JP2018031696A - SnO2-BASED GAS SENSOR - Google Patents

SnO2-BASED GAS SENSOR Download PDF

Info

Publication number
JP2018031696A
JP2018031696A JP2016164568A JP2016164568A JP2018031696A JP 2018031696 A JP2018031696 A JP 2018031696A JP 2016164568 A JP2016164568 A JP 2016164568A JP 2016164568 A JP2016164568 A JP 2016164568A JP 2018031696 A JP2018031696 A JP 2018031696A
Authority
JP
Japan
Prior art keywords
sno2
atoms
particles
gas sensor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016164568A
Other languages
Japanese (ja)
Other versions
JP6687931B2 (en
Inventor
憲剛 島ノ江
Kengo Shimanoe
憲剛 島ノ江
穂高 内野
Hodaka Uchino
穂高 内野
麻衣子 西堀
Maiko Nishibori
麻衣子 西堀
賢 渡邉
Ken Watanabe
賢 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2016164568A priority Critical patent/JP6687931B2/en
Publication of JP2018031696A publication Critical patent/JP2018031696A/en
Application granted granted Critical
Publication of JP6687931B2 publication Critical patent/JP6687931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an SnO2-based gas sensor with an increased sensitivity for hydrogen and CO.SOLUTION: A part of the Sn atoms in the surface of SnO2 are replaced by Zr atoms or the oxygen defects of the surface of SnO2 particles are replaced by oxygen which combines with Zr atoms in the SnO2-based gas sensor, so that the ratio of the Zr atoms of the sum of the Zr atoms and the Sn atoms in the SnO2 is set to be in the range of 0.01at% to 0.2at%, both inclusive.SELECTED DRAWING: Figure 4

Description

この発明は、SnO2系ガスセンサの高感度化に関する。   The present invention relates to high sensitivity of a SnO2 gas sensor.

SnO2は代表的なガスセンサ材料であり、さらなる高感度化が求められている。これに関して発明者は、SnO2粒子表面のSn原子欠陥を他の金属原子で置換する、あるいはSnO2粒子表面の酸素欠陥を金属原子と結合した酸素で置換することを検討し、この発明に至った。   SnO2 is a typical gas sensor material, and further enhancement of sensitivity is required. In this regard, the inventor has studied to replace the Sn atom defect on the surface of the SnO2 particle with another metal atom, or to replace the oxygen defect on the surface of the SnO2 particle with oxygen bonded to the metal atom, resulting in the present invention.

関連する先行技術を示す。特許文献1(特許3146111)は、ZrO2をSnO2に0.01〜0.5mol%の割合で担持させと、ガス感度が向上することを報告している。   Related prior art is shown. Patent Document 1 (Patent 3146111) reports that gas sensitivity is improved when ZrO2 is supported on SnO2 at a ratio of 0.01 to 0.5 mol%.

特許3146111Patent 3146111

この発明の課題は、新たな手法によりSnO2系ガスセンサを高感度化することにある。   An object of the present invention is to increase the sensitivity of a SnO2-based gas sensor by a new method.

この発明のSnO2系ガスセンサでは、SnO2とヒータと電極とを備えるガスセンサにおいて、SnO2粒子表面のSn原子欠陥をZr原子で置換すること等により、SnO2表面のSn原子の一部をZr原子により置換し、あるいはSnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換する。Zr原子とSn原子の合計に対する、Zr原子の濃度は0.01at%以上0.2at%以下である。この発明では、ZrO2粒子がSnO2粒子の表面に担持されているのではない。SnO2粒子表面のSn原子欠陥をZr原子で置換すると、SnO2表面のSn原子の一部をZr原子により置換したことになる。あるいはまた、SnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換しても、SnO2粒子表面にZr原子を導入することができる。このようにして、SnO2粒子の表面にZr原子を導入し、SnO2粒子表面をZr原子で表面修飾する。Zr原子は主としてSnO2粒子の表面に存在する。SnO2粒子表面でのZr原子の濃度を正確に測定することは困難なので、SnO2全体に対する割合でZr原子の濃度を定める。Zr原子とSn原子の合計に対する、Zr原子の濃度を0.01at%以上0.2at%以下とし、例えば0.02at%以上0.1at%以下とする。   In the SnO2-based gas sensor of the present invention, in a gas sensor including SnO2, a heater, and an electrode, by replacing Sn atom defects on the surface of SnO2 particles with Zr atoms, etc., a part of Sn atoms on the surface of SnO2 is replaced with Zr atoms. Alternatively, oxygen defects on the surface of SnO2 particles are replaced with oxygen bonded to Zr atoms. The concentration of Zr atoms with respect to the total of Zr atoms and Sn atoms is 0.01 at% or more and 0.2 at% or less. In the present invention, ZrO2 particles are not supported on the surface of SnO2 particles. When the Sn atom defect on the SnO2 particle surface is replaced with a Zr atom, a part of the Sn atom on the SnO2 surface is replaced with a Zr atom. Alternatively, Zr atoms can be introduced to the surface of SnO2 particles by replacing oxygen defects on the surface of SnO2 particles with oxygen bonded to Zr atoms. In this way, Zr atoms are introduced into the surface of SnO2 particles, and the surface of SnO2 particles is modified with Zr atoms. Zr atoms are mainly present on the surface of SnO2 particles. Since it is difficult to accurately measure the concentration of Zr atoms on the surface of SnO2 particles, the concentration of Zr atoms is determined as a percentage of the total SnO2. The concentration of Zr atoms with respect to the total of Zr atoms and Sn atoms is set to 0.01 at% to 0.2 at%, for example, 0.02 at% to 0.1 at%.

ZrO2粒子をSnO2粒子が担持しているのではなく、Zr原子によりSn原子が置換されている、あるいはSnO2粒子表面の酸素欠陥をZr原子と結合した酸素で置換されていることは、
・ XRDでZrO2のピークが検出できないこと、及び
・ Zr原子の導入によりSnO2への酸素の吸着種が変化することにより、裏付けられている。即ち、Zr原子の導入により、空気中350℃での酸素の吸着種はOからO2-へ変化する(図3)。この温度でZrO2表面に酸素がO2−として吸着することはないので、ZrO2粒子がSnO2粒子に担持されているとすると説明が不能である。
ZrO2 particles are not carried by SnO2 particles, but Sn atoms are substituted by Zr atoms, or oxygen defects on the surface of SnO2 particles are substituted by oxygen bonded to Zr atoms,
• This is supported by the fact that the ZrO2 peak cannot be detected by XRD, and that the oxygen adsorption species on SnO2 changes due to the introduction of Zr atoms. That is, the introduction of Zr atoms changes the oxygen adsorption species at 350 ° C. in air from O to O 2− (FIG. 3). Since oxygen is not adsorbed as O 2− on the ZrO 2 surface at this temperature, it is impossible to explain that the ZrO 2 particles are supported on the SnO 2 particles.

Zr原子によるSn原子欠陥の置換や、Zr原子と結合した酸素による表面酸素欠陥の置換が生じていることは、ガスセンサの製造方法からも推定できる。発明者は、HFとZrO(NO3)2の混合物水溶液を700℃で焼成した単分散のSnO2粉体と接触させた後に、洗浄と焼成を施すことにより、Zr原子あるいはZr原子と結合した酸素をSnO2表面に導入した。ZrO(NO3)2をSnO2粉体と接触させた時に、HFによりSnO2粒子表面のSn原子および不定比の酸素原子が溶出し、Zr原子あるいはZr原子と結合した酸素により置換されるはずである。また洗浄を施したため、Zr塩の水溶液が除去され、SnO2表面にZrO2粒子は形成されないはずである。   The substitution of Sn atom defects by Zr atoms and the substitution of surface oxygen defects by oxygen bonded to Zr atoms can also be estimated from the gas sensor manufacturing method. The inventor made contact with a monodispersed SnO2 powder calcined at 700 ° C. with a mixed aqueous solution of HF and ZrO (NO3) 2, and then washed and calcined to obtain Zr atoms or oxygen bonded to Zr atoms. It was introduced on the SnO2 surface. When ZrO (NO3) 2 is brought into contact with SnO2 powder, Sn atoms and non-stoichiometric oxygen atoms on the surface of SnO2 particles are eluted by HF and should be replaced by Zr atoms or oxygen bonded to Zr atoms. In addition, since the Zr salt aqueous solution was removed because of the cleaning, ZrO2 particles should not be formed on the SnO2 surface.

ガス感度として、湿潤空気(3vol%H2O)でのCO感度とH2感度を、ガスセンサ温度が300℃及び350℃で測定した。COに対してもH2に対しても、Zr原子によるSn原子の表面置換により、感度は著しく向上した(図4)。以上のように、この発明ではSnO2粒子表面のSn原子の一部をZr原子で置換することにより、湿潤雰囲気下においてガスセンサの感度を向上させる。   As gas sensitivity, CO sensitivity and H2 sensitivity in wet air (3vol% H2O) were measured at gas sensor temperatures of 300 ° C and 350 ° C. For both CO and H2, the sensitivity was remarkably improved by surface substitution of Sn atoms with Zr atoms (Fig. 4). As described above, in the present invention, the sensitivity of the gas sensor is improved in a humid atmosphere by substituting some of the Sn atoms on the surface of the SnO2 particles with Zr atoms.

実施例のガスセンサの断面図Sectional view of the gas sensor of the embodiment 300℃での比較例(HF-SnO2)と実施例(Zr-SnO2)での、抵抗値の酸素分圧依存性を示す特性図Characteristic diagram showing oxygen partial pressure dependence of resistance in Comparative Example (HF-SnO2) and Example (Zr-SnO2) at 300 ° C 350℃での比較例(HF-SnO2)と実施例(Zr-SnO2)での、抵抗値の酸素分圧依存性を示す特性図Characteristic diagram showing the oxygen partial pressure dependence of the resistance value in the comparative example (HF-SnO2) and the example (Zr-SnO2) at 350 ° C 実施例と比較例の、300℃及び350℃での、H2及びCOへの感度を示す特性図Characteristic chart showing sensitivity to H2 and CO at 300 ° C and 350 ° C in Examples and Comparative Examples

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

Zrで表面のSn原子の一部を置換したSnO2ナノ粉体(Zr表面修飾SnO2ナノ粉体)を、以下のようにして作成した。SnCl4水溶液(濃度1M)をNH4HCO3により中和し、撹拌後に遠心分離により沈殿を分離し、遊離のCl-イオンを除去した。200℃で2時間水熱処理し、乾燥後に空気中700℃で焼成し、1次粒子が単分散しているSnO2粉体を得た。SnO2の平均一次粒子径は16nmであった。 A SnO2 nanopowder (Zr surface-modified SnO2 nanopowder) in which a part of Sn atoms on the surface was substituted with Zr was prepared as follows. SnCl4 solution (concentration 1M) neutralized by NH4HCO3, separating the precipitate by centrifugation after stirring, free Cl - was removed ions. Hydrothermal treatment was performed at 200 ° C. for 2 hours, dried, and then fired in air at 700 ° C. to obtain SnO 2 powder in which primary particles were monodispersed. The average primary particle diameter of SnO2 was 16 nm.

HFとZrO(NO3)2の混合水溶液と上記のSnO2粉体とを混合し、1時間撹拌した。HF濃度は約5mass%とし、ZrO(NO3)2濃度は0.05M,0.1M,0.4Mの3種類とした。撹拌後に脱イオン水を加えて遠心分離し、遊離のZrイオン、フッ素イオンを除去した。次いで乾燥を施し、空気中600℃で焼成し、Zr表面修飾SnO2ナノ粉体とした。比較例として、ZrO(NO3)2を含まないHF水溶液により同様に処理し、遠心分離と焼成とを施したSnO2ナノ粉体を調製した。   A mixed aqueous solution of HF and ZrO (NO3) 2 and the above SnO2 powder were mixed and stirred for 1 hour. The HF concentration was about 5 mass%, and the ZrO (NO3) 2 concentration was 0.05M, 0.1M, and 0.4M. After stirring, deionized water was added and the mixture was centrifuged to remove free Zr ions and fluorine ions. Next, it was dried and fired at 600 ° C. in air to obtain a Zr surface-modified SnO 2 nanopowder. As a comparative example, SnO2 nanopowder was prepared by performing the same treatment with an HF aqueous solution not containing ZrO (NO3) 2 to perform centrifugation and firing.

Zr表面修飾SnO2ナノ粉体と比較例のSnO2ナノ粉体のX線回折パターンを測定したが、いずれもSnO2のピークのみが検出され、ZrO2のピークは検出できなかった。原子発光法により、各SnO2粉体のZr原子濃度(Sn原子濃度とZr原子濃度の合計を100at%とする)を測定した。Zr塩の仕込み濃度とZr原子濃度の関係を表1に示す。Zr原子濃度は仕込み濃度に比例せず、またHFとZrO(NO3)2の混合水溶液中のZr原子の一部しか、SnO2中に移行していなかった。さらにZr表面修飾SnO2ナノ粉体を電子顕微鏡で観察しても、ZrO2に相当する粒子は観察できなかった。調製方法の点からは、Zr塩の水溶液との接触後に遠心分離を施しているので、Zr溶液の液滴は存在せず、ZrO2粒子を形成できないはずである。   The X-ray diffraction patterns of the Zr surface-modified SnO2 nanopowder and the SnO2 nanopowder of the comparative example were measured. In both cases, only the SnO2 peak was detected, but the ZrO2 peak could not be detected. The Zr atom concentration of each SnO2 powder (the total of the Sn atom concentration and the Zr atom concentration is 100 at%) was measured by the atomic emission method. Table 1 shows the relationship between the Zr salt charge concentration and the Zr atom concentration. The Zr atom concentration was not proportional to the charged concentration, and only a part of the Zr atom in the mixed aqueous solution of HF and ZrO (NO3) 2 was transferred into SnO2. Furthermore, even when the Zr surface modified SnO2 nanopowder was observed with an electron microscope, particles corresponding to ZrO2 could not be observed. From the viewpoint of the preparation method, since the centrifugal separation is performed after the contact with the aqueous solution of the Zr salt, there should be no droplets of the Zr solution and ZrO2 particles should not be formed.

これらのことは、ZrがZrO2として担持されているのではなく、ZrがSnO2粒子表面のSn欠陥を置換する、あるいはSnO2表面の酸素欠陥をZr原子と結合した酸素で置換してSnO2粒子表面に存在することを示している。表面修飾前のSnO2は700℃で焼成されていることから、その後のHFによる処理と600℃の再焼成で、Zr原子がSnO2粒子の中心部まで拡散することは考えにくいので、Zr原子は主としてSnO2粒子の表面に存在すると考えられる。なおZr表面修飾SnO2ナノ粉体の調製方法は任意で、特に用いるZr塩の種類は任意である。   This is because Zr is not supported as ZrO2, but Zr replaces Sn defects on the surface of SnO2 particles, or oxygen defects on the surface of SnO2 are replaced with oxygen bonded to Zr atoms, and SnO2 particles surface. Indicates that it exists. Since SnO2 before surface modification is baked at 700 ° C, it is unlikely that Zr atoms will diffuse to the center of SnO2 particles by subsequent HF treatment and 600 ° C re-baking. Presumably present on the surface of SnO2 particles. The method for preparing the Zr surface-modified SnO2 nanopowder is arbitrary, and the type of Zr salt used is particularly arbitrary.

表1
Zr塩の仕込み濃度(M) Zr原子濃度(at%)
0.05 0.03
0.1 0.046
0.4 0.13
Table 1
Zr salt charge concentration (M) Zr atom concentration (at%)
0.05 0.03
0.1 0.046
0.4 0.13

Zr表面修飾SnO2ナノ粉体を用いて、図1のガスセンサ2を作成した。アルミナ等の基板4にヒータ6と電極8とを設け、電極8を覆うようにSnO2膜10をスクリーン印刷し、空気中580℃で焼成し、ガスセンサ2とした。なおSnO2膜10の膜厚は約40μmである。12,13はヒータ4と電極8のパッドである。ガスセンサの構造は任意で、例えばMEMSタイプでも良く、ヒータ6を基板4の表面に露出させて電極8を兼用させても良い。   A gas sensor 2 shown in FIG. 1 was prepared using Zr surface-modified SnO2 nanopowder. A heater 6 and an electrode 8 were provided on a substrate 4 made of alumina or the like, a SnO2 film 10 was screen-printed so as to cover the electrode 8, and baked in air at 580 ° C. to obtain a gas sensor 2. The film thickness of the SnO2 film 10 is about 40 μm. Reference numerals 12 and 13 denote pads for the heater 4 and the electrode 8. The structure of the gas sensor is arbitrary. For example, a MEMS type may be used, and the heater 6 may be exposed on the surface of the substrate 4 and the electrode 8 may also be used.

Zr表面修飾SnO2ナノ粉体にはPd,Pt,Au等の貴金属をさらに担持させても良く、SnO2膜10にアルミナ、シリカ等の第3成分を混合しても良い。またSnO2膜10は厚膜でも薄膜でも良い。Zr表面修飾SnO2ナノ粉体を用いたガスセンサをZr-SnO2で、Zrを含有しないHF水溶液で処理したSnO2ナノ粉体を用いたガスセンサをHF-SnO2で表す。   The Zr surface-modified SnO2 nanopowder may further carry a noble metal such as Pd, Pt, or Au, and the SnO2 film 10 may be mixed with a third component such as alumina or silica. The SnO2 film 10 may be a thick film or a thin film. The gas sensor using the Zr surface modified SnO2 nanopowder is represented by Zr-SnO2, and the gas sensor using the SnO2 nanopowder treated with an HF aqueous solution not containing Zr is represented by HF-SnO2.

図2,図3は、Zr-SnO2(Zr原子濃度0.03at%)とHF-SnO2との、300℃及び350℃での抵抗値の酸素分圧依存性を示す。発明者らが既に発表したように、SnO2表面の酸素の吸着種がO-であれば抵抗値は酸素分圧の1/2乗に線形で、O2-であれば抵抗値は酸素分圧の1/4乗に線形である。300℃ではZr-SnO2、HF-SnO2共に酸素の吸着種はO-(図2)、350℃ではZr-SnO2での吸着種はO2-に変化するが、HF-SnO2ではO-のままであった(図3)。350℃で酸素がO2−として吸着することは、Zr原子濃度が0.046at%、0.13at%でも同様であった。なおZrO2粒子表面に、350℃で酸素がO2-として吸着することはない。従って図3の結果は、ZrがZrO2粒子として存在しているとすると、説明不能である。 2 and 3 show the oxygen partial pressure dependence of the resistance values at 300 ° C. and 350 ° C. of Zr—SnO 2 (Zr atom concentration: 0.03 at%) and HF—SnO 2. As the inventors have already announced, if the oxygen adsorption species on the SnO2 surface is O , the resistance value is linear to the 1/2 power of the oxygen partial pressure, and if O 2 − , the resistance value is the oxygen partial pressure. Linear to the power of 1/4. 300 ° C. In the Zr-SnO2, HF-SnO2 both oxygen adsorbed species is O - (2), adsorbed species in the Zr-SnO2 at 350 ° C. is changed to O 2-, but in HF-SnO2 O - remains (FIG. 3). The adsorption of oxygen as O 2− at 350 ° C. was the same even when the Zr atom concentration was 0.046 at% and 0.13 at%. Note that oxygen does not adsorb as O 2− at 350 ° C. on the surface of ZrO2 particles. Therefore, the result of FIG. 3 cannot be explained if Zr exists as ZrO2 particles.

図3は、SnO2粒子表面のSn原子の一部をZr原子により置換すると、酸素の吸着状態が変化することを示している。O-をより活性なO2-により置き換えると、ガス感度も変化する。図4に、湿潤雰囲気(H2O 3vol%)での、水素とCOへの感度を示す。Zr-SnO2はZr原子濃度が0.046at%であったが、他のZr原子濃度でも同様であった。水素、CO共に、Zr原子で表面修飾することにより感度が増し、特にCO感度は大きく増加した。 FIG. 3 shows that the adsorption state of oxygen changes when a part of Sn atoms on the surface of SnO2 particles is replaced by Zr atoms. O - replacing the more active by O 2- and gas sensitivity also changes. FIG. 4 shows the sensitivity to hydrogen and CO in a humid atmosphere (H 2 O 3 vol%). Zr-SnO2 had a Zr atom concentration of 0.046 at%, but the same was true for other Zr atom concentrations. For both hydrogen and CO, the sensitivity was increased by surface modification with Zr atoms, and in particular, the CO sensitivity was greatly increased.

2 ガスセンサ
4 基板
6 ヒータ
8 電極
10 SnO2膜
12,13 パッド
2 Gas sensor 4 Substrate 6 Heater 8 Electrode 10 SnO2 film 12, 13 Pad

Claims (1)

SnO2とヒータと電極とを備えるガスセンサにおいて、
SnO2表面のSn原子の一部がZr原子により置換され、あるいはSnO2粒子表面の酸素欠陥がZr原子と結合した酸素で置換され、
SnO2での、Zr原子とSn原子の合計に対する、Zr原子の濃度が0.01at%以上0.2at%以下であることを特徴とする、SnO2系ガスセンサ。
In the gas sensor with SnO2, heater and electrode,
Some of the Sn atoms on the SnO2 surface are replaced with Zr atoms, or oxygen defects on the SnO2 particle surface are replaced with oxygen bonded to the Zr atoms,
A SnO2-based gas sensor, characterized in that the concentration of Zr atoms with respect to the total of Zr atoms and Sn atoms in SnO2 is 0.01 at% or more and 0.2 at% or less.
JP2016164568A 2016-08-25 2016-08-25 SnO2-based gas sensor Active JP6687931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164568A JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164568A JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Publications (2)

Publication Number Publication Date
JP2018031696A true JP2018031696A (en) 2018-03-01
JP6687931B2 JP6687931B2 (en) 2020-04-28

Family

ID=61304324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164568A Active JP6687931B2 (en) 2016-08-25 2016-08-25 SnO2-based gas sensor

Country Status (1)

Country Link
JP (1) JP6687931B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133696A (en) * 1974-09-17 1976-03-22 Marukon Denshi Kk Gasukenchisoshi no seizohoho
JPS5926043A (en) * 1982-08-04 1984-02-10 Fuigaro Giken Kk Gas detection element
US5047214A (en) * 1989-03-08 1991-09-10 New Cosmos Electric Co., Ltd. Smell sensing element and smell sensing device
JPH07174725A (en) * 1993-11-08 1995-07-14 New Cosmos Electric Corp Method and device for detecting gas
JPH1194786A (en) * 1991-04-05 1999-04-09 Bg Plc Tin oxide gas sensor and its production
JP2003065989A (en) * 2001-08-27 2003-03-05 Uchiya Thermostat Kk Metal oxide semiconductor gas sensor
JP2004158340A (en) * 2002-11-07 2004-06-03 New Cosmos Electric Corp Package type fuel cell power plant
JP2005017182A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Thin film gas sensor and method for manufacturing the same
JP2008128773A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133696A (en) * 1974-09-17 1976-03-22 Marukon Denshi Kk Gasukenchisoshi no seizohoho
JPS5926043A (en) * 1982-08-04 1984-02-10 Fuigaro Giken Kk Gas detection element
US5047214A (en) * 1989-03-08 1991-09-10 New Cosmos Electric Co., Ltd. Smell sensing element and smell sensing device
JPH1194786A (en) * 1991-04-05 1999-04-09 Bg Plc Tin oxide gas sensor and its production
JPH07174725A (en) * 1993-11-08 1995-07-14 New Cosmos Electric Corp Method and device for detecting gas
JP2003065989A (en) * 2001-08-27 2003-03-05 Uchiya Thermostat Kk Metal oxide semiconductor gas sensor
JP2004158340A (en) * 2002-11-07 2004-06-03 New Cosmos Electric Corp Package type fuel cell power plant
JP2005017182A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Thin film gas sensor and method for manufacturing the same
JP2008128773A (en) * 2006-11-20 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor

Also Published As

Publication number Publication date
JP6687931B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
Joshi et al. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures
Li et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing
Qin et al. Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application
Kaur et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique
CN110606503B (en) Gold-modified porous tin dioxide micro-nanosheet composite material and preparation method and application thereof
Lin et al. A new type of acetylene gas sensor based on a hollow heterostructure
KR20160014134A (en) Metal/oxide core-shell structure nanoparticle mixed sensing materials for semiconductor gas sensor
Cuong et al. Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors
Park et al. Ethanol gas sensing properties of SnO2-based thin-film sensors prepared by the sol-gel process
Li et al. Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors
Misra et al. Analysis on activation energy and humidity sensing application of nanostructured SnO2-doped ZnO material
Yang et al. Improving TiO2 gas sensing selectivity to acetone and other gases via a molecular imprinting method
Zhang et al. Effect of Al2O3-SiO2 substrate on gas-sensing properties of TiO2 based lambda sensor at high temperature
Godbole et al. Tungsten oxide thin films: Detection and trapping of hazardous gases
Zhang et al. Enhanced triethylamine sensing characteristics of In-doped WO3 cubic nanoblocks at low operating temperature
JP6687931B2 (en) SnO2-based gas sensor
Kharashi et al. Effect of Al2O3 in porous zirconia electrolytes for NO sensing
Yao et al. A high sensitivity and selectivity n-butanol sensor based on monodispersed Pd-doped SnO2 nanoparticles mediated by glucose carbonization
WO2021059839A1 (en) Gas sensor and alkaline earth ferrite production method
Luthra et al. Ethanol sensing characteristics of Zn0. 99M0. 01O (M= Al/Ni) nanopowders
Lee et al. A novel process for fabrication of SnO2-based thick film gas sensors
Pandey et al. Characterization and humidity sensing application of WO3-SnO2 nanocomposite
JP2004203655A (en) Manufacturing method of detection portion of oxygen partial pressure of resistance type oxygen probe
Zhang et al. Comparison of Pt and Pd modified TiO2 gas sensors
Hien et al. Synthesis of high-density poinsettia-like microstructure of CuO by the hydrothermal method and its ethanol sensing properties

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6687931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250