JP3988999B2 - Thin film gas sensor and manufacturing method thereof - Google Patents

Thin film gas sensor and manufacturing method thereof Download PDF

Info

Publication number
JP3988999B2
JP3988999B2 JP2003184535A JP2003184535A JP3988999B2 JP 3988999 B2 JP3988999 B2 JP 3988999B2 JP 2003184535 A JP2003184535 A JP 2003184535A JP 2003184535 A JP2003184535 A JP 2003184535A JP 3988999 B2 JP3988999 B2 JP 3988999B2
Authority
JP
Japan
Prior art keywords
thin film
film
sno
gas
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184535A
Other languages
Japanese (ja)
Other versions
JP2005017182A (en
Inventor
総一 田畑
勝己 檜垣
博一 佐々木
久男 大西
健二 国原
卓弥 鈴木
健 松原
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Electric Holdings Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003184535A priority Critical patent/JP3988999B2/en
Publication of JP2005017182A publication Critical patent/JP2005017182A/en
Application granted granted Critical
Publication of JP3988999B2 publication Critical patent/JP3988999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電池駆動を念頭においた低消費電力型薄膜ガスセンサおよびその製造方法に関する。
【0002】
【従来の技術】
一般的に、ガスセンサはガス漏れ警報器などの用途に用いられ、或る特定のガス、例えばCO,CH4,C38,C25OH等に選択的に感応するデバイスであり、その性格上、高感度,高選択性,高応答性,高信頼性,低消費電力が必要不可欠である。ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的とするものと、燃焼機器の不完全燃焼ガス検知を目的とするもの、または両方の機能を併せ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くはない。
【0003】
このような事情から、普及率の向上を図るべく、設置性の改善、具体的には電池駆動としコードレス化することが望まれている。電池駆動を実現するためには低消費電力化が最も重要であるが、接触燃焼式や半導体式のガスセンサでは、100℃〜500℃の高温に加熱して検知する必要がある。このことから、SnO2などの粉体を燒結する従来の方法では、スクリーン印刷等の方法を用いたとしても厚みを薄くするには限界があり、電池駆動に用いるには熱容量が大きすぎる。そこで、ヒーター,感知膜を1μm以下の薄膜で形成し、さらに、深堀エッチング加工プロセスによりダイアフラム構造などの低熱容量,断熱構造とした薄膜ガスセンサの出現が待たれていた。
【0004】
そこで、ダイアフラム構造などの超低熱容量構造とした薄膜ガスセンサが、例えば特許文献1に提案されたが、このようなガスセンサを用いたガス漏れ警報器においても、電池の交換無しで5年以上の寿命を持たすためには、薄膜ガスセンサのパルス駆動が必須となる。通常、ガス漏れ警報器は30〜150秒の一定周期に1回の検知が必要であり、この周期に合わせた検知部を室温から100〜500℃の高温に加熱する。上記電池の交換無しで5年以上の寿命要請にこたえるため、この加熱時間は100ms以下が目標となる。
【0005】
パルス駆動の薄膜ガスセンサにおいても、低消費電力化のためには検出温度の低温化,検出時間の短縮,検出サイクルの長期化(通電をオフ(off)する時間を長くする)が重要である。薄膜ガスセンサにおける検出温度はガス種に対する検出感度などからCOセンサでは〜100℃、CH4センサでは〜450℃、検出時間はセンサの応答性から〜500ms、検出サイクルはCH4センサでは30秒、COセンサでは150秒とされる。
また、off時間にセンサ表面に付着する水分その他の吸着物を脱離させSnO2表面をクリーニングすることが、電池駆動(パルス駆動)の薄膜ガスセンサの経時安定性を向上する上で重要であり、検出前に一旦センサ温度を400〜500℃に加熱し(時間100ms)、その直後にそれぞれのガスの検出温度でガス検知を行なっている。
【0006】
このことから、低消費電力化のため薄膜ガスセンサではセンサのoff時間が、センシングのための時間に比べて圧倒的に長い、すなわち、圧倒的に長時間センサは室温状態にあることになる。検知ガスは活性炭を通じてガス拡散で、センサの検知部であるSnO2表面に到達するようなセンサ構造であり、センサを劣化させる被毒ガスまたは検知を阻害するNOx,SOxもしくは炭化水素系ガスなどは活性炭に吸着することで、検知部であるSnO2表面に到達しないような配慮がされており、長期にわたり経時安定性を維持するような工夫がされている。
【0007】
しかし、このような対策を施した電池駆動(パルス駆動)の薄膜ガスセンサでも、高温高湿雰囲気が長時間継続するような極端な雰囲気にセンサをさらした場合、抵抗値が不安定になり経時安定性が悪くなることがある。その原因は明確ではないが、高湿度に長時間さらされた結果、雰囲気の水分が活性炭層を破過してセンサの検知部であるSnO2表面に到達し、SnO2表面が高湿度雰囲気に晒されるためと推定される。また、活性炭層が水分吸着により飽和することで、本来活性炭層で吸着すべき検知阻害物質NOx,SOxまたは炭化水素系ガスなどがSnO2表面に到達することによる影響とも推定される。すなわち、センサのoff時間に、ガス感度を向上させるため多孔質にしたSnO2の細孔への水分の吸着または検知阻害ガスの吸着により、センサ抵抗値が不安定になるものと考えられる。
【0008】
本来、400〜500℃に加熱するクリーニングにより吸着物を脱離し、SnO2表面を常時クリーニングすることで経時安定性が確保されるはずであるため、クリーニング時間を数倍に延長しての試験を行なったが、経時安定性は改善されていない。このような現象は、特に低温でガス検知を行なうCOセンサでの経時安定性に顕著に出現する。
そこで、上記のような問題を解決すべく、出願人はSnO2薄膜のスパッタ時に、貴金属触媒を同時にスパッタ(co−sputtering)する手法を例えば特許文献2で提案している。
【0009】
【特許文献1】
特開2000−298108号公報(図3、第3−4頁)
【特許文献2】
特開2000−292398号公報(図1、第3頁)
【0010】
【発明が解決しようとする課題】
しかし、特許文献2の方法ではSnO2最表面だけでなく、SnO2薄膜の内部細孔への貴金属触媒の担持が期待されたが、ほとんどの貴金属触媒成分がSnO2結晶格子にとり込まれてしまってアクセプタ的な振るまいを示し、SnO2薄膜の抵抗が顕著に高抵抗化するなどの問題を含むため実用化に到っていない。
この発明はこのような事情に鑑みてなされたもので、その課題は、高温高湿下でも経時安定性に優れた電池駆動(パルス駆動)の薄膜ガスセンサを提供することにある。
【0011】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、薄膜状の支持膜の外周または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に薄膜のヒータを形成し、この薄膜のヒータをSiO2を含む電気絶縁膜で覆い、その上にガス感知膜用の電極を形成し、さらに貴金属触媒とSnO2を主成分とする薄膜からなるガス感知膜を形成した後、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を具備した薄膜ガスセンサにおいて、
前記貴金属触媒とSnO 2 を主成分とする薄膜が、SnO 2 薄膜と貴金属触媒薄膜を交互に成膜した積層構造で、貴金属同士が互いに孤立したアイランド状に成膜されており、貴金属触媒薄膜の面内および面間のいずれの方向にも貴金属同士の電気的な導通がないことを特徴とする。
【0012】
請求項1の発明においては、前記SnO2 粒子は粒界を介して相互に接しており、膜面内および膜面間方向で電気的に導通していることができ(請求項2の発明)、請求項1または2の発明においては、前記貴金属触媒はPdまたはPt、もしくはPdとPtの混合物を主成分とするものであることができる(請求項の発明)。
【0013】
請求項の発明では、薄膜状の支持膜の外周または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に薄膜のヒータを形成し、この薄膜のヒータをSiO2を含む電気絶縁膜で覆い、その上にガス感知膜用の電極を形成し、さらに貴金属触媒とSnO2を主成分とする薄膜からなるガス感知膜を形成し、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を具備した薄膜ガスセンサを製造するに当たり、
前記SnO 2 からなるガス感知膜を成膜後、貴金属触媒層をアイランド状に成膜形成することを特徴とする。
【0018】
SnO2薄膜の表面にPdまたはPt、もしくはPdとPtの混合触媒などの貴金属触媒を分散,担持することで、ガス検知前のクリーニングによりセンサのoff時間にSnO2薄膜表面に吸着した水分または検知阻害ガスを完全に脱離できるため、経時安定性に優れた電池駆動(パルス駆動)の薄膜ガスセンサが得られる。特に、低温動作のCOセンサにおいては、貴金属触媒の分散,担持により、CO検出反応の安定性が向上することの相乗効果で顕著な経時安定性が得られる。
すなわち、図2の模式図に示されるように、貴金属触媒へ解離吸着した原子状酸素がスピルオーバ(あふれるまたはこぼれる)により、SnO2薄膜表面上へ潤沢に供給されることで、クリーニング時のSnO2薄膜表面上に吸着している検知阻害ガスの酸化分解が促進、またはOH基の脱離が促進され、SnO2薄膜表面が充分リフレッシュされることで、経時安定性が向上する。さらに、低温動作のCOセンサにおいては、貴金属触媒へ解離吸着した原子状酸素がスピルオーバにより、SnO2薄膜表面上へ潤沢に供給することで、CO酸化またはCO吸着の反応速度が向上し、経時安定性が向上する。
【0019】
また、積層構造のものでは、各貴金属触媒薄膜層は貴金属粒子が互いに孤立したアイランド状に成膜されており、貴金属触媒薄膜の面内および面間のいずれの方向にも貴金属同士の電気的な導通が無く、また各SnO2薄膜においてはSnO2粒子が相互に粒界を介して接しており、膜面内および膜面間のいずれの方向にも電気的な導通を有するように成膜することが重要である。
具体的には、貴金属触媒薄膜の膜厚は0.5nm以上で10nm以下、好ましくは1nm以上で6nm以下であり、SnO2薄膜は1nm以上で100nm以下、好ましくは5nm以上で50nm以下であり、少なくとも4層(基板/SnO2/触媒/SnO2/触媒)以上繰り返した積層構造が必要である。積層構造では、貴金属触媒薄膜の膜厚が10nm以上では貴金属触媒がアイランド状にならず導通を生じる場合があり、0.5nm以下では触媒としての機能が弱い。
積層数が多いほど、また貴金属触媒薄膜の膜厚が厚いほど、貴金属触媒が多く担持されることとなり、センサの安定化に効果がある。担持量(貴金属触媒重量のSnO2重量に対する割合(wt%:重量パーセント)は、貴金属触媒薄膜の膜厚とSnO2薄膜の膜厚積層数とにより任意に決めることができる。貴金属の担持量は0.1wt%から75wt%、好ましくは0.5wt%から20wt%である。
【0020】
【発明の実施の形態】
図1はこの発明の実施の形態を示すセンサ断面図である。
両面に熱酸化膜を0.3μm形成したSi基板1の表面に、ダイアフラム構造の支持層2となるSiNとSiO2膜を、順次プラズマCVD法にてそれぞれ0.15μm,1μm形成する。その上に接合層(1)としてTaを0.05μm形成後、連続して、ヒータ層3としてPtW(Pt+4wt%W)膜を0.5μm形成し、さらに連続して接合層(2)としてTaを0.05μm形成する。成膜はマグネトロンスパッタリング装置を用い、通常のスパッタリング方法によって行なう。条件は、成膜温度100℃、成膜パワー100W、成膜圧力1Paである。
【0021】
その後、微細加工により、ヒーターパターンを形成する。ウエットエッチングのエッチャントとして、Taには水酸化ナトリウムと過酸化水素混合液を、Ptには王水をそれぞれ90℃に加熱して用いた。さらに、SiO2などの絶縁膜4をスパッタ法により1.0μm形成した後、微細加工により図示されていないヒータの電極パッド部分をHFによりエッチングして窓明け後、導通の確保とワイヤボンディング性を向上させるため、接合層(2)のTaを水酸化ナトリウムと過酸化水素混合液で除去する。
【0022】
次に、下地のSiO2との密着性向上のため中間層Taを0.05μm形成後、連続してPt感知膜電極5を0.2μm成膜する。成膜はマグネトロンスパッタリング装置を用い、通常のスパッタリング方法によって行なう。条件は、成膜温度100℃、成膜パワー100W、成膜圧力1Paである。その後、ヒータ層3と同様ウエットエッチにより、一対の感知膜SnO2の抵抗測定用感知膜電極5をパターニングする。
その後、微細加工でSnO2感知膜を成膜する部分のみ開口し、それ以外をレジストで被覆してパターンを形成する。次に、上記のパターニングが施されたウエハーをスパッタチャンバーにセットし、ガスの感知膜であるSnO26をスパッタで成膜する。SnO2感知膜6のサイズは100μm2で、成膜条件は300W,1Pa,Ar+O2中100℃で、膜厚は約2μmである。
【0023】
続いて、この発明に関わるSnO2感知膜上へ触媒層を形成する方法について説明する。
SnO2感知膜を成膜後、さらにPdをスパッタで成膜する。Pdのスパッタ成膜は、真空を破ることなく連続成膜しても良いし、一旦真空を破って別のスパッタ装置で成膜しても構わない。Pdの成膜条件は30W,1Pa,Ar+O2中100℃で、膜厚は▲1▼0.5nm、▲2▼1nm、▲3▼5nm、▲4▼10nm、▲5▼100nm、▲6▼500nmで試作した。比較のために、No.13にPd無しの素子も用意した。なお、丸付き数字は素子の番号を示し、以下同様とする。No.1〜No.9までは丸付き数字「▲1▼〜▲9▼」を使用する場合もあるが、No.10以上は専ら「No.」のみで表現することとする。
【0024】
図3に、スパッタで成膜したPd層/SnO2感知膜の模式断面図を示す。同図(a)は全体を示し、同図(b)に部分的に拡大して示す。
図3(b)から、スパッタで成膜したPd層は、SnO2感知膜の表層部に殆どが付着し、柱状成長したSnO2の細孔内への付着は少ないことが分かる。
Pd成膜後(Pd無しの素子は、SnO2成膜後)レジストを剥離液で除去し、Pd触媒付きSnO2感知膜、およびPd触媒無しSnO2感知膜を試作した。なお、Pd触媒無しSnO2感知膜素子は、比較のための従来構造の素子として用いるとともに、以下に述べる含浸法により貴金属触媒を担持する素子の実験に用いた。
【0025】
以下、含浸法について説明する。
Pd触媒無しSnO2感知膜ウエハーを、貴金属の化合物の水溶液に含浸し、熱分解によりSnO2感知膜表面に貴金属触媒を分散させるものである。なお、この発明の成膜条件でスパッタ成膜した、SnO2感知膜の細孔がもたらす空孔容積は約20%である。
1wt%のPdを含むジニトロジアミンPd硝酸水溶液中にウエハーを10分間浸漬し、SnO2感知膜の細孔へジニトロジアミンPd硝酸水溶液を含浸する。取り出したウエハー表面に余分に付着したジニトロジアミンPd硝酸水溶液を、N2ブローなどで吹き飛ばす。このとき、SnO2感知膜の細孔へ含浸されたジニトロジアミンPd硝酸水溶液は毛細管力で保持されており、N2ブローで飛散することはない。
【0026】
その後、ウエハーを電気炉で空気気流中150℃で60分乾燥後、さらに空気気流中で500℃で1時間分解し、Pdを担持する。1回の操作で約0.3wt%のPdがSnO2感知膜に担持される。この操作を繰り返すことで、操作回数×0.3wt%のPdがSnO2感知膜に担持されることになる。ジニトロジアミンPd硝酸水溶液中のPd濃度を上昇させることで、1回の操作でのPd担持量を多くすることも可能であり、逆にPd濃度を減少させることで、1回の操作でのPd担持量を少なくすることも可能である。Pd濃度を上昇させる場合は、ジニトロジアミンPd硝酸水溶液への溶解度から7wt%以下が好ましい。
【0027】
上記操作により、▲7▼0.05wt%、▲8▼0.1wt%、▲9▼1wt%、5wt%(No.10)、10wt%(No.11)、20wt%(No.12)のPdを担持したSnO2感知膜を得ることができた。
図4に、以上のような含浸法で得たPd/SnO2感知膜の模式断面図を示す。同図(a)は全体を示し、同図(b)に部分的に拡大して示す。
図4(b)から、含浸法で担持したPd層はSnO2感知膜の表層部だけでなく、柱状成長したSnO2の細孔内への付着も均一であることが分かる。なお、Pdは空気気流中で分解しているため、大部分がPdOになっている。また、No.13は、比較のために試作したSnO2感知膜にPdを担持していない従来構造の素子である。
【0028】
次に、アルミナ粒子にPtおよびPd触媒を担持させた粉末をバインダとともにペーストとし、スクリーン印刷によりSnO2の表面に塗布,焼結させて約30μm厚の選択燃焼層(触媒フィルタ)7を形成する。この選択燃焼層7により、ガスセンサの感度,ガス種選択性,信頼性が向上する。最後に、基板の裏面からドライエッチによりSiを400μm経の大きさにて完全に除去し、ダイアフラム構造とする。
ここで、ヒータ層(Ta/PtW/Ta)と感知膜電極(Ta/Pt)のパターニングの際には、きのこかさ状に形成された2種のメタル層をマスクとした一種のリフト法(例えば、特開2000−065773号公報参照)を用いても良い。
【0029】
続いて、上記方法により作製されたパルス駆動の薄膜ガスセンサNo.1〜No.13を40℃、相対湿度80%の環境下で動作させた場合の、300ppmCO/空気に対する抵抗値の経時変化を表1に示す。なお、スパッタ成膜法でPd層を形成したセンサはNo.1〜No.6(▲1▼〜▲6▼)であり、含浸法でPd層を形成したセンサはNo.7〜No.12で、比較のための従来構造センサはNo.13である。また、パルス駆動条件/測定条件は以下の通りである。
検出サイクル:150秒
クリーニング温度×時間=450℃×200msec
CO検出温度×検出タイミング=100℃×100℃に加熱後500msec後
【0030】
【表1】

Figure 0003988999
【0031】
上記表1から、この発明の素子No.2〜No.5(▲2▼〜▲5▼)、No.8〜No.11が高温,高湿の厳しい条件下でも、300ppmCO/空気に対する抵抗値の経時変化がなく安定していることが分かる。それに比べPdの付着量,担持量が少ないNo.1とNo.7の素子は、比較のために試作した従来構造の素子(No.13)と同様、試験時間とともに抵抗値が増加し、50日後には抵抗値が1桁以上変化する。Pdの付着量,担持量が最も多いNo.6,No.12は初期で抵抗値が1桁低い。これは、本来アイランド状にならないPd粒子が、Pdの付着量,担持量が多すぎてお互いに接するため、Pdに電気的な導通が生じたためと考えられる。No.6,No.12の素子のCOが無い空気中抵抗値を測定したところ、300ppmCO/空気に対する抵抗値とほとんど同じであり、CO感度が無いことも分かっている。2000ppmCH4/空気でも300ppmCO/空気に対する経時変化ほど顕著ではないが、同様の結果が得られており、SnO2にPd触媒を付着,担持することで、抵抗値の経時変化が無く安定したパルス駆動の薄膜ガスセンサが得られた。
【0032】
このような高温高湿下での抵抗値の経時変化は、パルス駆動の薄膜ガスセンサに特有の現象であり、No.13の素子を常時100℃以上に加熱する駆動モードで試験すると、上記抵抗値の経時変化は起こらない。
高温高湿下でのパルス駆動の薄膜ガスセンサの抵抗値の経時変化は、off時間における水分などの吸着が原因と推定されるが、明確には分からない。この発明では、PdをSnO2表面に付着,担持することで顕著な改善が認められているが、その原因は図2に示すようなPd上でのスピルオーバ酸素のSnO2表面への潤沢な供給、それに伴うクリーニング反応の促進、Pd触媒のCO,CH4検知反応の促進などいろいろ考えられる。
また、以上ではPd触媒の例で説明したが、その代わりにPt,Pt−Pdの合金触媒などの貴金属触媒を用いることができる。さらに、含浸法で触媒を担持する化合物としてジニトロジアミン化合物を用いたが、塩化物などの化合物でも良い。
【0033】
次に、SnO2薄膜と貴金属触媒薄膜を交互に成膜して積層構造の感知膜(Pt/SnO2)nを形成する例について説明する。
感知膜のサイズは、100μm2とする。また、SnO2層の成膜条件は成膜パワー50W,成膜圧力1Pa,成膜雰囲気Ar+O2中,成膜温度100℃で、各層の膜厚は成膜時間で制御される。上記条件でSnO2とPtの成膜レートは、それぞれ5nm/2.5nmとなる。なお、積層膜(Pt/SnO2)nのトータル膜厚は〜1μmとする。スパッタ装置はSnO2,Ptの両ターゲットを具備しており、ターゲットを切り替えることでSnO2,Ptと交互に成膜することができる。
【0034】
最初にSnO2層を、100nm成膜する。その後Ptを3nm成膜し、次にSnO2を18nm成膜する。さらに、Ptを2nm、SnO2を18nmの成膜を45回繰り返し、最表面はPt成膜で終了する。これにより、トータル膜厚は1μmの感知膜(Pt/SnO2)nを得る。Ptの担持量は約30wt%となる。
図5に積層膜(Pt/SnO245の模式断面図を示す。SnO2はPt上にもSnO2上と同様な成膜をするため、Ptの一部はSnO2に被覆される。従って、気相と接する(表面にでている)Ptの濃度としては<10%と推定される。図5に示すように、SnO2粒子とPt粒子が帯状に成膜され、Ptはアイランド(島)状になる。SnO2粒子は3次元的に連結し、電気的には互いに導通する。スパッタでPtを成膜するとその殆どはSnO2粒子最表面に堆積し、一部はSnO2粒子同士が作る細孔の中にも堆積する。SnO2粒子同士が作る細孔径は10〜20nmと狭いため、細孔の深いところまではPt粒子は入り込まない。こうして感知膜を成膜した素子を「A」とする。
【0035】
比較のため、感知膜を1μm厚のSnO2にした従来素子(素子C)と、1μm厚のSnO2感知膜を成膜後、さらに連続してPtを3nmスパッタで成膜した素子(素子B)とを試作し、この発明の素子Aとともに後工程を進めた。素子Bでは1μm厚のSnO2の最表面に3nm厚のアイランド状Ptが堆積した感知膜構造となる。
上記の感知膜構造を成膜後、レジストを剥離液で除去し、積層膜(Pt/SnO245感知膜,SnO2感知膜,3nmPt/SnO2感知膜を有する3種類の素子A,B,Cを試作した。
【0036】
次に、アルミナ粒子にPtおよびPd触媒を担持させた粉末をバインダとともにペーストとし、スクリーン印刷により感知膜の表面に塗布,焼結させ約30μm厚の選択燃焼層(触媒フィルタ)を形成する。選択燃焼層によりガスセンサの感度,ガス種選択性,信頼性が向上する。最後に基板の裏面からドライエッチにより、Siを400μm径の大きさにて完全に除去し、ダイアフラム構造とする。
ここで、ヒータ層(Ta/PtW/Ta)と感知膜電極(Ta/Pt)のパターニングの際には、先に挙げた特開2000−065773号公報のように、きのこかさ状に形成された2種のメタル層をマスクとした一種のリフト法を用いても良い。
続いて、上記方法により作製されたパルス駆動の薄膜ガスセンサA,B,Cを40℃,相対湿度80%の環境下で動作させた場合の300ppmCO/空気に対する抵抗値の経時変化を表2に示す。
【0037】
【表2】
Figure 0003988999
表2のパルス駆動条件/測定条件は以下の通りである。
検出サイクル:150秒
クリーニング温度×時間=450℃×200msec
CO検出温度×検出タイミング=100℃×100℃に加熱後500msec後
【0038】
表2から素子Aが高温高湿の厳しい試験条件下で150日経過後も、300ppmCO/空気に対する抵抗値の経時変化が無く安定していることが分かる。これに比べ素子Cは2桁以上も素子抵抗が上昇する。また、素子Bでは50日程度では安定であるが、それ以上の経過日数でやや抵抗値が上昇する傾向がある。
2000ppmCH4/空気でも、300ppmCO/空気に対する経時変化ほど顕著ではないが同様の結果が得られており、SnO2薄膜最表面だけでなく内部の細孔内部へ高分散でPtを担時することで、抵抗値の経時変化が無く安定したパルス駆動の薄膜ガスセンサを得ることができる。このような高温高湿下での抵抗値の経時変化は、パルス駆動の薄膜ガスセンサに特有の現象であり、上記素子B,Cを常時100℃以上に加熱する駆動モードで試験しても、抵抗値の経時変化は起こらない。
【0039】
高温高湿下でのパルス駆動の薄膜ガスセンサの抵抗値の経時変化は、off時間における水分などの吸着が原因と推定されるが、明確には分からない。この発明ではSnO2薄膜最表面だけでなく内部の細孔内部へ高分散でPtを担時することで、顕著な改善が認められているが、その原因は先の図2で説明したPt上でのスピルオーバ酸素のSnO2表面への均一で潤沢な供給、それに伴うクリーニング反応の促進、Pd触媒のCO,CH4検知反応の促進などいろいろ考えられる。
以上では、Pt触媒の例を説明したが、Ptの代わりにPd,Pt−Pdの合金触媒などの貴金属触媒を用いても良い。
【0040】
また、積層構造のものでは、最初にSnO2層を100nm成膜したが、最初からPtを2nm,SnO2を18nmの繰り返しでも同様の効果が得られる。また、Pt/SnO2の膜厚比は一定でなくても良く、さらに成膜の最初をSnO2で最後はPtとしたがその逆でも良いし、成膜の最初と最後が同一でも良い。
成膜方法もスパッタでなく蒸着やCVD(化学気相成長)法によっても良い。
【0041】
【発明の効果】
請求項1〜4の発明によれば、PdまたはPt、もしくはPd+Pt混合触媒などの貴金属触媒を、SnO2薄膜最表面だけでなく内部の細孔内部へ高分散で担持することで、ガス検知前のクリーニングによりセンサのoff時間にSnO2薄膜表面に吸着した水分、または検知阻害ガスを完全に脱離できるため、経時安定性に優れた電池駆動(パルス駆動)の薄膜ガスセンサを得ることができる。特に、低温動作のCOセンサにおいては、貴金属触媒の分散,担持により、CO検出反応の安定性が向上するという相乗効果で顕著な経時安定性が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す薄膜ガスセンサの断面構成図
【図2】酸素のスピルオーバを説明する説明図
【図3】スパッタ法で製造された感知膜の模式図
【図4】含浸法で製造された感知膜の模式図
【図5】スパッタ法で製造された積層感知膜の模式図
【符号の説明】
1…Si基板(ダイアフラム)、2…支持層及び熱絶縁層、3…ヒーター層、4…絶縁層、5…感知層電極、6…感知層、7…選択燃焼層(触媒フィルタ)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low power consumption type thin film gas sensor with battery driving in mind and a method for manufacturing the same.
[0002]
[Prior art]
In general, a gas sensor is a device that is used for applications such as a gas leak alarm, and is selectively sensitive to a specific gas such as CO, CH 4 , C 3 H 8 , C 2 H 5 OH, and the like. Due to its nature, high sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable. By the way, the gas leak alarms that are widely used for household use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or There are some that have both functions, but the penetration rate is not so high due to cost and installation problems.
[0003]
Under such circumstances, in order to improve the penetration rate, it is desired to improve the installation property, specifically, to be battery-driven and cordless. Low power consumption is the most important for realizing battery driving. However, in a catalytic combustion type or semiconductor type gas sensor, it is necessary to detect by heating to a high temperature of 100 ° C. to 500 ° C. For this reason, in the conventional method of sintering powder such as SnO 2 , there is a limit to reducing the thickness even if a method such as screen printing is used, and the heat capacity is too large to be used for battery driving. Therefore, the appearance of a thin film gas sensor in which a heater and a sensing film are formed with a thin film of 1 μm or less and a low heat capacity and heat insulation structure such as a diaphragm structure by a deep etching process has been awaited.
[0004]
Thus, a thin film gas sensor having an ultra-low heat capacity structure such as a diaphragm structure has been proposed in, for example, Patent Document 1, but a gas leak alarm using such a gas sensor also has a life of 5 years or more without battery replacement. In order to have the above, pulse driving of the thin film gas sensor is essential. Usually, the gas leak alarm needs to be detected once in a fixed period of 30 to 150 seconds, and the detection unit in accordance with this period is heated from room temperature to a high temperature of 100 to 500 ° C. In order to meet the life requirement of 5 years or longer without replacing the battery, the target heating time is 100 ms or less.
[0005]
Even in the pulse-driven thin film gas sensor, it is important to lower the detection temperature, shorten the detection time, and lengthen the detection cycle (increase the time for turning off the energization) in order to reduce power consumption. The detection temperature in the thin film gas sensor is ~ 100 ° C for the CO sensor due to the detection sensitivity to the gas species, ~ 450 ° C for the CH4 sensor, the detection time is ~ 500 ms due to the response of the sensor, the detection cycle is 30 seconds for the CH4 sensor, and the CO sensor 150 seconds.
Moreover, it is important to improve the time-dependent stability of the battery-driven (pulse-driven) thin film gas sensor by desorbing moisture and other adsorbates adhering to the sensor surface during the off time and cleaning the SnO 2 surface. Before detection, the sensor temperature is once heated to 400 to 500 ° C. (time 100 ms), and immediately after that, gas detection is performed at the detection temperature of each gas.
[0006]
For this reason, in order to reduce power consumption, in the thin film gas sensor, the sensor off time is overwhelmingly longer than the sensing time, that is, the sensor is overwhelmingly at room temperature for a long time. The detection gas has a sensor structure that reaches the surface of SnO 2 that is the detection part of the sensor by gas diffusion through activated carbon, and poisonous gas that degrades the sensor or NOx, SOx, or hydrocarbon gas that inhibits detection is activated carbon. Consideration is made so as not to reach the SnO 2 surface, which is the detection part, by adsorbing to the surface, and contrivances are made to maintain stability over time over a long period of time.
[0007]
However, even with a battery-driven (pulse-driven) thin film gas sensor with such countermeasures, if the sensor is exposed to an extreme atmosphere where the high-temperature and high-humidity atmosphere continues for a long time, the resistance value becomes unstable and stable over time. May be worse. The cause is not clear, but as a result of being exposed to high humidity for a long time, the moisture in the atmosphere breaks through the activated carbon layer and reaches the SnO 2 surface, which is the sensor detection part, and the SnO 2 surface becomes a high humidity atmosphere. Presumed to be exposed. It is also estimated that the activated carbon layer is saturated by moisture adsorption, so that the detection inhibitor NOx, SOx or hydrocarbon gas that should be adsorbed by the activated carbon layer reaches the SnO 2 surface. That is, it is considered that the sensor resistance value becomes unstable due to the adsorption of moisture to the pores of SnO 2 made porous to improve the gas sensitivity or the detection inhibiting gas during the sensor off time.
[0008]
Originally, the adsorbate should be desorbed by cleaning heated to 400 to 500 ° C., and the stability over time should be ensured by constantly cleaning the SnO 2 surface. Although performed, stability over time has not been improved. Such a phenomenon appears remarkably in the stability over time in the CO sensor that performs gas detection at a low temperature.
Therefore, in order to solve the above-mentioned problems, the applicant has proposed, for example, Patent Document 2 a method of simultaneously sputtering (co-sputtering) a noble metal catalyst during the sputtering of a SnO 2 thin film.
[0009]
[Patent Document 1]
JP 2000-298108 A (FIG. 3, page 3-4)
[Patent Document 2]
JP 2000-292398 A (FIG. 1, page 3)
[0010]
[Problems to be solved by the invention]
However, in the method of Patent Document 2, it was expected that the noble metal catalyst was supported not only on the outermost surface of SnO 2 but also in the internal pores of the SnO 2 thin film, but most of the noble metal catalyst components were incorporated into the SnO 2 crystal lattice. It has not been put into practical use because it has a problem such as acceptor behavior and includes a problem that the resistance of the SnO 2 thin film is remarkably increased.
The present invention has been made in view of such circumstances, and an object thereof is to provide a battery-driven (pulse-driven) thin film gas sensor having excellent temporal stability even under high temperature and high humidity.
[0011]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, the outer periphery or both end portions of the thin film-like support film are supported by the Si substrate, the outer periphery portion or both end portions are thick, and the central portion is formed thin. A thin film heater is formed on a support substrate, this thin film heater is covered with an electrical insulating film containing SiO 2 , an electrode for a gas sensing film is formed thereon, and a noble metal catalyst and SnO 2 are the main components. In the thin film gas sensor having a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to completely cover the gas sensing film on the outermost surface after forming the gas sensing film made of a thin film,
The thin film mainly composed of the noble metal catalyst and SnO 2 has a laminated structure in which the SnO 2 thin film and the noble metal catalyst thin film are alternately formed, and the noble metals are formed in islands isolated from each other. There is no electrical continuity between noble metals in both the in-plane and inter-plane directions .
[0012]
In the invention of claim 1, the SnO 2 particles are in contact with each other through a grain boundary, and can be electrically connected within the film surface and in the direction between the film surfaces (invention of claim 2). In the invention of claim 1 or 2, the noble metal catalyst may be composed mainly of Pd or Pt, or a mixture of Pd and Pt (invention of claim 3 ).
[0013]
In the invention of claim 4 , the outer periphery or both ends of the thin film-like support film are supported by the Si substrate, and the thin film heater is formed on the diaphragm-like support substrate in which the outer periphery or both ends are thick and the central portion is thin. The thin film heater is covered with an electrical insulating film containing SiO 2 , an electrode for a gas sensing film is formed thereon, and a gas sensing film comprising a thin film mainly composed of a noble metal catalyst and SnO 2 is formed. In manufacturing a thin film gas sensor having a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to completely cover the gas sensing film on the outermost surface ,
After forming the gas sensing film made of SnO 2 , the noble metal catalyst layer is formed in an island shape.
[0018]
Pd or Pt on the surface of the thin film of SnO 2, or dispersing a noble metal catalyst such as a mixed catalyst of Pd and Pt, by carrying water or sensing adsorbed on SnO 2 thin film surface to off time of the sensor by the cleaning before gas detection Since the inhibitor gas can be completely desorbed, a battery-driven (pulse-driven) thin film gas sensor with excellent temporal stability can be obtained. In particular, in a CO sensor operating at a low temperature, a remarkable temporal stability can be obtained by a synergistic effect of improving the stability of the CO detection reaction by dispersing and supporting the noble metal catalyst.
That is, as shown in the schematic diagram of FIG. 2, the atomic oxygen dissociated and adsorbed on the noble metal catalyst is abundantly supplied onto the surface of the SnO 2 thin film by spillover (overflow or spillage), so that SnO 2 at the time of cleaning is supplied. The oxidative decomposition of the detection inhibiting gas adsorbed on the surface of the thin film is promoted, or the elimination of OH groups is promoted, and the SnO 2 thin film surface is sufficiently refreshed, thereby improving the temporal stability. Furthermore, in the CO sensor operating at low temperature, atomic oxygen dissociated and adsorbed on the noble metal catalyst is abundantly supplied onto the SnO 2 thin film surface by spillover, so that the reaction rate of CO oxidation or CO adsorption is improved and stable over time. Improves.
[0019]
In the case of a laminated structure, each noble metal catalyst thin film layer is formed in an island shape in which noble metal particles are isolated from each other, and the noble metal catalyst is electrically connected to each other in both directions within and between the surfaces of the noble metal catalyst thin film. In each SnO 2 thin film, SnO 2 particles are in contact with each other through grain boundaries, and are formed so as to have electrical continuity in both directions within the film surface and between the film surfaces. This is very important.
Specifically, the thickness of the noble metal catalyst thin film is 0.5 nm to 10 nm, preferably 1 nm to 6 nm, and the SnO 2 thin film is 1 nm to 100 nm, preferably 5 nm to 50 nm, A laminated structure in which at least four layers (substrate / SnO 2 / catalyst / SnO 2 / catalyst) are repeated is required. In the laminated structure, when the thickness of the noble metal catalyst thin film is 10 nm or more, the noble metal catalyst may not be island-like and may be conductive, and when it is 0.5 nm or less, the function as a catalyst is weak.
The greater the number of layers and the greater the thickness of the noble metal catalyst thin film, the more noble metal catalyst is supported, which is effective in stabilizing the sensor. The supported amount (ratio of precious metal catalyst weight to SnO 2 weight (wt%: weight percent) ) can be arbitrarily determined by the film thickness of the precious metal catalyst thin film and the number of SnO 2 thin films stacked. The amount of noble metal supported is 0.1 wt% to 75 wt%, preferably 0.5 wt% to 20 wt%.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sensor sectional view showing an embodiment of the present invention.
On the surface of the Si substrate 1 having a thermal oxide film of 0.3 μm formed on both surfaces, an SiN and SiO 2 film to be a support layer 2 having a diaphragm structure are sequentially formed to a thickness of 0.15 μm and 1 μm, respectively, by plasma CVD. On top of this, 0.05 μm of Ta was formed as the bonding layer (1), and then 0.5 μm of PtW (Pt + 4 wt% W) film was continuously formed as the heater layer 3, and Ta as the bonding layer (2). To 0.05 μm. Film formation is performed by a normal sputtering method using a magnetron sputtering apparatus. The conditions are a film formation temperature of 100 ° C., a film formation power of 100 W, and a film formation pressure of 1 Pa.
[0021]
Thereafter, a heater pattern is formed by fine processing. As an etchant for wet etching, a mixed solution of sodium hydroxide and hydrogen peroxide was used for Ta, and aqua regia was heated to 90 ° C. for Pt. Further, after an insulating film 4 such as SiO 2 is formed by a sputtering method by 1.0 μm, the electrode pad portion of the heater (not shown) is etched by fine processing by HF to open a window, thereby ensuring conduction and wire bonding properties. In order to improve, Ta in the bonding layer (2) is removed with a mixed solution of sodium hydroxide and hydrogen peroxide.
[0022]
Next, in order to improve adhesion with the underlying SiO 2 , the intermediate layer Ta is formed with a thickness of 0.05 μm, and then the Pt sensing film electrode 5 is continuously formed with a thickness of 0.2 μm. Film formation is performed by a normal sputtering method using a magnetron sputtering apparatus. The conditions are a film formation temperature of 100 ° C., a film formation power of 100 W, and a film formation pressure of 1 Pa. Thereafter, the resistance measurement sensing film electrodes 5 of the pair of sensing films SnO 2 are patterned by wet etching in the same manner as the heater layer 3.
Thereafter, only the portion where the SnO 2 sensing film is formed by microfabrication is opened, and the rest is covered with a resist to form a pattern. Next, the wafer subjected to the above patterning is set in a sputtering chamber, and SnO 2 6 which is a gas sensing film is formed by sputtering. The size of the SnO 2 sensing film 6 is 100 μm 2 , the film forming conditions are 300 W, 1 Pa, 100 ° C. in Ar + O 2, and the film thickness is about 2 μm.
[0023]
Next, a method for forming a catalyst layer on the SnO 2 sensing film according to the present invention will be described.
After the SnO 2 sensing film is formed, Pd is further formed by sputtering. The sputter deposition of Pd may be performed continuously without breaking the vacuum, or may be performed once with a different sputtering apparatus after breaking the vacuum. The film formation conditions for Pd were 30 W, 1 Pa, 100 ° C. in Ar + O2, and the film thickness was (1) 0.5 nm, (2) 1 nm, (3) 5 nm, (4) 10 nm, (5) 100 nm, (6) 500 nm. Prototype. For comparison, no. An element without Pd was also prepared as 13. The numbers with circles indicate the element numbers, and so on. No. 1-No. Up to 9, there are cases where numbers “1” to “9 ▼” with circles are used. 10 or more is expressed exclusively by “No.”.
[0024]
FIG. 3 is a schematic cross-sectional view of a Pd layer / SnO 2 sensing film formed by sputtering. The figure (a) shows the whole, and the figure (b) expands partially and shows.
It can be seen from FIG. 3B that most of the Pd layer formed by sputtering adheres to the surface layer portion of the SnO 2 sensing film, and the columnar grown SnO 2 adheres little to the pores.
After Pd deposition (element without Pd is, SnO 2 after its formation) the resist is removed by stripping solution was prototyped Pd catalyzed SnO 2 sensing film, and Pd catalyst without SnO 2 sensing film. The Pd catalyst-free SnO 2 sensing film element was used as an element having a conventional structure for comparison, and was used for an experiment of an element supporting a noble metal catalyst by an impregnation method described below.
[0025]
Hereinafter, the impregnation method will be described.
A Pd catalyst-free SnO 2 sensing film wafer is impregnated with an aqueous solution of a noble metal compound, and the noble metal catalyst is dispersed on the surface of the SnO 2 sensing film by thermal decomposition. The pore volume brought about by the pores of the SnO 2 sensing film formed by sputtering under the film forming conditions of the present invention is about 20%.
The wafer is immersed for 10 minutes in a dinitrodiamine Pd nitric acid aqueous solution containing 1 wt% Pd, and the pores of the SnO 2 sensing film are impregnated with the dinitrodiamine Pd nitric acid aqueous solution. The dinitrodiamine Pd nitric acid aqueous solution adhering excessively to the removed wafer surface is blown off by N 2 blow or the like. At this time, the dinitrodiamine Pd nitric acid aqueous solution impregnated in the pores of the SnO 2 sensing film is held by the capillary force and is not scattered by the N 2 blow.
[0026]
Thereafter, the wafer is dried in an air stream at 150 ° C. for 60 minutes in an electric furnace, and further decomposed in an air stream at 500 ° C. for 1 hour to carry Pd. About 0.3 wt% of Pd is supported on the SnO 2 sensing film in one operation. By repeating this operation, the number of operations × 0.3 wt% of Pd is carried on the SnO 2 sensing film. It is possible to increase the amount of Pd supported in one operation by increasing the Pd concentration in the dinitrodiamine Pd nitric acid aqueous solution, and conversely, by reducing the Pd concentration, the Pd concentration in one operation can be increased. It is also possible to reduce the loading amount. In the case of increasing the Pd concentration, it is preferably 7 wt% or less from the solubility in the dinitrodiamine Pd nitric acid aqueous solution.
[0027]
By the above operation, (7) 0.05 wt%, (8) 0.1 wt%, (9) 1 wt%, 5 wt% (No. 10), 10 wt% (No. 11), 20 wt% (No. 12) An SnO 2 sensing film carrying Pd could be obtained.
FIG. 4 shows a schematic cross-sectional view of a Pd / SnO 2 sensing film obtained by the above impregnation method. The figure (a) shows the whole, and the figure (b) expands partially and shows.
From FIG. 4B, it can be seen that the Pd layer supported by the impregnation method is uniform not only in the surface layer portion of the SnO 2 sensing film but also in the pores of the columnar grown SnO 2 . Since Pd is decomposed in an air stream, most of it is PdO. No. Reference numeral 13 denotes an element having a conventional structure in which Pd is not supported on a SnO 2 sensing film, which was prototyped for comparison.
[0028]
Next, a powder in which Pt and Pd catalyst are supported on alumina particles is used as a paste together with a binder, and is applied to the surface of SnO 2 by screen printing and sintered to form a selective combustion layer (catalyst filter) 7 having a thickness of about 30 μm. . This selective combustion layer 7 improves the sensitivity, gas type selectivity, and reliability of the gas sensor. Finally, Si is completely removed from the back surface of the substrate by dry etching to a size of 400 μm to obtain a diaphragm structure.
Here, when patterning the heater layer (Ta / PtW / Ta) and the sensing film electrode (Ta / Pt), a kind of lift method (for example, using two kinds of metal layers formed in a mushroom shape as a mask) JP, 2000-065773, A) may be used.
[0029]
Subsequently, the pulse-driven thin film gas sensor No. 1 manufactured by the above method was used. 1-No. Table 1 shows the change over time of the resistance value with respect to 300 ppm CO / air when 13 is operated in an environment of 40 ° C. and a relative humidity of 80%. A sensor having a Pd layer formed by sputtering is No. 1-No. No. 6 ((1) to (6)), and the sensor having the Pd layer formed by the impregnation method is No. 6. 7-No. 12, the conventional structure sensor for comparison is No. 12. 13. The pulse driving conditions / measurement conditions are as follows.
Detection cycle: 150 seconds cleaning temperature × time = 450 ° C. × 200 msec
CO detection temperature × detection timing = 100 ° C. × 500 ° C. after heating 500 ms
[Table 1]
Figure 0003988999
[0031]
From Table 1 above, the element No. 2-No. 5 ((2) to (5)), No. 5 8-No. 11 shows that the resistance value against 300 ppm CO / air is stable with no change even under severe conditions of high temperature and high humidity. Compared to that, No. 1 and No. The resistance value of the element No. 7 increases with the test time, and the resistance value changes by an order of magnitude or more after 50 days, as in the case of the element (No. 13) of the conventional structure prototyped for comparison. No. with the most Pd adhesion and loading. 6, no. 12 is an initial resistance value one digit lower. This is presumably because Pd particles that were not originally in the form of islands were in contact with each other due to the amount of Pd adhering and loading, and Pd was electrically connected. No. 6, no. When the resistance value in air without CO of 12 elements was measured, it was almost the same as the resistance value against 300 ppm CO / air, and it was also found that there was no CO sensitivity. Even when 2000 ppm CH4 / air is not as noticeable as the change over time for 300 ppm CO / air, the same result is obtained. By attaching and supporting a Pd catalyst on SnO 2 , there is no change over time in the resistance value, and stable pulse driving is possible. A thin film gas sensor was obtained.
[0032]
Such a change in resistance value with time under high temperature and high humidity is a phenomenon peculiar to a pulse-driven thin film gas sensor. When the 13 elements are tested in a driving mode in which the elements are constantly heated to 100 ° C. or more, the resistance value does not change with time.
The change over time in the resistance value of the pulse-driven thin film gas sensor under high temperature and high humidity is estimated to be due to adsorption of moisture or the like during the off time, but it is not clearly understood. In this invention, remarkable improvement is recognized by attaching and supporting Pd on the SnO 2 surface. The cause is abundant supply of spillover oxygen to the SnO 2 surface on Pd as shown in FIG. There are various conceivable methods such as promotion of the cleaning reaction associated therewith, and promotion of the CO and CH4 detection reaction of the Pd catalyst.
In the above description, the example of the Pd catalyst has been described. Instead, a noble metal catalyst such as a Pt, Pt—Pd alloy catalyst may be used. Furthermore, although the dinitrodiamine compound is used as the compound for supporting the catalyst by the impregnation method, a compound such as chloride may be used.
[0033]
Next, an example in which a SnO 2 thin film and a noble metal catalyst thin film are alternately formed to form a laminated sensing film (Pt / SnO 2 ) n will be described.
The size of the sensing film is 100 μm 2 . The film formation conditions for the SnO 2 layer are film formation power 50 W, film formation pressure 1 Pa, film formation atmosphere Ar + O 2, film formation temperature 100 ° C., and the film thickness of each layer is controlled by the film formation time. Under the above conditions, the deposition rates of SnO 2 and Pt are 5 nm / 2.5 nm, respectively. The total film thickness of the laminated film (Pt / SnO 2 ) n is set to ˜1 μm. The sputtering apparatus includes both SnO 2 and Pt targets, and SnO 2 and Pt can be alternately formed by switching the targets.
[0034]
First, a SnO 2 layer is formed to a thickness of 100 nm. Thereafter, Pt is deposited to 3 nm, and then SnO 2 is deposited to 18 nm. Further, the film formation of 2 nm of Pt and 18 nm of SnO 2 is repeated 45 times, and the outermost surface is finished with the Pt film formation. As a result, a sensing film (Pt / SnO 2 ) n having a total film thickness of 1 μm is obtained. The amount of Pt supported is about 30 wt%.
FIG. 5 shows a schematic cross-sectional view of the laminated film (Pt / SnO 2 ) 45 . Since SnO 2 is deposited on Pt in the same manner as on SnO 2 , a part of Pt is covered with SnO 2 . Therefore, the concentration of Pt in contact with the gas phase (on the surface) is estimated to be <10%. As shown in FIG. 5, SnO 2 particles and Pt particles are formed in a band shape, and Pt becomes an island shape. SnO 2 particles are three-dimensionally connected and are electrically connected to each other. When a Pt film is formed by sputtering, most of it is deposited on the outermost surface of the SnO 2 particles, and a part is also deposited in the pores formed by the SnO 2 particles. Since the pore diameter formed by the SnO 2 particles is as narrow as 10 to 20 nm, the Pt particles do not enter the deep pores. The element on which the sensing film is thus formed is designated as “A”.
[0035]
For comparison, the sensing film conventional element in which the SnO 2 of 1μm thickness (element C), after forming a 1μm thick SnO 2 sensing film, further continuous element formed by 3nm sputtering Pt with (element B ) And a post process was advanced together with the element A of the present invention. The element B has a sensing film structure in which an island-like Pt having a thickness of 3 nm is deposited on the outermost surface of SnO 2 having a thickness of 1 μm.
After forming the above-described sensing film structure, the resist is removed with a stripping solution, and three types of elements A and B having a laminated film (Pt / SnO 2 ) 45 sensing film, a SnO 2 sensing film, and a 3 nm Pt / SnO 2 sensing film. , C was prototyped.
[0036]
Next, a powder in which Pt and Pd catalyst are supported on alumina particles is used as a paste together with a binder, and is applied to the surface of the sensing film by screen printing and sintered to form a selective combustion layer (catalyst filter) having a thickness of about 30 μm. The selective combustion layer improves the sensitivity, gas type selectivity, and reliability of the gas sensor. Finally, Si is completely removed in a size of 400 μm by dry etching from the back surface of the substrate to obtain a diaphragm structure.
Here, when patterning the heater layer (Ta / PtW / Ta) and the sensing film electrode (Ta / Pt), it was formed in the shape of a mushroom as described in Japanese Patent Laid-Open No. 2000-065773. A kind of lift method using two kinds of metal layers as a mask may be used.
Next, Table 2 shows changes over time in the resistance value with respect to 300 ppm CO / air when the pulse-driven thin film gas sensors A, B, and C manufactured by the above method are operated in an environment of 40 ° C. and a relative humidity of 80%. .
[0037]
[Table 2]
Figure 0003988999
The pulse driving conditions / measurement conditions in Table 2 are as follows.
Detection cycle: 150 seconds cleaning temperature × time = 450 ° C. × 200 msec
CO detection temperature × detection timing = 100 ° C. × 100 ° C. After heating 500 msec.
It can be seen from Table 2 that the element A is stable with no change over time in the resistance value against 300 ppmCO / air even after 150 days under severe test conditions of high temperature and high humidity. In comparison with this, the element resistance of the element C increases by more than two digits. Further, although the element B is stable for about 50 days, the resistance value tends to slightly increase after the elapsed days.
Even at 2000 ppm CH4 / air, the same result was obtained although not as noticeable as the change over time with respect to 300 ppm CO / air, and not only the outermost surface of the SnO 2 thin film but also Pt in high dispersion inside the pores, It is possible to obtain a stable pulse-driven thin film gas sensor with no change in resistance value over time. Such a change in resistance value with time under high temperature and high humidity is a phenomenon peculiar to a pulse-driven thin film gas sensor, and even if the element B or C is tested in a driving mode in which the element B or C is constantly heated to 100 ° C. or higher, The value does not change over time.
[0039]
The change over time in the resistance value of the pulse-driven thin film gas sensor under high temperature and high humidity is estimated to be due to adsorption of moisture or the like during the off time, but it is not clearly understood. In the present invention, not only the outermost surface of the SnO 2 thin film but also Pt is highly dispersed in the inside pores, and a remarkable improvement is recognized. The cause is on the Pt explained in FIG. There are various possibilities such as uniform and abundant supply of spillover oxygen to the SnO 2 surface, acceleration of the cleaning reaction associated therewith, and promotion of the CO and CH4 detection reaction of the Pd catalyst.
The example of the Pt catalyst has been described above, but a noble metal catalyst such as an alloy catalyst of Pd, Pt—Pd may be used instead of Pt.
[0040]
In the case of the laminated structure, the SnO 2 layer is first formed to a thickness of 100 nm, but the same effect can be obtained by repeating Pt of 2 nm and SnO 2 of 18 nm from the beginning. Further, the film thickness ratio of Pt / SnO 2 does not have to be constant, and furthermore, the first film formation is SnO 2 and the last is Pt, but the opposite is also possible, and the first and last film formation may be the same.
The film forming method may be vapor deposition or CVD (chemical vapor deposition) instead of sputtering.
[0041]
【The invention's effect】
According to the first to fourth aspects of the present invention, a noble metal catalyst such as Pd or Pt, or a Pd + Pt mixed catalyst is supported not only on the outermost surface of the SnO 2 thin film but also inside the pores in a highly dispersed manner, before gas detection. Since the moisture adsorbed on the SnO 2 thin film surface or the detection-inhibiting gas can be completely desorbed during the sensor off time, a battery-driven (pulse-driven) thin film gas sensor with excellent temporal stability can be obtained. In particular, in a CO sensor operating at a low temperature, remarkable stability over time is obtained by a synergistic effect that the stability of the CO detection reaction is improved by dispersing and supporting the noble metal catalyst.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a thin film gas sensor showing an embodiment of the present invention. FIG. 2 is an explanatory diagram for explaining oxygen spillover. FIG. 3 is a schematic diagram of a sensing film manufactured by sputtering. Schematic diagram of the sensing film manufactured by the sputtering method. Fig. 5 Schematic diagram of the laminated sensing film manufactured by the sputtering method.
DESCRIPTION OF SYMBOLS 1 ... Si substrate (diaphragm), 2 ... Support layer and thermal insulation layer, 3 ... Heater layer, 4 ... Insulating layer, 5 ... Sensing layer electrode, 6 ... Sensing layer, 7 ... Selective combustion layer (catalyst filter).

Claims (4)

薄膜状の支持膜の外周または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に薄膜のヒータを形成し、この薄膜のヒータをSiO2を含む電気絶縁膜で覆い、その上にガス感知膜用の電極を形成し、さらに貴金属触媒とSnO2を主成分とする薄膜からなるガス感知膜を形成した後、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を具備した薄膜ガスセンサにおいて、
前記貴金属触媒とSnO 2 を主成分とする薄膜が、SnO 2 薄膜と貴金属触媒薄膜を交互に成膜した積層構造で、貴金属同士が互いに孤立したアイランド状に成膜されており、貴金属触媒薄膜の面内および面間のいずれの方向にも貴金属同士の電気的な導通がないことを特徴とする薄膜ガスセンサ。
The outer periphery or both ends of the thin film support film are supported by a Si substrate, and a thin film heater is formed on a diaphragm-like support substrate having a thick outer periphery or both ends and a thin central portion. After covering with an electrical insulating film containing SiO 2 , an electrode for a gas sensing film is formed thereon, and further a gas sensing film comprising a thin film mainly composed of a noble metal catalyst and SnO 2 is formed, and then a gas is formed on the outermost surface. In a thin film gas sensor having a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to completely cover the sensing membrane,
The thin film mainly composed of the noble metal catalyst and SnO 2 has a laminated structure in which the SnO 2 thin film and the noble metal catalyst thin film are alternately formed, and the noble metals are formed in islands isolated from each other. A thin film gas sensor characterized in that there is no electrical continuity between noble metals in either the in-plane or between-plane directions .
前記SnO2 粒子は粒界を介して相互に接しており、膜面内および膜面間方向で電気的に導通していることを特徴とする請求項1に記載の薄膜ガスセンサ。 2. The thin film gas sensor according to claim 1, wherein the SnO 2 particles are in contact with each other via a grain boundary and are electrically connected in a film plane and in a direction between the film planes . 前記貴金属触媒はPdまたはPt、もしくはPdとPtの混合物を主成分とするものであることを特徴とする請求項1または2に記載の薄膜ガスセンサ。 3. The thin film gas sensor according to claim 1, wherein the noble metal catalyst is mainly composed of Pd or Pt, or a mixture of Pd and Pt . 薄膜状の支持膜の外周または両端部をSi基板により支持し、外周部または両端部が厚く中央部が薄く形成されたダイアフラム様の支持基板上に薄膜のヒータを形成し、この薄膜のヒータをSiO 2 を含む電気絶縁膜で覆い、その上にガス感知膜用の電極を形成し、さらに貴金属触媒とSnO 2 を主成分とする薄膜からなるガス感知膜を形成し、その最表面にガス感知膜を完全に被覆するように形成した触媒担持多孔質アルミナからなる触媒フィルタ層(選択燃焼層)を具備した薄膜ガスセンサを製造するに当たり、
前記SnO 2 からなるガス感知膜を成膜後、貴金属触媒層をアイランド状に成膜形成することを特徴とする薄膜ガスセンサの製造方法
The outer periphery or both ends of the thin film support film are supported by a Si substrate, and a thin film heater is formed on a diaphragm-like support substrate having a thick outer periphery or both ends and a thin central portion. Cover it with an electrical insulating film containing SiO 2 , form an electrode for the gas sensing film on it, and then form a gas sensing film consisting of a noble metal catalyst and SnO 2 as the main components, and gas sensing on the outermost surface In manufacturing a thin film gas sensor having a catalyst filter layer (selective combustion layer) made of catalyst-supporting porous alumina formed so as to completely cover the membrane,
A method of manufacturing a thin film gas sensor, comprising forming a noble metal catalyst layer in an island shape after forming the gas sensing film made of SnO 2 .
JP2003184535A 2003-06-27 2003-06-27 Thin film gas sensor and manufacturing method thereof Expired - Fee Related JP3988999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184535A JP3988999B2 (en) 2003-06-27 2003-06-27 Thin film gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184535A JP3988999B2 (en) 2003-06-27 2003-06-27 Thin film gas sensor and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007161083A Division JP2007279061A (en) 2007-06-19 2007-06-19 Pulse-driven thin-film gas sensor and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2005017182A JP2005017182A (en) 2005-01-20
JP3988999B2 true JP3988999B2 (en) 2007-10-10

Family

ID=34184270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184535A Expired - Fee Related JP3988999B2 (en) 2003-06-27 2003-06-27 Thin film gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3988999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007147A (en) * 2014-06-06 2014-08-27 华进半导体封装先导技术研发中心有限公司 Device and method for detecting surface of bottom electrode in microstructure with high depth-width ratio

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640960B2 (en) * 2005-07-12 2011-03-02 富士電機システムズ株式会社 Thin film gas sensor
JP2007240462A (en) * 2006-03-10 2007-09-20 Tokyo Univ Of Science Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element
JP2008128773A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP2010185774A (en) * 2009-02-12 2010-08-26 Fuji Electric Systems Co Ltd Membrane gas sensor
JP4970584B2 (en) * 2010-11-08 2012-07-11 富士電機株式会社 Thin film gas sensor
CN105900236B (en) * 2013-10-30 2020-03-17 罗伯特·博世有限公司 Metal oxide semiconductor sensor and method of forming metal oxide semiconductor sensor using atomic layer deposition
US9863901B2 (en) * 2013-12-06 2018-01-09 Robert Bosch Gmbh Semiconductor sensor having a suspended structure and method of forming a semiconductor sensor having a suspended structure
CN105283756B (en) * 2013-12-13 2018-06-15 富士电机株式会社 Gas-detecting device and its method
US10670554B2 (en) 2015-07-13 2020-06-02 International Business Machines Corporation Reconfigurable gas sensor architecture with a high sensitivity at low temperatures
EP3465190A1 (en) 2016-05-27 2019-04-10 Carrier Corporation System and method for mobile ion surface trapping in a gas detection device
JP6687931B2 (en) * 2016-08-25 2020-04-28 フィガロ技研株式会社 SnO2-based gas sensor
JP7038472B2 (en) * 2016-09-21 2022-03-18 大阪瓦斯株式会社 Gas sensor and gas detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007147A (en) * 2014-06-06 2014-08-27 华进半导体封装先导技术研发中心有限公司 Device and method for detecting surface of bottom electrode in microstructure with high depth-width ratio
CN104007147B (en) * 2014-06-06 2016-07-13 华进半导体封装先导技术研发中心有限公司 The detecting device of bottom electrode surface and detection method in high aspect ratio microstructures

Also Published As

Publication number Publication date
JP2005017182A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP5120881B2 (en) Combustible gas detector
JP3988999B2 (en) Thin film gas sensor and manufacturing method thereof
JP4056987B2 (en) Hydrogen sensor and hydrogen detection method
JP5041837B2 (en) Thin film gas sensor and manufacturing method thereof
JP2011169634A (en) Thin film gas sensor
JP4450773B2 (en) Thin film gas sensor
JP4022822B2 (en) Thin film gas sensor
JP4641832B2 (en) Thin film gas sensor
JP5240767B2 (en) Thin film gas sensor and manufacturing method thereof
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2007279061A (en) Pulse-driven thin-film gas sensor and manufacturing method therefor
JP2007057254A (en) Thin-film gas sensor and its manufacturing method
JP2008128773A (en) Thin film gas sensor
JP4320588B2 (en) Thin film gas sensor and manufacturing method thereof
JP4849620B2 (en) Thin film gas sensor and manufacturing method thereof
JP4764981B2 (en) Method for manufacturing thin film gas sensor
JP2005098947A (en) Thin-film gas sensor
JP2002221506A (en) Thin film gas sensor
JP4401145B2 (en) Method for manufacturing thin film gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP2003262599A (en) Thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP2003279523A (en) Membrane gas sensor
JP2002333426A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees