JP4851610B2 - Thin film gas sensor - Google Patents

Thin film gas sensor Download PDF

Info

Publication number
JP4851610B2
JP4851610B2 JP2010107328A JP2010107328A JP4851610B2 JP 4851610 B2 JP4851610 B2 JP 4851610B2 JP 2010107328 A JP2010107328 A JP 2010107328A JP 2010107328 A JP2010107328 A JP 2010107328A JP 4851610 B2 JP4851610 B2 JP 4851610B2
Authority
JP
Japan
Prior art keywords
layer
gas
thin film
film
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010107328A
Other languages
Japanese (ja)
Other versions
JP2010175564A (en
Inventor
健 松原
卓弥 鈴木
健二 国原
光男 小林
総一 田畑
勝己 檜垣
久男 大西
橋本  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010107328A priority Critical patent/JP4851610B2/en
Publication of JP2010175564A publication Critical patent/JP2010175564A/en
Application granted granted Critical
Publication of JP4851610B2 publication Critical patent/JP4851610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、電池駆動を念頭においた低消費電力型薄膜ガスセンサに関する。   The present invention relates to a low power consumption thin film gas sensor with battery driving in mind.

一般的にガスセンサは、ガス漏れ警報器などの用途に用いられ、ある特定ガス、例えばCO,CH4,C38,CH3OH等に選択的に感応するデバイスであり、その性格上、高感度,高選択性,高応答性,高信頼性,低消費電力が必要不可欠である。
ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的としたものと、燃焼機器の不完全燃焼ガス検知を目的としたもの、または、両方の機能を合わせ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くない。そういったことから、普及率の向上を図るべく設置性の改善、具体的には電池駆動としコードレス化することが望まれている。
In general, a gas sensor is a device that is used for applications such as a gas leak alarm and is selectively sensitive to a specific gas, such as CO, CH 4 , C 3 H 8 , CH 3 OH, etc. High sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable.
By the way, gas leak alarms that are widely used for household use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or However, the penetration rate is not so high due to cost and installation problems. For this reason, in order to improve the penetration rate, it is desired to improve the installation property, specifically, to be battery-driven and cordless.

電池駆動を実現するためには低消費電力化が最も重要であるが、接触燃焼式や半導体式のガスセンサでは、100℃〜500℃の高温に加熱し検知する必要がある。これから、SnO2などの粉体を焼結した従来の方法では、スクリーン印刷等の方法を用いて厚みを薄くするには限界があり、電池駆動に用いるには熱容量が大きすぎた。そこで、ヒーター,感知膜を1μm以下の薄膜で形成し、さらに、微細加工プロセスによりダイアフラム構造などの低熱容量構造とした薄膜ガスセンサの実現が待たれていた。その結果、低熱容量構造とした薄膜ガスセンサが例えば特許文献1で提案されている。 Low power consumption is the most important for realizing battery driving. However, in a catalytic combustion type or semiconductor type gas sensor, it is necessary to detect by heating to a high temperature of 100 ° C. to 500 ° C. Thus, in the conventional method in which a powder such as SnO 2 is sintered, there is a limit to reducing the thickness using a method such as screen printing, and the heat capacity is too large to be used for battery driving. Therefore, the realization of a thin film gas sensor in which a heater and a sensing film are formed with a thin film of 1 μm or less and a low heat capacity structure such as a diaphragm structure by a fine processing process has been awaited. As a result, a thin film gas sensor having a low heat capacity structure is proposed in Patent Document 1, for example.

図3に特許文献1と基本的に同様の薄膜ガスセンサの断面構造を示す。
これは、例えば以下のように作製されたものである。
まず、両面に熱酸化膜が付いたシリコン(Si)ウエハ1上に、ダイアフラム構造の支持層および熱絶縁層2としてSi34とSiO2膜を順次CVD法にて形成する。次にヒーター層3,SiO2絶縁層4の順にスパッタ法で形成する。その上に、接合層5,感知層電極6,感知層7を形成する。成膜はRFマグネトロンスパッタリング装置を用い、通常のスパッタリング法によって行なう。成膜条件は接合層(TaまたはTi)5,感知層電極(PtまたはAu)6とも同じで、Arガス圧力1Pa、基板温度300℃、RFパワー2W/cm2、膜厚は接合層5/感知層電極6=500Å/2000Åである。
FIG. 3 shows a cross-sectional structure of a thin film gas sensor which is basically the same as that of Patent Document 1.
This is produced, for example, as follows.
First, on a silicon (Si) wafer 1 having a thermal oxide film on both sides, a Si 3 N 4 film and a SiO 2 film are sequentially formed as a support layer having a diaphragm structure and a thermal insulating layer 2 by a CVD method. Next, the heater layer 3 and the SiO 2 insulating layer 4 are formed in this order by sputtering. A bonding layer 5, a sensing layer electrode 6, and a sensing layer 7 are formed thereon. Film formation is performed by an ordinary sputtering method using an RF magnetron sputtering apparatus. The film formation conditions are the same for both the bonding layer (Ta or Ti) 5 and the sensing layer electrode (Pt or Au) 6, Ar gas pressure 1 Pa, substrate temperature 300 ° C., RF power 2 W / cm 2 , film thickness is bonding layer 5 / The sensing layer electrode 6 = 500/2000 mm.

次に、感知層7を成膜し、感知層7の上にはAl23などの多孔質金属酸化物に触媒を担持した選択燃焼層8が、スクリーン印刷法により塗布され、500℃で1時間以上焼成される。選択燃焼層8の大きさは感知層7を十分に覆えること、焼成後の厚さが20ないし30μm程度になることが望ましい。最後に、シリコンウエハ1の裏面からエッチングによりシリコンを除去し、ダイアフラム構造とする。 Next, a sensing layer 7 is formed, and a selective combustion layer 8 in which a catalyst is supported on a porous metal oxide such as Al 2 O 3 is applied on the sensing layer 7 by a screen printing method at 500 ° C. Baking for 1 hour or more. It is desirable that the selective combustion layer 8 has a sufficient size to cover the sensing layer 7 and a thickness after firing of about 20 to 30 μm. Finally, silicon is removed from the back surface of the silicon wafer 1 by etching to form a diaphragm structure.

以上のような構造の薄膜ガスセンサの寿命を、電池の交換無しで5年以上保証するためには、ヒーター3の間欠駆動が必須となる。CO検出用のCOセンサとして用いる場合には、150秒に一回の検知が必要であり、さらにオフ時間に感知層7の表面に付着した水分その他の吸着物を脱離させるために、感知層7の表面を一旦クリーニングすることが経時安定性を向上する上で重要である。そこで、薄膜COセンサでは、CO検出前にヒーター3の温度をクリーニングの目的で、50〜200msecの間400〜500℃に一旦加熱し、その直後に、CO検出温度である100℃前後に200〜1000msecの間保持すると言う温度パターンによりCO検出を行なっている。   In order to guarantee the life of the thin film gas sensor having the above structure for 5 years or longer without replacement of the battery, intermittent driving of the heater 3 is essential. When used as a CO sensor for CO detection, detection is required once every 150 seconds, and in order to desorb moisture and other adsorbates adhering to the surface of the sensing layer 7 during the off time, the sensing layer In order to improve the temporal stability, it is important to clean the surface of No. 7 once. Therefore, in the thin film CO sensor, the temperature of the heater 3 is once heated to 400 to 500 ° C. for 50 to 200 msec for the purpose of cleaning before CO detection, and immediately after that, the temperature is about 200 to about 100 ° C. which is the CO detection temperature. CO detection is performed by a temperature pattern of holding for 1000 msec.

このような薄膜ガスセンサをCO検出用のCOセンサとして用いる場合、COに対する感度が良好であることはもちろんのこと、CH4やH2などの異種ガスに対する選択性や、センサの長寿命を保証する耐久性など種々の要求を満たさなければならない。
ここで、CO感度(CO濃度勾配)とは、例えばCO=300ppmとCO=500ppm時のセンサ抵抗値、CH4選択性は、例えばCH4=4000ppm時とCO=100ppm時のセンサ抵抗値の比、H2選択性は、例えばH2=1000ppm時とCO=100ppm時のセンサ抵抗値の比で定義する。
When such a thin-film gas sensor is used as a CO sensor for CO detection, it not only has good sensitivity to CO, but also guarantees selectivity for different gases such as CH 4 and H 2 and a long life of the sensor. Various requirements such as durability must be satisfied.
Here, the CO sensitivity (CO concentration gradient) is, for example, the sensor resistance value when CO = 300 ppm and CO = 500 ppm, and the CH 4 selectivity is the ratio of the sensor resistance value when, for example, CH 4 = 4000 ppm and CO = 100 ppm. , H 2 selectivity is defined by, for example, a ratio of sensor resistance values when H 2 = 1000 ppm and CO = 100 ppm.

そこで、ガス選択性を向上させるため、出願人は特許文献2に示すものを提案している。これは、ドナーとなる+5価または6価の元素を添加したSnO2層(第1層)と、触媒をドープしたSnO2層(第2層)を組み合わせたものである。 Then, in order to improve gas selectivity, the applicant has proposed what is shown in Patent Document 2. This is a combination of SnO 2 layer doped with pentavalent or hexavalent element serving as a donor (first layer), SnO 2 layer doped with catalyst (second layer).

特開2000−298108号公報(第4頁、図1)JP 2000-298108 A (page 4, FIG. 1) 特開2000−292399号公報(第4−5頁、図1)JP 2000-292399 A (page 4-5, FIG. 1)

しかしながら、上記特許文献2に記載のものにも未だ改良の余地が残されている。
したがって、この発明の課題は、薄膜ガスセンサにおけるガス選択性をより向上させることにある。
However, there is still room for improvement in the device described in Patent Document 2.
Accordingly, an object of the present invention is to further improve gas selectivity in a thin film gas sensor.

このような課題を解決するため、請求項1の発明では、薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に、薄膜のヒーターを形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上に第1層としてドナーとなる+5価または+6価の元素を添加したSnO2層、さらにその上に第2層として触媒となる元素Ptを添加したSnO2層を積層した2層構造のガス感知層を形成し、このガス感知層に接し所定間隔おいて1対の貴金属からなる感知電極層を設けてなる薄膜ガスセンサにおいて、
前記ガス感知層を形成する第2層の触媒Ptの添加量を11wt%以上60wt%以下とし、CH4=4000ppm時とCO=100ppm時のセンサ抵抗値の比が1以上となるようにメタンガスに対する選択性を向上させたことを特徴とする。
In order to solve such a problem, in the invention of claim 1, the outer periphery or both ends of the thin film-like support film are supported by the Si substrate, and the outer periphery or both ends are thick and the central portion is thin. A thin-film heater is formed on the support substrate, and the thin-film heater layer is covered with an electrical insulating film, and a SnO 2 layer to which a + 5-valent or + 6-valent element serving as a donor is added as a first layer thereon, and A gas sensing layer having a two-layer structure in which an SnO 2 layer added with an element Pt as a catalyst is laminated as a second layer is formed thereon, and a sensing electrode made of a pair of noble metals in contact with the gas sensing layer at a predetermined interval. In a thin film gas sensor comprising a layer,
The added amount of the catalyst Pt of the second layer forming the gas sensing layer is 11 wt% or more and 60 wt% or less, and the ratio of the sensor resistance value at CH4 = 4000 ppm and CO = 100 ppm is 1 or more with respect to methane gas. It is characterized by improved selectivity .

この発明によれば、2層構造の薄膜ガスセンサおいて、特に第2層への触媒添加濃度を最適化することで、従来不十分であったガス選択性をより向上させることが可能となる。   According to the present invention, in a thin film gas sensor having a two-layer structure, it is possible to improve the gas selectivity that has been insufficient in the past by optimizing the concentration of the catalyst added to the second layer.

この発明の実施の形態を示す断面図Sectional drawing which shows embodiment of this invention Ptの膜表面からの深さ方向の濃度分布の説明図Explanatory drawing of concentration distribution in the depth direction from the film surface of Pt 従来例を示す断面図Sectional view showing a conventional example

図1はこの発明の実施の形態を示す構成図である。
図1からも明らかなように、感知層電極6を形成するところまでは従来例と同じなので、ここでは異なる点について説明する。なお、8は選択燃焼層を示す。
ターゲットとなる感知層7として、ドナードープの第1層9にはSbを0.5重量パーセント(wt%)有するSnO2を用い、また、触媒ドープの第2層10にはPtを16wt%有するSnO2を用いる。
成膜条件は、Ar+O2ガス圧力2Pa、基板温度150〜300℃、RFパワー2W/cm2、膜厚は第1,第2とも400nmである。さらに、最後に基板裏面よりドライエッチャーを用いてエッチングしてダイアフラム部のSiを除去し、ダイアフラム構造とした。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As is apparent from FIG. 1, the steps up to the formation of the sensing layer electrode 6 are the same as those of the conventional example, and therefore, different points will be described here. Reference numeral 8 denotes a selective combustion layer.
As the target sensing layer 7, SnO 2 having 0.5 weight percent (wt%) of Sb is used for the donor-doped first layer 9, and SnO 2 having 16 wt% of Pt is used for the catalyst-doped second layer 10. 2 is used.
The film forming conditions are Ar + O 2 gas pressure 2 Pa, substrate temperature 150 to 300 ° C., RF power 2 W / cm 2 , and film thicknesses of both the first and second films are 400 nm. Further, finally, Si from the diaphragm portion was removed by etching from the back surface of the substrate using a dry etcher to obtain a diaphragm structure.

表1に、従来例と実施例における感知層の形成条件を記した。
感知層の第1層はドナーとして例えばSbを添加したSnO2膜であり、膜厚は400nmである。これは、従来例も実施例も同じである。また、第2層については添加した触媒はPtであり、従来例40nm、実施例40または400nmである。同表中の形成条件で第2層触媒濃度としている値は、第2層最表面から厚さ方向に30nm以上の深い位置における触媒元素の濃度を、X線光電子分光分析装置(ESCA)により測定した結果
から重量%に換算した値である。また、図2に従来例と実施例における膜厚方向のPt濃度分布を示す。同図から、濃度は第2層最表面からの深さが約30nm以上になると、安定することが分かる。
Table 1 shows the conditions for forming the sensing layer in the conventional example and the example.
The first layer of the sensing layer is a SnO 2 film to which, for example, Sb is added as a donor, and the film thickness is 400 nm. This is the same in the conventional example and the example. For the second layer, the added catalyst is Pt, which is 40 nm in the conventional example, 40 nm in the example, or 400 nm. The value of the second layer catalyst concentration in the formation conditions in the table is determined by measuring the concentration of the catalyst element at a deep position of 30 nm or more in the thickness direction from the outermost surface of the second layer with an X-ray photoelectron spectrometer (ESCA). It is the value converted into weight% from the result. FIG. 2 shows the Pt concentration distribution in the film thickness direction in the conventional example and the example. From the figure, it can be seen that the concentration becomes stable when the depth from the outermost surface of the second layer is about 30 nm or more.

Figure 0004851610
Figure 0004851610

表2に各条件におけるガスセンサの諸特性を、各形成条件で作製したサンプルの内で平均的な特性を有する1個について取り上げて示す。ここで示す特性は、先の段落〔0006〕に記載した温度パターンにて検知した結果である。諸特性として、CO濃度依存性,水素選択性およびメタン選択性を比較した。

Figure 0004851610
Table 2 shows the characteristics of the gas sensor under each condition by taking up one sample having an average characteristic among the samples produced under each forming condition. The characteristics shown here are the results of detection using the temperature pattern described in the preceding paragraph [0006]. As characteristics, CO concentration dependence, hydrogen selectivity and methane selectivity were compared.
Figure 0004851610

CO濃度勾配(CO濃度依存性)は、CO=300ppm時とCO=500ppm時のセンサ抵抗値の比で定義し、メタン選択性は、CH4=4000ppm時とCO=100ppm時のセンサ抵抗値の比で定義し、また、水素選択性は、H2=1000ppm時とCO=100ppm時のセンサ抵抗値の比でそれぞれ定義する。CO濃度依存性の値が大きいことは高感度であると同時に、センサ抵抗値の経時的な変動に対して検知濃度の変動幅が小さくなることも意味し、ガス漏れ警報器にとっては望ましい。また、ガス選択性は対象ガスのみを選択的に検知する指標であり、ガス漏れ警報器に搭載した場合に、他のガスにより誤報を発することを防止するためには、値が少なくとも「1」以上である必要がある。 The CO concentration gradient (CO concentration dependency) is defined by the ratio of the sensor resistance value when CO = 300 ppm and CO = 500 ppm, and the methane selectivity is the sensor resistance value when CH 4 = 4000 ppm and CO = 100 ppm. The hydrogen selectivity is defined by the ratio of the sensor resistance value when H 2 = 1000 ppm and CO = 100 ppm. A large value of the CO concentration dependency means high sensitivity, and at the same time means that the fluctuation range of the detected concentration becomes small with respect to the variation of the sensor resistance value with time, which is desirable for the gas leak alarm. The gas selectivity is an index for selectively detecting only the target gas, and when it is mounted on the gas leak alarm, the value is at least “1” in order to prevent misreporting by other gases. It is necessary to be above.

実施例1は従来例に対し、第2層の膜厚が10倍の400nmで、第1層と同じ厚さに成膜する。これにより、表2に示すように水素選択性が2倍に向上している。
実施例2では第2層の膜厚は従来例と同じであるが、触媒濃度を従来例の4wt%に対して11wt%とした。表2によれば水素選択性は2.9倍、メタン選択性は5倍に向上している。
実施例3では、触媒活性を大幅に高くすることをねらい、第2層の膜厚を従来例の10倍、触媒濃度を従来例の約2.7倍とした。表2からCO濃度依存性は従来例とほぼ同じに保たれ、ガス選択性は水素で16倍、メタンでは50倍以上も改善されていることが分かる。
In Example 1, the thickness of the second layer is 400 nm, which is 10 times that of the conventional example, and is formed to the same thickness as the first layer. Thereby, as shown in Table 2, the hydrogen selectivity is improved twice.
In Example 2, the film thickness of the second layer is the same as that of the conventional example, but the catalyst concentration was 11 wt% with respect to 4 wt% of the conventional example. According to Table 2, hydrogen selectivity is improved 2.9 times and methane selectivity is improved 5 times.
In Example 3, aiming to significantly increase the catalyst activity, the film thickness of the second layer was 10 times that of the conventional example, and the catalyst concentration was about 2.7 times that of the conventional example. From Table 2, it can be seen that the CO concentration dependency is kept almost the same as the conventional example, and the gas selectivity is improved by 16 times for hydrogen and 50 times or more for methane.

また、実施例4,5は第2層の触媒濃度を格段に高くしたもので、実施例4の場合は水素選択性,メタン選択性ともに大幅に改善されているが、実施例5の場合はメタン選択性は大幅に改善されているが、水素選択性はほぼ同じか低くなっている。
すなわち、従来例と実施例2との比較から、第2層の触媒濃度を上げることでガス選択性を改善でき、また、実施例2と3との比較から、第2層の触媒濃度が同じなら、膜厚の大きい実施例3の方がガス選択性を大幅に改善できる。また、実施例4,5の結果から、第2層の触媒濃度を上げていくと、或るところまではガス選択性を大幅に改善できるが、これにも上限があり、結局10wt%を超え60wt%以下の範囲でガス選択性が改善できることが分かる。
In Examples 4 and 5, the catalyst concentration in the second layer was remarkably increased. In Example 4, both hydrogen selectivity and methane selectivity were significantly improved. Methane selectivity is greatly improved, but hydrogen selectivity is about the same or lower.
That is, the gas selectivity can be improved by increasing the catalyst concentration in the second layer from the comparison between the conventional example and Example 2, and the catalyst concentration in the second layer is the same from the comparison between Examples 2 and 3. If so, Example 3 having a larger film thickness can greatly improve the gas selectivity. Further, from the results of Examples 4 and 5, if the catalyst concentration of the second layer is increased, the gas selectivity can be greatly improved up to a certain point, but this also has an upper limit, which eventually exceeds 10 wt%. It can be seen that the gas selectivity can be improved in the range of 60 wt% or less.

1…Siウエハ、2…支持層および熱絶縁層、3…ヒーター層、4…絶縁層、5…接合層、6…感知層電極、7…感知層、8…選択燃焼層、9…ドナー添加SnO2層、10…触媒添加SnO2層。 DESCRIPTION OF SYMBOLS 1 ... Si wafer, 2 ... Support layer and thermal insulation layer, 3 ... Heater layer, 4 ... Insulation layer, 5 ... Bonding layer, 6 ... Sensing layer electrode, 7 ... Sensing layer, 8 ... Selective combustion layer, 9 ... Donor addition SnO 2 layer, 10... Catalyst-added SnO 2 layer.

Claims (1)

薄膜状の支持膜の外周部または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に、薄膜のヒーターを形成し、この薄膜のヒーター層を電気絶縁膜で覆い、その上に第1層としてドナーとなる+5価または+6価の元素を添加したSnO2層、さらにその上に第2層として触媒となる元素Ptを添加したSnO2層を積層した2層構造のガス感知層を形成し、このガス感知層に接し所定間隔おいて1対の貴金属からなる感知電極層を設けてなる薄膜ガスセンサにおいて、
前記ガス感知層を形成する第2層の触媒Ptの添加量を11wt%以上60wt%以下とし、CH4=4000ppm時とCO=100ppm時のセンサ抵抗値の比が1以上となるようにメタンガスに対する選択性を向上させたことを特徴とする薄膜ガスセンサ。
A thin film heater is formed on a diaphragm-like support substrate in which the outer periphery or both ends of the thin support film are supported by a Si substrate, and the outer periphery or both ends are thick and the center is thin. The heater layer is covered with an electric insulating film, and a SnO 2 layer added with a +5 or +6 valent element serving as a donor as a first layer thereon, and further an element Pt serving as a catalyst as a second layer thereon. In a thin film gas sensor in which a gas sensing layer having a two-layer structure in which two layers are stacked is formed and a sensing electrode layer made of a pair of noble metals is provided in contact with the gas sensing layer at a predetermined interval,
The added amount of the catalyst Pt of the second layer forming the gas sensing layer is 11 wt% or more and 60 wt% or less, and the ratio of the sensor resistance value at CH4 = 4000 ppm and CO = 100 ppm is 1 or more with respect to methane gas. A thin film gas sensor characterized by improved selectivity .
JP2010107328A 2010-05-07 2010-05-07 Thin film gas sensor Expired - Lifetime JP4851610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107328A JP4851610B2 (en) 2010-05-07 2010-05-07 Thin film gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107328A JP4851610B2 (en) 2010-05-07 2010-05-07 Thin film gas sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003370933A Division JP4779076B2 (en) 2003-10-30 2003-10-30 Thin film gas sensor

Publications (2)

Publication Number Publication Date
JP2010175564A JP2010175564A (en) 2010-08-12
JP4851610B2 true JP4851610B2 (en) 2012-01-11

Family

ID=42706643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107328A Expired - Lifetime JP4851610B2 (en) 2010-05-07 2010-05-07 Thin film gas sensor

Country Status (1)

Country Link
JP (1) JP4851610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105639A1 (en) * 2011-02-03 2012-08-09 富士電機株式会社 Gas detection device and gas detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547196A (en) * 1977-06-16 1979-01-19 Figaro Eng Gas detecting element
JPS5421397A (en) * 1977-07-18 1979-02-17 Fuji Electric Co Ltd Carbon monoxide detector
JP3812215B2 (en) * 1999-04-02 2006-08-23 富士電機機器制御株式会社 Thin film gas sensor
JP2003279523A (en) * 2002-03-26 2003-10-02 Fuji Electric Co Ltd Membrane gas sensor

Also Published As

Publication number Publication date
JP2010175564A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4640960B2 (en) Thin film gas sensor
JP2011169634A (en) Thin film gas sensor
JP5961016B2 (en) Gas detector
JP2017223557A (en) Gas sensor
JP4487206B2 (en) Gas alarm
JP4022822B2 (en) Thin film gas sensor
JP5312174B2 (en) Gas sensor and gas detector
JP3812215B2 (en) Thin film gas sensor
JP4450773B2 (en) Thin film gas sensor
JP6372686B2 (en) Gas detection device and gas detection method
JP4970584B2 (en) Thin film gas sensor
JP4851610B2 (en) Thin film gas sensor
JP2010185774A (en) Membrane gas sensor
JP4779076B2 (en) Thin film gas sensor
JP2005164566A (en) Thin-film gas sensor
JP6397072B2 (en) Inspection method for thin film gas sensor
JP2007017217A (en) Thin film gas sensor
JP2000292395A (en) Thin film gas sensor
JP5278086B2 (en) Thin film gas sensor and manufacturing method thereof
JP4371772B2 (en) Thin film gas sensor
JP4136811B2 (en) Thin film gas sensor and manufacturing method thereof
JP2005098947A (en) Thin-film gas sensor
JP3976265B2 (en) Thin film gas sensor
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP6411567B2 (en) Inspection method for thin film gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4851610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250