JP6687931B2 - SnO2-based gas sensor - Google Patents

SnO2-based gas sensor Download PDF

Info

Publication number
JP6687931B2
JP6687931B2 JP2016164568A JP2016164568A JP6687931B2 JP 6687931 B2 JP6687931 B2 JP 6687931B2 JP 2016164568 A JP2016164568 A JP 2016164568A JP 2016164568 A JP2016164568 A JP 2016164568A JP 6687931 B2 JP6687931 B2 JP 6687931B2
Authority
JP
Japan
Prior art keywords
sno2
atoms
particles
oxygen
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164568A
Other languages
Japanese (ja)
Other versions
JP2018031696A (en
Inventor
憲剛 島ノ江
憲剛 島ノ江
穂高 内野
穂高 内野
麻衣子 西堀
麻衣子 西堀
賢 渡邉
賢 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2016164568A priority Critical patent/JP6687931B2/en
Publication of JP2018031696A publication Critical patent/JP2018031696A/en
Application granted granted Critical
Publication of JP6687931B2 publication Critical patent/JP6687931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

この発明は、SnO2系ガスセンサの高感度化に関する。   The present invention relates to increasing the sensitivity of SnO2-based gas sensors.

SnO2は代表的なガスセンサ材料であり、さらなる高感度化が求められている。これに関して発明者は、SnO2粒子表面のSn原子欠陥を他の金属原子で置換する、あるいはSnO2粒子表面の酸素欠陥を金属原子と結合した酸素で置換することを検討し、この発明に至った。   SnO2 is a typical gas sensor material, and higher sensitivity is required. In this regard, the present inventor studied to replace Sn atom defects on the surface of SnO2 particles with other metal atoms, or to replace oxygen defects on the surface of SnO2 particles with oxygen bonded to metal atoms, and arrived at the present invention.

関連する先行技術を示す。特許文献1(特許3146111)は、ZrO2をSnO2に0.01〜0.5mol%の割合で担持させと、ガス感度が向上することを報告している。   The related prior art is shown. Patent Document 1 (Patent 3146111) reports that when ZrO2 is supported on SnO2 in a proportion of 0.01 to 0.5 mol%, the gas sensitivity is improved.

特許3146111Patent 3146111

この発明の課題は、新たな手法によりSnO2系ガスセンサを高感度化することにある。   An object of the present invention is to increase the sensitivity of a SnO2-based gas sensor by a new method.

この発明のSnO2系ガスセンサでは、SnO2とヒータと電極とを備えるガスセンサにおいて、SnO2粒子表面のSn原子欠陥をZr原子で置換すること等により、SnO2表面のSn原子の一部をZr原子により置換し、あるいはSnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換する。Zr原子とSn原子の合計に対する、Zr原子の濃度は0.01at%以上0.2at%以下である。この発明では、ZrO2粒子がSnO2粒子の表面に担持されているのではない。SnO2粒子表面のSn原子欠陥をZr原子で置換すると、SnO2表面のSn原子の一部をZr原子により置換したことになる。あるいはまた、SnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換しても、SnO2粒子表面にZr原子を導入することができる。このようにして、SnO2粒子の表面にZr原子を導入し、SnO2粒子表面をZr原子で表面修飾する。Zr原子は主としてSnO2粒子の表面に存在する。SnO2粒子表面でのZr原子の濃度を正確に測定することは困難なので、SnO2全体に対する割合でZr原子の濃度を定める。Zr原子とSn原子の合計に対する、Zr原子の濃度を0.01at%以上0.2at%以下とし、例えば0.02at%以上0.1at%以下とする。   In the SnO2 gas sensor of the present invention, in a gas sensor including SnO2, a heater, and an electrode, by substituting Zr atoms for Sn atom defects on the surface of SnO2 particles, a part of Sn atoms on the SnO2 surface is replaced by Zr atoms. Alternatively, the oxygen defects on the surface of the SnO2 particles are replaced with oxygen bound to Zr atoms. The concentration of Zr atoms with respect to the total of Zr atoms and Sn atoms is 0.01 at% or more and 0.2 at% or less. In this invention, the ZrO2 particles are not supported on the surface of the SnO2 particles. When Sn atom defects on the surface of SnO2 particles are replaced with Zr atoms, it means that some Sn atoms on the surface of SnO2 are replaced with Zr atoms. Alternatively, the Zr atoms can be introduced to the surface of the SnO2 particle by replacing the oxygen defect on the surface of the SnO2 particle with oxygen bonded to the Zr atom. In this way, Zr atoms are introduced into the surface of the SnO2 particles, and the surface of the SnO2 particles is surface-modified with Zr atoms. Zr atoms are mainly present on the surface of SnO2 particles. Since it is difficult to accurately measure the concentration of Zr atoms on the surface of SnO2 particles, the concentration of Zr atoms is determined by the ratio with respect to the whole SnO2. The concentration of Zr atoms with respect to the total of Zr atoms and Sn atoms is 0.01 at% or more and 0.2 at% or less, for example, 0.02 at% or more and 0.1 at% or less.

ZrO2粒子をSnO2粒子が担持しているのではなく、Zr原子によりSn原子が置換されている、あるいはSnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換されていることは、
・ XRDでZrO2のピークが検出できないこと、及び
・ Zr原子の導入によりSnO2への酸素の吸着種が変化することにより、裏付けられている。即ち、Zr原子の導入により、空気中350℃での酸素の吸着種はOからO2-へ変化する(図3)。この温度でZrO2表面に酸素がO2−として吸着することはないので、ZrO2粒子がSnO2粒子に担持されているとすると説明が不能である。
ZrO2 particles are not carried by SnO2 particles, Sn atoms are replaced by Zr atoms, or oxygen defects on the surface of SnO2 particles are replaced by oxygen bonded to Zr atoms,
-This is supported by the fact that the peak of ZrO2 cannot be detected by XRD, and that the adsorbed species of oxygen to SnO2 change due to the introduction of Zr atoms. That is, the introduction of Zr atoms changes the adsorbed species of oxygen at 350 ° C. in air from O to O 2 (FIG. 3). Oxygen does not adsorb as O 2− on the surface of ZrO 2 at this temperature, so it is not possible to explain if ZrO 2 particles are supported by SnO 2 particles.

Zr原子によるSn原子欠陥の置換や、Zr原子と結合した酸素による表面酸素欠陥の置換が生じていることは、ガスセンサの製造方法からも推定できる。発明者は、HFとZrO(NO3)2の混合物水溶液を700℃で焼成した単分散のSnO2粉体と接触させた後に、洗浄と焼成を施すことにより、Zr原子あるいはZr原子と結合した酸素をSnO2表面に導入した。ZrO(NO3)2をSnO2粉体と接触させた時に、HFによりSnO2粒子表面のSn原子および不定比の酸素原子が溶出し、Zr原子あるいはZr原子と結合した酸素により置換されるはずである。また洗浄を施したため、Zr塩の水溶液が除去され、SnO2表面にZrO2粒子は形成されないはずである。   The substitution of Sn atom defects by Zr atoms and the substitution of surface oxygen defects by oxygen bound to Zr atoms can be estimated from the method for manufacturing the gas sensor. The inventor has contacted an aqueous solution of a mixture of HF and ZrO (NO3) 2 with a monodispersed SnO2 powder calcined at 700 ° C., and then washed and calcined to remove Zr atoms or oxygen bound to Zr atoms. It was introduced on the surface of SnO2. When ZrO (NO3) 2 is contacted with SnO2 powder, HF should elute Sn atoms and non-stoichiometric oxygen atoms on the surface of SnO2 particles and replace them with Zr atoms or oxygen bound to Zr atoms. Further, since the washing was performed, the aqueous solution of Zr salt should be removed, and ZrO2 particles should not be formed on the SnO2 surface.

ガス感度として、湿潤空気(3vol%H2O)でのCO感度とH2感度を、ガスセンサ温度が300℃及び350℃で測定した。COに対してもH2に対しても、Zr原子によるSn原子の表面置換により、感度は著しく向上した(図4)。以上のように、この発明ではSnO2粒子表面のSn原子の一部をZr原子で置換することにより、湿潤雰囲気下においてガスセンサの感度を向上させる。   As gas sensitivities, CO sensitivity and H2 sensitivity in humid air (3vol% H2O) were measured at gas sensor temperatures of 300 ° C and 350 ° C. Both CO and H2 showed markedly improved sensitivity due to surface substitution of Sn atoms with Zr atoms (Fig. 4). As described above, in the present invention, the sensitivity of the gas sensor in a wet atmosphere is improved by substituting a part of Sn atoms on the surface of SnO2 particles with Zr atoms.

実施例のガスセンサの断面図Sectional drawing of the gas sensor of an Example 300℃での比較例(HF-SnO2)と実施例(Zr-SnO2)での、抵抗値の酸素分圧依存性を示す特性図Characteristic diagram showing oxygen partial pressure dependence of resistance value in Comparative Example (HF-SnO2) and Example (Zr-SnO2) at 300 ° C 350℃での比較例(HF-SnO2)と実施例(Zr-SnO2)での、抵抗値の酸素分圧依存性を示す特性図Characteristic diagram showing oxygen partial pressure dependence of resistance value in Comparative Example (HF-SnO2) and Example (Zr-SnO2) at 350 ° C 実施例と比較例の、300℃及び350℃での、H2及びCOへの感度を示す特性図Characteristic diagram showing sensitivity to H2 and CO at 300 ° C. and 350 ° C. of Example and Comparative Example

以下に本発明を実施するための最適実施例を示す。   The best examples for carrying out the present invention are shown below.

Zrで表面のSn原子の一部を置換したSnO2ナノ粉体(Zr表面修飾SnO2ナノ粉体)を、以下のようにして作成した。SnCl4水溶液(濃度1M)をNH4HCO3により中和し、撹拌後に遠心分離により沈殿を分離し、遊離のCl-イオンを除去した。200℃で2時間水熱処理し、乾燥後に空気中700℃で焼成し、1次粒子が単分散しているSnO2粉体を得た。SnO2の平均一次粒子径は16nmであった。 SnO2 nanopowder (Zr surface-modified SnO2 nanopowder) in which some of the surface Sn atoms were replaced with Zr was prepared as follows. The SnCl4 aqueous solution (concentration 1M) was neutralized with NH4HCO3, and after stirring, the precipitate was separated by centrifugation to remove free Cl - ions. Hydrothermal treatment was carried out at 200 ° C. for 2 hours, dried and then calcined in air at 700 ° C. to obtain SnO 2 powder in which primary particles were monodispersed. The average primary particle size of SnO2 was 16 nm.

HFとZrO(NO3)2の混合水溶液と上記のSnO2粉体とを混合し、1時間撹拌した。HF濃度は約5mass%とし、ZrO(NO3)2濃度は0.05M,0.1M,0.4Mの3種類とした。撹拌後に脱イオン水を加えて遠心分離し、遊離のZrイオン、フッ素イオンを除去した。次いで乾燥を施し、空気中600℃で焼成し、Zr表面修飾SnO2ナノ粉体とした。比較例として、ZrO(NO3)2を含まないHF水溶液により同様に処理し、遠心分離と焼成とを施したSnO2ナノ粉体を調製した。   A mixed aqueous solution of HF and ZrO (NO3) 2 was mixed with the above SnO2 powder and stirred for 1 hour. The HF concentration was about 5 mass% and the ZrO (NO3) 2 concentrations were three types of 0.05M, 0.1M and 0.4M. After stirring, deionized water was added and the mixture was centrifuged to remove free Zr ions and fluorine ions. Then, it was dried and calcined in air at 600 ° C. to obtain a Zr surface-modified SnO 2 nanopowder. As a comparative example, SnO2 nanopowder was prepared by subjecting it to the same treatment with an HF aqueous solution containing no ZrO (NO3) 2, followed by centrifugation and firing.

Zr表面修飾SnO2ナノ粉体と比較例のSnO2ナノ粉体のX線回折パターンを測定したが、いずれもSnO2のピークのみが検出され、ZrO2のピークは検出できなかった。原子発光法により、各SnO2粉体のZr原子濃度(Sn原子濃度とZr原子濃度の合計を100at%とする)を測定した。Zr塩の仕込み濃度とZr原子濃度の関係を表1に示す。Zr原子濃度は仕込み濃度に比例せず、またHFとZrO(NO3)2の混合水溶液中のZr原子の一部しか、SnO2中に移行していなかった。さらにZr表面修飾SnO2ナノ粉体を電子顕微鏡で観察しても、ZrO2に相当する粒子は観察できなかった。調製方法の点からは、Zr塩の水溶液との接触後に遠心分離を施しているので、Zr溶液の液滴は存在せず、ZrO2粒子を形成できないはずである。   The X-ray diffraction patterns of the Zr surface-modified SnO2 nanopowder and the SnO2 nanopowder of the comparative example were measured. In both cases, only the SnO2 peak was detected, and the ZrO2 peak could not be detected. The Zr atom concentration of each SnO2 powder (the total of the Sn atom concentration and the Zr atom concentration is 100 at%) was measured by the atomic emission method. Table 1 shows the relationship between the charged concentration of Zr salt and the Zr atom concentration. The Zr atom concentration was not proportional to the charged concentration, and only some of the Zr atoms in the mixed aqueous solution of HF and ZrO (NO3) 2 were transferred to SnO2. Furthermore, even when the Zr surface-modified SnO2 nanopowder was observed with an electron microscope, particles corresponding to ZrO2 could not be observed. From the viewpoint of the preparation method, since the centrifugal separation is performed after the contact with the aqueous solution of Zr salt, there should be no droplets of the Zr solution and ZrO2 particles should not be formed.

これらのことは、ZrがZrO2として担持されているのではなく、ZrがSnO2粒子表面のSn欠陥を置換する、あるいはSnO2表面の酸素欠陥をZr原子と結合した酸素で置換してSnO2粒子表面に存在することを示している。表面修飾前のSnO2は700℃で焼成されていることから、その後のHFによる処理と600℃の再焼成で、Zr原子がSnO2粒子の中心部まで拡散することは考えにくいので、Zr原子は主としてSnO2粒子の表面に存在すると考えられる。なおZr表面修飾SnO2ナノ粉体の調製方法は任意で、特に用いるZr塩の種類は任意である。   These facts indicate that Zr does not support as ZrO2, but Zr replaces Sn defects on the surface of SnO2 particles, or replaces oxygen defects on the surface of SnO2 with oxygen bonded to Zr atoms, and Indicates that it exists. Since SnO2 before surface modification is calcined at 700 ° C, it is unlikely that Zr atoms will diffuse to the central part of the SnO2 particles by subsequent treatment with HF and recalcination at 600 ° C. It is considered to be present on the surface of SnO2 particles. The method for preparing the Zr surface-modified SnO2 nanopowder is arbitrary, and the type of Zr salt to be used is arbitrary.

表1
Zr塩の仕込み濃度(M) Zr原子濃度(at%)
0.05 0.03
0.1 0.046
0.4 0.13
Table 1
Charged concentration of Zr salt (M) Zr atomic concentration (at%)
0.05 0.03
0.1 0.046
0.4 0.13

Zr表面修飾SnO2ナノ粉体を用いて、図1のガスセンサ2を作成した。アルミナ等の基板4にヒータ6と電極8とを設け、電極8を覆うようにSnO2膜10をスクリーン印刷し、空気中580℃で焼成し、ガスセンサ2とした。なおSnO2膜10の膜厚は約40μmである。12,13はヒータ4と電極8のパッドである。ガスセンサの構造は任意で、例えばMEMSタイプでも良く、ヒータ6を基板4の表面に露出させて電極8を兼用させても良い。   The gas sensor 2 of FIG. 1 was prepared using the Zr surface-modified SnO2 nanopowder. A heater 6 and an electrode 8 were provided on a substrate 4 made of alumina or the like, a SnO2 film 10 was screen-printed so as to cover the electrode 8, and baked at 580 ° C. in air to obtain a gas sensor 2. The thickness of the SnO2 film 10 is about 40 μm. Reference numerals 12 and 13 are pads for the heater 4 and the electrodes 8. The gas sensor may have any structure, for example, a MEMS type, and the heater 6 may be exposed on the surface of the substrate 4 to serve also as the electrode 8.

Zr表面修飾SnO2ナノ粉体にはPd,Pt,Au等の貴金属をさらに担持させても良く、SnO2膜10にアルミナ、シリカ等の第3成分を混合しても良い。またSnO2膜10は厚膜でも薄膜でも良い。Zr表面修飾SnO2ナノ粉体を用いたガスセンサをZr-SnO2で、Zrを含有しないHF水溶液で処理したSnO2ナノ粉体を用いたガスセンサをHF-SnO2で表す。   The Zr surface-modified SnO2 nanopowder may further carry a noble metal such as Pd, Pt, Au or the like, and the SnO2 film 10 may be mixed with a third component such as alumina or silica. The SnO2 film 10 may be thick or thin. A gas sensor using Zr surface-modified SnO2 nanopowder is represented by Zr-SnO2, and a gas sensor using SnO2 nanopowder treated with an HF aqueous solution containing no Zr is represented by HF-SnO2.

図2,図3は、Zr-SnO2(Zr原子濃度0.03at%)とHF-SnO2との、300℃及び350℃での抵抗値の酸素分圧依存性を示す。発明者らが既に発表したように、SnO2表面の酸素の吸着種がO-であれば抵抗値は酸素分圧の1/2乗に線形で、O2-であれば抵抗値は酸素分圧の1/4乗に線形である。300℃ではZr-SnO2、HF-SnO2共に酸素の吸着種はO-(図2)、350℃ではZr-SnO2での吸着種はO2-に変化するが、HF-SnO2ではO-のままであった(図3)。350℃で酸素がO2−として吸着することは、Zr原子濃度が0.046at%、0.13at%でも同様であった。なおZrO2粒子表面に、350℃で酸素がO2-として吸着することはない。従って図3の結果は、ZrがZrO2粒子として存在しているとすると、説明不能である。 2 and 3 show the oxygen partial pressure dependence of the resistance values of Zr-SnO2 (Zr atomic concentration 0.03 at%) and HF-SnO2 at 300 ° C and 350 ° C. As the inventors have already announced, when the oxygen adsorbing species on the SnO2 surface is O , the resistance value is linear to the half power of the oxygen partial pressure, and when O 2 − , the resistance value is the oxygen partial pressure. Is linear to the 1/4 power of. 300 ° C. In the Zr-SnO2, HF-SnO2 both oxygen adsorbed species is O - (2), adsorbed species in the Zr-SnO2 at 350 ° C. is changed to O 2-, but in HF-SnO2 O - remains Was (Fig. 3). The fact that oxygen was adsorbed as O 2− at 350 ° C. was the same even when the Zr atom concentration was 0.046 at% and 0.13 at%. Oxygen is not adsorbed as O 2− at 350 ° C. on the surface of ZrO 2 particles. Therefore, the results in FIG. 3 are unexplainable if Zr exists as ZrO2 particles.

図3は、SnO2粒子表面のSn原子の一部をZr原子により置換すると、酸素の吸着状態が変化することを示している。O-をより活性なO2-により置き換えると、ガス感度も変化する。図4に、湿潤雰囲気(H2O 3vol%)での、水素とCOへの感度を示す。Zr-SnO2はZr原子濃度が0.046at%であったが、他のZr原子濃度でも同様であった。水素、CO共に、Zr原子で表面修飾することにより感度が増し、特にCO感度は大きく増加した。 FIG. 3 shows that when a part of Sn atoms on the surface of SnO2 particles is replaced with Zr atoms, the adsorption state of oxygen changes. O - replacing the more active by O 2- and gas sensitivity also changes. Figure 4 shows the sensitivity to hydrogen and CO in a humid atmosphere (H2O 3vol%). Zr-SnO2 had a Zr atom concentration of 0.046 at%, but the same was true for other Zr atom concentrations. Surface modification of both hydrogen and CO with Zr atoms increased the sensitivity, especially the CO sensitivity.

2 ガスセンサ
4 基板
6 ヒータ
8 電極
10 SnO2膜
12,13 パッド
2 Gas sensor 4 Substrate 6 Heater 8 Electrode 10 SnO2 film 12, 13 Pad

Claims (1)

SnO2とヒータと電極とを備えるガスセンサにおいて、
SnO2表面のSn原子の一部がZr原子により置換され、あるいはSnO2粒子表面の酸素欠陥がZr原子と結合した酸素で置換され、
SnO2での、Zr原子とSn原子の合計に対する、Zr原子の濃度が0.01at%以上0.2at%以下であることを特徴とする、SnO2系ガスセンサ。
In a gas sensor including SnO2, a heater, and an electrode,
Some Sn atoms on the SnO2 surface are replaced by Zr atoms, or oxygen defects on the SnO2 particle surface are replaced by oxygen bound to Zr atoms,
A SnO2-based gas sensor, wherein the concentration of Zr atoms in SnO2 is 0.01 at% or more and 0.2 at% or less with respect to the total of Zr atoms and Sn atoms.
JP2016164568A 2016-08-25 2016-08-25 SnO2-based gas sensor Active JP6687931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164568A JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164568A JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Publications (2)

Publication Number Publication Date
JP2018031696A JP2018031696A (en) 2018-03-01
JP6687931B2 true JP6687931B2 (en) 2020-04-28

Family

ID=61304324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164568A Active JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Country Status (1)

Country Link
JP (1) JP6687931B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133696A (en) * 1974-09-17 1976-03-22 Marukon Denshi Kk Gasukenchisoshi no seizohoho
JPS5926043A (en) * 1982-08-04 1984-02-10 Fuigaro Giken Kk Gas detection element
US5047214A (en) * 1989-03-08 1991-09-10 New Cosmos Electric Co., Ltd. Smell sensing element and smell sensing device
EP0579639B1 (en) * 1991-04-05 1999-01-13 BG plc Tin oxide gas sensors
JP3146111B2 (en) * 1993-11-08 2001-03-12 新コスモス電機株式会社 Gas detection method and gas detection device
JP4659295B2 (en) * 2001-08-27 2011-03-30 ウチヤ・サーモスタット株式会社 Metal oxide semiconductor gas sensor
JP4187506B2 (en) * 2002-11-07 2008-11-26 新コスモス電機株式会社 Package type fuel cell power generator
JP3988999B2 (en) * 2003-06-27 2007-10-10 大阪瓦斯株式会社 Thin film gas sensor and manufacturing method thereof
JP2008128773A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor

Also Published As

Publication number Publication date
JP2018031696A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
Joshi et al. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures
Wang et al. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres
Thirumalairajan et al. Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering
Park et al. Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels
Chen et al. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates
Hu et al. SnO 2 nanorods based sensing material as an isopropanol vapor sensor
Leonardi et al. A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol–gel and electrospinning techniques
Luo et al. Nanocrystalline SnO2 film prepared by the aqueous sol–gel method and its application as sensing films of the resistance and SAW H2S sensor
WO2014171634A1 (en) Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same
Korotcenkov et al. Material design for metal oxide chemiresistive gas sensors
KR101671405B1 (en) Metal/oxide core-shell structure nanoparticle mixed sensing materials for semiconductor gas sensor
Suematsu et al. Surface-modification of SnO 2 nanoparticles by incorporation of Al for the detection of combustible gases in a humid atmosphere
Su et al. Pd-loaded SnO 2 hierarchical nanospheres for a high dynamic range H 2 S micro sensor
Cai et al. Hydrogen sensing performance and its enhanced sensing mechanisms of hollow structured-SnO2 nanospheres activated by noble metal nanoparticles
Yang et al. Synthesis of hierarchical nanosheet-assembled V 2 O 5 microflowers with high sensing properties towards amines
Kim et al. Hierarchically porous PdO-functionalized SnO 2 nano-architectures for exclusively selective, sensitive, and fast detection of exhaled hydrogen
Cuong et al. Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors
Misra et al. Analysis on activation energy and humidity sensing application of nanostructured SnO2-doped ZnO material
Farahani et al. Investigation of room temperature protonic conduction of perovskite humidity sensors
Nag et al. Enhanced gas sensing performance of tin dioxide-based nanoparticles for a wide range of concentrations of hydrogen gas
Yang et al. Improving TiO2 gas sensing selectivity to acetone and other gases via a molecular imprinting method
JP7158680B2 (en) gas sensor
JP6687931B2 (en) SnO2-based gas sensor
Yao et al. A high sensitivity and selectivity n-butanol sensor based on monodispersed Pd-doped SnO2 nanoparticles mediated by glucose carbonization
Stanoiu et al. Networked mesoporous SnO2 nanostructures templated by Brij® 35 with enhanced H2S selective performance

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6687931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250