成の工程を示す平面図、
及び(a)のB−B線拡大断面図(b)
FIG. 12 is a plan view showing a step of forming an electrode for a sensitive film.
And (a) is an enlarged cross-sectional view taken along the line BB (b)

【図13】本発明に係るガスセンサ電極構造(感温膜入
り)及び従来品の応答時間を示すグラフ
FIG. 13 is a graph showing the response time of a gas sensor electrode structure (with a thermosensitive film) according to the present invention and a conventional product.

【符号の説明】[Explanation of symbols]

1,7…絶縁基板、2,8…加熱用抵抗体、3,9a,
9b…絶縁体、4,14…感応膜用電極の形成用材料、
4a,4b,14a,14b…感応膜用電極、5,13
…感応膜、6,11…仮被膜、10…感温膜用電極の形
成用材料、10a,10b…感温膜用電極、12…感温
膜。
1,7 ... insulating substrate, 2,8 ... heating resistor, 3,9a,
9b: an insulator; 4, 14: a material for forming a sensitive film electrode;
4a, 4b, 14a, 14b ... sensitive film electrodes, 5, 13
... Sensitive film, 6,11 ... Temporary coating, 10 ... Material for forming electrode for temperature-sensitive film, 10a, 10b ... Electrode for temperature-sensitive film, 12 ... Temperature-sensitive film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−145802(JP,A) 特開 昭61−145803(JP,A) 特開 昭62−44250(JP,A) 特開 平6−160324(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 G01K 7/16 G01K 7/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-145802 (JP, A) JP-A-61-145803 (JP, A) JP-A-62-44250 (JP, A) JP-A-6-44250 160324 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 27/12 G01K 7/16 G01K 7/18

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基板上に加熱用抵抗体、金属酸化物
半導体感応膜及び感応膜用電極を形成し、この半導体感
応膜に対するガスの吸脱着による抵抗値の変化を利用す
るガスセンサ電極構造において、前記加熱用抵抗体と、
前記感応膜用電極とを、厚さ方向において少なくとも両
者の一部が重なるように絶縁体を介して配置したことを
特徴とするガスセンサ電極構造。
1. A gas sensor electrode structure in which a heating resistor, a metal oxide semiconductor sensitive film, and an electrode for a sensitive film are formed on an insulating substrate, and a change in resistance value due to adsorption and desorption of a gas to and from the semiconductor sensitive film is used. , The heating resistor,
The gas sensor electrode structure, wherein the electrode for a sensitive film is disposed via an insulator so that at least a part of the electrode for the sensitive film overlaps at least a part thereof.
【請求項2】 前記加熱用抵抗体と前記感応膜用電極と
を、絶縁体を介して櫛歯状に交互に配置した事を特徴と
する請求項1に記載のガスセンサ電極構造。
2. The gas sensor electrode structure according to claim 1, wherein the heating resistor and the sensitive film electrode are alternately arranged in a comb shape with an insulator interposed therebetween.
【請求項3】 絶縁基板上に、金属抵抗膜を形成してこ
れを加熱用抵抗体に加工する第一の工程と、この絶縁基
板及び加熱用抵抗体の両者を共に被覆する絶縁層を形成
し、さらにその表面を感応膜用電極の形成用材料で被覆
する第二の工程と、この表面を樹脂もしくは液状ガラス
成分含有物で被覆する第三の工程と、前記の多層被覆し
た基板をエッチングによって平坦化し、前記加熱用抵抗
体と、前記感応膜用電極とを、厚さ方向において少なく
とも両者の一部が重なるように絶縁体を介して配置させ
る第四の工程と、前記平坦化した基板を感応膜形成用材
料で被覆する第五の工程とを含むことを特徴とするガス
センサ電極構造の製造方法。
3. A first step of forming a metal resistive film on an insulating substrate and processing it into a heating resistor, and forming an insulating layer covering both the insulating substrate and the heating resistor. Then, a second step of coating the surface with a material for forming a sensitive film electrode, a third step of coating the surface with a resin or a liquid glass component-containing material, and etching the multilayer-coated substrate A fourth step in which the heating resistor and the sensitive film electrode are arranged via an insulator so that at least a part of the electrodes overlaps in the thickness direction, and the flattened substrate. And a fifth step of coating with a material for forming a sensitive film.
【請求項4】 絶縁基板上に加熱用抵抗体、金属酸化物
半導体感応膜及び感応膜用電極を形成し、この半導体感
応膜に対するガスの吸脱着による抵抗値の変化を利用し
たガスセンサ電極構造において、前記加熱用抵抗体と、
前記半導体感応膜との間に、温度感知用の感温膜を配置
したことを特徴とするガスセンサ電極構造。
4. A gas sensor electrode structure in which a heating resistor, a metal oxide semiconductor sensitive film, and an electrode for a sensitive film are formed on an insulating substrate, and a change in resistance value caused by adsorption and desorption of a gas to and from the semiconductor sensitive film is used. , The heating resistor,
A gas sensor electrode structure, wherein a temperature sensing film for temperature sensing is arranged between said semiconductor sensing film and said semiconductor sensing film.
【請求項5】 前記感温膜の温度を測定するための感温
膜用電極を、前記加熱用抵抗体と、厚さ方向において少
なくとも両者の一部が重なるように絶縁体を介して配置
したことを特徴とするガスセンサ電極構造。
5. A temperature-sensitive film electrode for measuring the temperature of the temperature-sensitive film is disposed via an insulator such that at least a part of the temperature-sensitive film electrode overlaps the heating resistor in a thickness direction. A gas sensor electrode structure characterized by the above-mentioned.
【請求項6】 前記加熱用抵抗体と前記感温膜用電極と
を、絶縁体を介して櫛歯状に交互に配置した事を特徴と
する請求項4又は5に記載のガスセンサ電極構造。
6. The gas sensor electrode structure according to claim 4, wherein the heating resistor and the temperature-sensitive film electrode are alternately arranged in a comb-tooth shape with an insulator interposed therebetween.
【請求項7】 絶縁基板上に、金属抵抗膜を形成してこ
れを加熱用抵抗体に加工する第一の工程と、この絶縁基
板及び加熱用抵抗体の両者を共に被覆する絶縁層を形成
し、さらにその表面を感温膜用電極の形成材料で被覆す
る第二の工程と、この表面を樹脂もしくは液状ガラス成
分含有物で被覆する第三の工程と、前記の多層被覆した
基板をエッチングによって平坦化し、前記加熱用抵抗体
と、前記感温膜用電極とを、厚さ方向において少なくと
も両者の一部が重なるように絶縁体を介して配置させる
第四の工程と、前記平坦化した基板を感温膜形成用材料
で被覆し、さらにその上に絶縁層を形成する第五の工程
と、この絶縁層の表面を感応膜形成用材料で被覆する第
六の工程と、この感応膜に接続する感応膜用電極を設置
する第七の工程を含むことを特徴とするガスセンサ電極
構造の製造方法。
7. A first step of forming a metal resistive film on an insulating substrate and processing it into a heating resistor, and forming an insulating layer covering both the insulating substrate and the heating resistor. Further, a second step of coating the surface with a material for forming an electrode for a temperature-sensitive film, a third step of coating the surface with a resin or a liquid glass component-containing material, and etching the multilayer-coated substrate A fourth step of arranging the heating resistor and the temperature-sensitive film electrode via an insulator so that at least a part of the both overlap in the thickness direction, and the flattening is performed. A fifth step of coating the substrate with a material for forming a temperature-sensitive film, and further forming an insulating layer thereon, a sixth step of coating the surface of the insulating layer with the material for forming a sensitive film, Including the seventh step of installing a sensitive membrane electrode connected to the A method for manufacturing a gas sensor electrode structure.
JP04343258A 1992-11-30 1992-11-30 Electrode structure of gas sensor and method of manufacturing the same Expired - Fee Related JP3077428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04343258A JP3077428B2 (en) 1992-11-30 1992-11-30 Electrode structure of gas sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04343258A JP3077428B2 (en) 1992-11-30 1992-11-30 Electrode structure of gas sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06167472A JPH06167472A (en) 1994-06-14
JP3077428B2 true JP3077428B2 (en) 2000-08-14

Family

ID=18360138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04343258A Expired - Fee Related JP3077428B2 (en) 1992-11-30 1992-11-30 Electrode structure of gas sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3077428B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590764B2 (en) * 2001-03-28 2010-12-01 株式会社デンソー Gas sensor and manufacturing method thereof
GB0500393D0 (en) * 2005-01-10 2005-02-16 Univ Warwick Microheaters
JP5609919B2 (en) * 2012-05-17 2014-10-22 Tdk株式会社 Micro heater element
DE102018005010A1 (en) * 2017-07-13 2019-01-17 Wika Alexander Wiegand Se & Co. Kg Transfer and melting of layers

Also Published As

Publication number Publication date
JPH06167472A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
US6997040B1 (en) Gas sensor and fabrication method thereof
WO2004003943A1 (en) STABLE HIGH TEMPERATURE SENSOR/HEATER SYSTEM AND METHOD WITH TUNGSTEN ON AlN
US10697920B2 (en) Gas sensor
JPH11237266A (en) Thermal air flow rate sensor
JP3457826B2 (en) Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor
JP3812215B2 (en) Thin film gas sensor
JP3077428B2 (en) Electrode structure of gas sensor and method of manufacturing the same
JP3489000B2 (en) NTC thermistor, chip type NTC thermistor, and method of manufacturing temperature-sensitive resistive thin-film element
JP3485151B2 (en) Contact combustion type gas sensor
JP3649412B2 (en) CO sensor
JP2004037402A (en) Thin film gas sensor
JP2004037180A (en) Integrated sensor device
JPH053894B2 (en)
JP3440583B2 (en) Semiconductor device and infrared detecting element
JP3724443B2 (en) Thin film gas sensor
JP4033575B2 (en) Sensor and humidity gas detection method
JPH0618465A (en) Complex sensor
JPS58111747A (en) Gas sensor and manufacture thereof
JPH05307045A (en) Flow speed sensor
JPH0196548A (en) Sensor element
JP2019211395A (en) Catalytic combustion gas sensor and manufacturing method therefor
JPH0580011A (en) Thin-film chemical sensor with electrical heating element
CN218917266U (en) Hot wire type gas sensor chip and sensor
JP2616183B2 (en) Flow sensor and manufacturing method thereof
JP4779076B2 (en) Thin film gas sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees