JP2004158340A - Package type fuel cell power plant - Google Patents

Package type fuel cell power plant Download PDF

Info

Publication number
JP2004158340A
JP2004158340A JP2002323939A JP2002323939A JP2004158340A JP 2004158340 A JP2004158340 A JP 2004158340A JP 2002323939 A JP2002323939 A JP 2002323939A JP 2002323939 A JP2002323939 A JP 2002323939A JP 2004158340 A JP2004158340 A JP 2004158340A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
sensor
hydrogen gas
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323939A
Other languages
Japanese (ja)
Other versions
JP4187506B2 (en
Inventor
Yoshinori Nishigami
佳典 西上
Masahiro Tagami
昌弘 田上
Masakatsu Shirouchi
正勝 城内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2002323939A priority Critical patent/JP4187506B2/en
Publication of JP2004158340A publication Critical patent/JP2004158340A/en
Application granted granted Critical
Publication of JP4187506B2 publication Critical patent/JP4187506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package type fuel cell power plant equipped with a gas detecting system detecting gas which may leak in the power plant together with the kind of the gas in simple constitution. <P>SOLUTION: A semiconductor type gas sensor having individually selective sensitivity to material fuel gas supplied to a reformer and hydrogen gas is installed in a package, and gas leakage is detected based on an electrical output. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原燃料ガスを受け入れ、前記原燃料ガスを改質して水素ガスを得る改質装置と、前記改質装置から生成される前記水素ガスを受け入れるとともに、別途、酸素ガスを受け入れて働く燃料電池と、前記燃料電池により発電される電力を外部出力する外部出力装置とを備え、
前記改質装置、燃料電池及び外部出力装置をパッケージ内に収容したパッケージ型燃料電池発電装置に関する。
【0002】
【従来の技術】
この種のパッケージ型燃料電池発電装置は、現在、実用段階にあるものであり、オンサイト形態で設置される燃料電池発電装置、さらに、自動車に搭載され、メタンを主成分とする都市ガスを燃料とする燃料電池発電装置が、この種のものに該当する。
【0003】
パッケージ型燃料電池発電装置の従来技術として、特許文献1に開示されるものがある。この先行技術では、原燃料タンク、燃料改質装置、燃料電池、電力変換装置等を、所定のパッケージ内に備え、断熱隔壁を設けることで、制御系等への熱影響を適切に制御している。
この従来技術にあっては、パッケージ内での、ガスの管理(具体的には原燃料ガス、改質後に得られる水素ガスの漏れ監視)に関しては、何ら、述べられていない。
【0004】
一方、燃料電池にあっては、発電に水素ガスが使用されるため、従来、この水素ガスの漏れを好適に監視する試みが成されている。
例えば、特許文献2に開示の技術にあっては、燃料電池本体への水素供給系の近傍に配置するのに好ましい水素センサが提案されている。
特許文献3に開示の技術にも、同様な趣旨の水素センサが提案されており、燃料電池システムの水素ガス検出装置に適応する例が示されている。
これら技術にあっては、水素ガスが単独で監視対象とされる。
燃料電池発電装置にあっては、燃料電池の他に改質装置が装備されるが、この改質装置に供給される原燃料ガスの監視も必要となる。この問題に対する従来技術として、特許文献4に開示される技術にあっては、改質器外部に可燃性ガスの漏洩を検知するための可燃性ガス検知器(又は、火災検知器)と、改質器異常信号発生手段とを備えることが開示されている。この従来技術では、検知対象となっているガスのガス種は特定されていない。
【0005】
【特許文献1】
特願平5−290868号公報明細書
【0006】
【特許文献2】
特開2001−27626号公報(請求項7、段落番号0031)
【0007】
【特許文献3】
特開2002−22700号公報(段落番号0044)
【0008】
【特許文献4】
特開2001ー189161号公報(段落番号0039)
【0009】
【発明が解決しようとする課題】
以上説明してきたように、従来型の燃料電池発電装置にあっては、燃料電池をパッケージ内に収容した構成とするものにおいて、内部のガス管理に関しては、確立された技術は存在せず、水素ガス、原燃料ガス等、それぞれが個別に監視される状況にあった。
【0010】
しかしながら、水素ガスと原燃料ガスとを別個に検出する場合は、センサが複数種となるとともに、その設置空間も大きくなる。また、各ガスに対する検出系が複数となるため、比較的複雑な判定構造が必要となり好ましくない。
パッケージ型燃料電池発電装置が、元来、オンサイト型であり、各家庭等に将来的に設置されるものであることを考えると、できるだけ維持管理が容易で、構成がシンプルであり、その寿命が長いものであることが好ましい。
【0011】
本発明の目的は、燃料電池発電装置としてパッケージ型であり、パッケージ内に漏れることがあるガスを、その種別ととともに、簡易な構成で検出できるガス検出系を備えた装置を得ることにある。
【0012】
【課題を解決するための手段】
上記目的を達成するための本発明に係るパッケージ型燃料電池発電装置の特徴構成は、請求項1に記載したごとく、
原燃料ガス及び水素ガスに対して、各別に選択的な感度を有する半導体式ガスセンサをパッケージ内に備えるとともに、半導体式ガスセンサの電気的出力に基づいて、いずれかの前記ガスを検知する検知手段を備え、原燃料ガス及び水素ガスを検出可能に構成されることにある。
【0013】
本願のパッケージ型燃料電池発電装置で使用する半導体式ガスセンサにあっては、改質装置に送り込まれる原燃料ガス(例えばメタンを主成分とする都市ガス)に対して感応するとともに、燃料電池の燃料としての水素ガスに感応するものがある。
そして、この種のものにあっては、そのガス種に従って、感応形態が異なり、検知時を調整することで、両ガスを各別に選択検知できる。
【0014】
従って、本願にあっては、この種の半導体式ガスセンサをパッケージ内に備えるとともに、その電気的出力を得、検知手段により、各ガスを検知する。
この構成にあっては、パッケージ内に漏れ出すことがあるガスを、単一の検知系で検出することで、結果的に、簡易な構造でありながら、燃料電池発電装置にとって充分なガス監視を実行できる。この場合、系が簡単なだけに、その維持・管理も容易である。
【0015】
さて、上記パッケージ型燃料電池発電装置において、請求項2に記載されているように、前記半導体式ガスセンサに対してパルス通電するパルス通電手段を備え、前記半導体式ガスセンサに対する通電をパルス通電方式で実行するとともに、ガス検知をパルス通電時間内に実行することが好ましい。
【0016】
半導体式ガスセンサは、センサ素子が加熱された状態でガスを検出する。従って、センサ素子を通電方式等として、センサ温度を所定の温度域としておくことも必要となる。しかしながら、常時通電状態では、電池給電方式のものでは、その電池寿命に限界がある。一方、燃料電池にあっては、発電が行われているのであるから、そこから電力の供給を受けることも考えられるが、発電を実行したい時期と、ガス漏れ監視が必要となる時期とが、必ずしも、一致するものではない。従って、電池形態を選択することとなるが、電池の寿命を考えると、常時通電は好ましくなく、パルス通電形式を採用することとなる。
【0017】
一方、半導体式ガスセンサの感度は、原燃料ガス及び水素ガスに対して、異なったセンサ温度で異なった感応特性を示し、ガス種による各別的な選択検知が可能となる。従って、所定の加熱状態に到達するまでの複数の温度域において、原燃料ガス、水素ガスを検出する場合、パルス通電形態を取り、センサ素子が定常温に加熱されるまでに、本願が目的とする2種のガスを検知するようにすることで、結果的に、本願の目的を好適に達成できる。
【0018】
即ち、請求項3に記載されているように、単一回のパルス通電時間内における前記ガス検知に際し、
前記原燃料ガスに対する原燃料ガス検知時間域と、前記水素ガスに対する水素ガス検知時間域とを各別に備え、
前記原燃料ガス検知時間域において前記原燃料ガスを、前記水素ガス検知時間域において前記水素ガスを検知するようにすることもできる。
【0019】
この点に関してさらに詳細に説明すると、例えば水素ガスは、ガス検知素子の温度が未だ上昇していない状態で高感度を示すものがあり、メタンガス等の原燃料ガスに対しては、ガス検知素子が所定の加熱状態に到達して、その選択感度を発揮する。従って、水素ガスに対する検知時間域と、原燃料ガスに対する検知時間域とを個別に設定しておき、単一のパルス通電時間内で、両者のガスに対する感応をみることで、漏れガスの可能性を確実に検出することができる。
【0020】
さて、請求項4に記載されているように、前記半導体式ガスセンサが、ランタン及びジルコニウムが含有された酸化スズ焼結体を備えて構成され、熱的な初期過渡応答域において前記水素ガスを検知し、前記熱的な初期過渡応答後の定常出力域において、前記原燃料ガスを検知する構成とすることが好ましい。
半導体式ガスセンサにおいて、検知対象のガスと接触する感応部に、ランタン及びジルコニウム、あるいはそれらの化合物が例えば酸化物として含有された酸化スズ焼結体を備えたものにあっては、これが、水素およびメタンに感応する。従って、この種のセンサを使用することで、本願の検知目的を達成できるとともに、パルス通電に於けるセンサ素子の温度の変化状況から、水素ガスの検知時間域及び原燃料ガスの検知時間域を特定すると、上記のようになり、同様に、水素ガス、原燃料ガスを選択的に検知できる。
【0021】
また、請求項5に記載されているように、前記半導体式ガスセンサが、アルカリ土類元素の少なくとも一種が含有された酸化スズ焼結体を備えて構成されるものであってもよい。
即ち、検知対象のガスと接触する感応部に、アルカリ土類元素の少なくとも一種、あるいはそれらの化合物が例えば酸化物として含有された酸化スズ焼結体にあっては、これが、アルコールおよび水素に感応する。従って、この種のセンサを使用することで、本願の検知目的を達成できる。
【発明の実施の形態】
以下、この発明を実施例に基づいて説明する。
(パッケージ型燃料電池発電装置の概要)
図1は、この発明の実施例になるパッケ−ジ型燃料電池発電装置1を簡略化して示す立面図である。
【0022】
同図に示すように、このパッケージ型燃料電池発電装置1は、所定のパッケージ2内に、原燃料ガスタンク3(具体的には、都市ガスタンク)、この原燃料ガスタンク3から原燃料ガスの供給を受ける改質装置4、この改質装置4により生成される水素ガスを一方のガスとして働く燃料電池5、この燃料電池5から出力される電力を、所定の交流に変換する外部出力装置としての電力変換装置6、各装置からの排熱を利用するための排熱回収装置7等を備えて構成されている。
さらに、これら機器の作動状態を検知するための計測器(図示せず)からの情報が統合され、各機器への制御指令を出力する制御装置9が備えられている。
【0023】
これら計測器の一種に、本願独特のガス検知器10が備えられており、このガス検知器10から遮断出力が出力された場合に、基本的に燃料電池発電装置1を停止動作への移行が開始されるように構成されている。
【0024】
以下、ガス検知器10の詳細を、図2〜図7に基づいて説明する。
(ガス検知器の概要)
ガス検知器10は、半導体式ガスセンサ11と、この半導体式ガスセンサ11にパルス通電するパルス通電手段12と、パルス通電状態にある半導体式ガスセンサ11の電気的出力に基づいてガスを検知する検知手段13とを備えて構成されている。
【0025】
このパルス通電手段12の逐次的な通電駆動、検知手段13により検知される検知結果の処理、さらには、それに伴う遮断出力に関連した処理は、ガス検知器10に於ける制御手段としてのメインCPU16が、これらを実行する。
【0026】
(半導体式ガスセンサ)
当該半導体式ガスセンサ11は、通電状態で検知対象ガスとの接触によって電気抵抗が変化する。この変化を捉えることで検知対象ガス(水素ガス及び原燃料ガスとしてのメタンガス)を検知できる。その駆動は、例えば電池によって行われる。
【0027】
ガス検知器10では、半導体式ガスセンサ11(以下、単に「センサ11」と称する)の抵抗値の変化をホイートストンブリッジ等の所定の検出用電気回路14を介して検出する。この検出値を、予め求められている検知対象ガスの濃度等に関するデーター(しきい値)と比較することで検知対象ガスの有無等が判断できる。
【0028】
前記センサ11として使用するセンサ素子は、例えば、特開平10−142183号公報に示される可燃性ガス検知素子に類似のものである。
このセンサ11の概要を図7に示す。センサ11は、酸化スズを水に分散・混合させてペースト状にしたものを白金線コイル11bに塗布し、乾燥した後、400℃で1時間焼成して得た酸化スズ焼結体11aを備えている。
【0029】
前記酸化スズ焼結体11aには、硝酸ランタン及び硝酸ジルコニルの混合溶液を所定量を含浸させる。これにより、前記酸化スズ焼結体に、ランタン化合物が酸化ランタン(La)換算で0.9mol%、ジルコニウム化合物が酸化ジルコニウム(ZrO)換算で1.8mol%含有する感応部11cが形成されている。
【0030】
(ガス検知)
ガス検知器10は、前述のように電池電源15によって駆動される。従って、その寿命を考慮して、省電力効果を得るべく、素子の加熱に関しては、パルス通電方式とする。
【0031】
(水素ガス検知と原燃料ガス検知)
パルス通電に関しては、所定の周期で、パルス状の通電(図6に示す「印加電圧」の電圧パターン参照)を繰り返しながら、通電時に、水素ガス及びメタンガスに対してそれぞれ設定される所定の検知時間域で、センサ11の電気的出力を検出して、ガス検知を行う。即ち、パルス通電及びこれに随伴のガス検知を、水素ガスに対して実行する水素ガス検知と、メタンガスに対して実行する原燃料ガス検知との両方を単一のパルス通電動作時に実行する。
【0032】
図3、4に、当該ガス検知器によるパルス通電の形態を示す。図3が、初期始動時の動作状態を示しており、図4が、始動を終えた後の通常の動作状態を示している。この通常の動作状態で、監視が実行される。
これらの図において横軸は時間を示しており、縦軸は、それぞれ左端に示す、ガス濃度又は動作を示している。また、パルス信号の欄に示す、各縦棒が、それぞれ個別のパルス通電に対応している。
【0033】
(初期始動時のパルス通電動作)
図3にも示すように、初期始動時にあっては、駆動周期10秒毎にパルス通電で実行される。この動作形態で、初期安定に1分を要し、その後、2分の点検動作を実行する。この点検に際しては、作業者が点検用のガスであるメタンガスを充填したボンベ(外観上は通常のライターと変わりはない)から、メタンガスを所定箇所に吹きつけて、ガス検知器が正常に働くかどうかを点検する。問題がない場合は、以降、図4に示す通常動作に移行する。
【0034】
(通常動作時のパルス通電動作)
図4に基づいて説明する。
この図は、上から、「ガス濃度の変化状況」、「センサの駆動状況(具体的にはパルス通電の通電頻度の変化状況)」、「警報の点灯状況」、「遮断出力の出力状況」を示している。
【0035】
「ガス濃度の変化状況」としては、濃度の上昇形態を二例示している。
一度目の濃度上昇は、比較的長く継続していることから、実際に、遮断操作が必要な状況を代表するものである。
二度目の濃度上昇は、継続時間が短いことより、センサ側の誤動作の可能性がある状況を代表するものである。これらは、基本的に別個の例である。
【0036】
(パルス通電制御)
「センサの駆動状況」を示す図からも判明するように、パルス通電の頻度制御は、比較的粗な「通常モード」と、密な「警戒モード」との間で切り替え制御される。「通常モード」では、駆動周期60sでパルス通電が繰り返される。「警戒モード」では、駆動周期10sでパルス通電が繰り返される。
両モードにおいて、単発のパルス通電は、後述するように、共に、2.5sである。
「通常モード」から「警戒モード」への切り替えは、単一パルス通電回に対して、ガス濃度が警戒レベルを超えた時点で実行され、逆方向の切り替えは、「警戒レベル」を超えない状態が4回連続した状況で実行される。この動作モードの切り替えは、後述するガス検知器10内に備えられる制御手段としてのメインCPU16により行われる。
【0037】
(パルス通電時間内のガス検知)
各パルス通電内でのガス検知に関して、図5、6、7に基づいて説明する。
パルス通電の通電時間T0は前述のように2.5秒とし、上記「通常モード」及び「警戒モード」で、この通電時間のパルス通電が実行される。パルス通電はパルス通電手段12によって制御され、モードの切り替えは、メインCPU16による。
【0038】
図6「検出信号」もしくは、図5(イ)(ロ)の縦方向短破線で示すように、単一のパルス通電におけるセンサ出力の取り込みは以下のように行われる。
水素ガス検知では、通電開始後1秒経過時点までセンサ出力をモニターし、1秒経過後(水素ガス検知時間域)のセンサ出力を取り込む。これに対して、メタンガス検知は、通電開始後2.5秒が経過するまで、即ち、通電終了までセンサ出力をモニターし、通電終了間際(メタンガス検知時間域)のタイミングでセンサ出力を取り込む。
尚、これらの時間は、センサ2の種類あるいは検知対象ガスの種類などに応じて適宜設定可能である。
【0039】
このように、水素ガス検知とメタンガス検知とを異なる時間帯で行う理由は、以下のとおりである。
図5において、横軸に時間をとり、縦軸にセンサ出力をとって、センサ出力の変化を示した。このうち図5(イ)は、水素ガス検知におけるセンサ出力の変化の態様を示すものであり、図5(ロ)は、メタンガス検知におけるセンサ出力の変化の態様を示すものである。
対応するパルス通電時の「センサの表面温度」、「印加電圧」、「検出信号・時間」は図6に示されている。
【0040】
0時がパルス通電の開始時を示し、2.5secがパルス通電の終了時を示している。図5において、よこ方向に渡る破線は、ベース出力、即ち、特定のガスが存在しない空気中でのセンサ出力を示す。実線は、水素5000ppmに対するセンサ出力を示す。一点鎖線は、メタン4000ppmに対するセンサ出力を示す。ここに示した濃度の数値は、通常、これらのガスが検出される場合に、よく得られる値である。
また、図6に示す「表面温度」からも判るように、表面温度に関して、0時から約2sまでに熱的な過渡応答が起こっており、それ以降、2.5sまで定常出力域となっていることが判る。
【0041】
図5(イ)に注目すると、この半導体式ガスセンサの感応特性は、検知対象であるガスによってタイプを分けることができる。
一つは、通電処理の初期立ち上がりs1及び出力降下s2を経て、ガス濃度に対応した一定の出力値に安定化するものである。この種のガスとしては、一点鎖線で示すメタンが該当する。この場合は、通電時間が長いほどセンサ出力が安定する。
【0042】
もう一つは、初期立ち上がり及び出力降下を経て、比較的短時間に高感度(メタンガスの感度度より高い感度を示す時間域)を示し、やがて感度が低下するものである。つまり、この種のガスとしては、実線の水素ガスが該当する。この場合は、センサの温度が十分に上昇する前の極めて短時間の間しか適切なセンサ出力を得ることができない。
【0043】
図5(イ)から明らかなごとく、通電初期の時間において、水素ガスに対する出力がメタンガスに対する出力に勝っている。前述のごとく、ここでは水素ガスの濃度およびメタンガスの濃度は、ごく一般的な値に設定してある。
よって、通電初期では、メタンガスに対して水素ガスが優先的に検知される。
このような、水素ガスに対する出力がメタンガスに対する出力よりも高くなる時間域を高感度時間域Thと呼ぶ。従って、この時間域に於ける水素ガス側のしきい値は、一般的なガス濃度のメタンガスによる出力より大きく採る。
【0044】
図5(イ)(ロ)から明らかなごとく、この高感度時間域Thを超えると、通電停止までは、水素ガスに対してメタンガスが優先的に検知できる。この時間域に於けるメタンガス側のしきい値は、一般的なガス濃度の水素ガスによる出力より大きく採る。
【0045】
上記特性を利用した検知を、本願にあっては、ガス検知器10に備えた検知手段13が行う。
当該検知手段13は、電気的出力の取り込みを行う他、ガス濃度に対応するデーターへの変換を実行し、メインCPU16への出力等を行う。
即ち、パルス通電が始まると、時間経過に従って、図6の「検出信号」で示す時間域のセンサ出力が取り込まれ、水素ガス検知時間域のセンサ出力を水素ガスに対応するものと、メタンガス検知時間域のセンサ出力をメタンガスに対応するものとみなす。
【0046】
この検知形態の切り分けは、検知手段13の内部に設けた識別検知手段130が行う。尚、パルス通電手段12、検知手段13のマクロの動作制御は、メインCPU16により行われる。
【0047】
(外部への警報)
上記のようにして得たガス検知信号は、検知手段より、メインCPU16に送られ、メインCPU16内において、これら信号に対して予め設定されたしきい値である警戒レベルと、それぞれのガスについて比較される。つまり、それぞれの検知時間域で取り込まれたセンサ出力が、予め、水素ガス及びメタンガスに対して別個に設定されている遮断しきい値と比較される。
【0048】
そして、いずれかのガスにおいて遮断しきい値を超えている場合に上記のように遮断出力が、外部出力手段18を介して外部出力される。
さらに具体的には、図4の「遮断出力」の欄で示すように、パッケージ内に備えられる各機器の運転遮断を実行する遮断出力は、前記警戒モードに移行して、警戒レベルを4回連続した時点で出力するように構成されている。従って、30sの遅延が起こる。
【0049】
(警報点灯)
メインCPU16は、上記外部判断結果に基づいて、所定の動作制御指令を各機能部に出力する。図2に示すように、この動作制御指令としては、例えば、点燈警報出力手段17を点燈させるための出力指令がある。点燈警報出力手段17は、LED17aとLED駆動用の点燈警報回路17bとを備えており、メインCPU16からの出力指令に従って、所定の間隔でLED17aを点滅させる。具体的には、5秒に一回の点燈を実行する。
図4の警報点灯の欄で示したように、警報としては点灯形態が採用されており、ガス濃度が警戒レベルを超えた時に赤点灯と、警戒レベルを超えない時に緑点灯とされる。
【0050】
(遮断出力)
また、遮断出力は、燃料電池発電装置の制御装置9に送られ、この装置9が、燃料電池の運転停止シーケンスを開始する。
【0051】
〔別実施の形態〕
(1) 半導体式ガスセンサとして、添加物含有率に関して、酸化ランタンの含有率が0.9〜1.2mol%、酸化ジルコニウムの含有率が1.8〜2.4mol%であるときに、両ガスに対して高い識別検知能を発揮することができる。
【0052】
(2) さらに、上記の実施の形態にあっては、原燃料ガスの主成分がメタンである場合を示したが、本発明は、半導体式ガスセンサとして、上記と同様に白金線コイルの周りに酸化スズ焼結体を備え、これに、アルカリ土類元素の酸化物(例えば酸化カルシウムCaO等)を含有した構成のものを使用してもよい。
この場合は、水素検知とともに、原燃料ガスとしてのアルコールを検知できる。また、この種のセンサを使用する場合は、アルコールに対する感応が先に現れ、後に、水素に対する感応が現れる。
【図面の簡単な説明】
【図1】本願のパッケージ型燃料電池発電装置の概略構成を示す図
【図2】装置に使用されるガス検知器の機能ブロック図
【図3】半導体式ガスセンサに対するパルス通電の形態説明図
【図4】半導体式ガスセンサに対するパルス通電の形態説明図
【図5】パルス通電時のセンサ出力の変化を示す図
【図6】パルス通電時の表面温度と検知時間域の関係を示す図
【図7】ガスセンサの構造を示す図
【符号の説明】
1 パッケージ型燃料電池発電装置
2 パッケージ
4 改質装置
9 制御装置
10 ガス検出器
11 半導体式ガスセンサ
12 パルス通電手段
13 検知手段
15 電源電池
130識別検知手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a reformer for receiving a raw fuel gas, reforming the raw fuel gas to obtain hydrogen gas, and receiving the hydrogen gas generated from the reformer, and separately receiving oxygen gas. A working fuel cell, comprising an external output device that externally outputs power generated by the fuel cell,
The present invention relates to a packaged fuel cell power generator in which the reformer, the fuel cell, and the external output device are housed in a package.
[0002]
[Prior art]
This type of packaged fuel cell power generator is currently in the practical stage, and is installed in an on-site configuration. Corresponds to this type.
[0003]
As a conventional technology of a package type fuel cell power generation device, there is one disclosed in Patent Document 1. In this prior art, a raw fuel tank, a fuel reformer, a fuel cell, a power converter, and the like are provided in a predetermined package, and a heat insulating partition is provided to appropriately control a thermal influence on a control system and the like. I have.
In this prior art, there is no mention of gas management in the package (specifically, monitoring of leakage of raw fuel gas and hydrogen gas obtained after reforming).
[0004]
On the other hand, in a fuel cell, since hydrogen gas is used for power generation, attempts have conventionally been made to suitably monitor the leakage of hydrogen gas.
For example, in the technology disclosed in Patent Document 2, a hydrogen sensor that is preferable to be disposed near a hydrogen supply system to a fuel cell body has been proposed.
The technology disclosed in Patent Document 3 proposes a hydrogen sensor having a similar purpose, and shows an example in which the hydrogen sensor is applied to a hydrogen gas detection device of a fuel cell system.
In these technologies, hydrogen gas is independently monitored.
In a fuel cell power generator, a reformer is provided in addition to the fuel cell, and it is necessary to monitor raw fuel gas supplied to the reformer. As a conventional technique for solving this problem, in the technique disclosed in Patent Document 4, a flammable gas detector (or a fire detector) for detecting the leakage of flammable gas to the outside of the reformer is modified. It is disclosed that the apparatus comprises a quality abnormality signal generating means. In this conventional technique, the gas type of the gas to be detected is not specified.
[0005]
[Patent Document 1]
Japanese Patent Application No. 5-290868 specification
[Patent Document 2]
JP-A-2001-27626 (Claim 7, paragraph number 0031)
[0007]
[Patent Document 3]
JP-A-2002-22700 (paragraph number 0044)
[0008]
[Patent Document 4]
JP 2001-189161 A (paragraph number 0039)
[0009]
[Problems to be solved by the invention]
As described above, in the conventional fuel cell power generator, in which the fuel cell is housed in a package, there is no established technology for internal gas management, and hydrogen Gas and raw fuel gas were monitored individually.
[0010]
However, when detecting hydrogen gas and raw fuel gas separately, there are a plurality of types of sensors and the installation space becomes large. Further, since a plurality of detection systems are provided for each gas, a relatively complicated determination structure is required, which is not preferable.
Considering that the packaged fuel cell power plant is originally an on-site type and will be installed in each household in the future, the maintenance and management are as simple as possible, the configuration is simple, Is preferably long.
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a device as a fuel cell power generation device which is of a package type and has a gas detection system capable of detecting, with a simple configuration, a gas which may leak into the package, together with its type.
[0012]
[Means for Solving the Problems]
The characteristic configuration of the packaged fuel cell power generator according to the present invention for achieving the above object is as described in claim 1.
A semiconductor gas sensor having selective sensitivity for each of raw fuel gas and hydrogen gas is provided in the package, and a detection unit for detecting any one of the gases based on an electrical output of the semiconductor gas sensor is provided. And a configuration in which the raw fuel gas and the hydrogen gas can be detected.
[0013]
The semiconductor gas sensor used in the packaged fuel cell power generation device of the present invention is sensitive to the raw fuel gas (for example, city gas containing methane as a main component) sent to the reformer, and has the fuel cell fuel cell. Some are sensitive to hydrogen gas.
In this type of gas, the response form differs according to the type of gas, and both gases can be selectively detected by adjusting the detection time.
[0014]
Therefore, in the present application, this type of semiconductor gas sensor is provided in a package, the electrical output is obtained, and each gas is detected by the detecting means.
In this configuration, by detecting a gas that may leak into the package with a single detection system, as a result, sufficient gas monitoring for the fuel cell power generator can be achieved with a simple structure. I can do it. In this case, since the system is simple, its maintenance and management are also easy.
[0015]
Now, in the package type fuel cell power generator, as described in claim 2, a pulse energizing means for energizing the semiconductor type gas sensor with a pulse is provided, and energization of the semiconductor type gas sensor is performed by a pulse energizing method. In addition, it is preferable to perform the gas detection within the pulse energization time.
[0016]
The semiconductor gas sensor detects gas when the sensor element is heated. Therefore, it is necessary to set the sensor temperature to a predetermined temperature range by using a sensor element as an energizing method or the like. However, in the always-on state, there is a limit to the battery life of the battery-powered type. On the other hand, in a fuel cell, since power is generated, it is conceivable that power is supplied from it.However, the time when it is desired to generate power and the time when gas leakage monitoring is required are: They are not necessarily the same. Therefore, the battery type is selected. However, considering the life of the battery, constant energization is not preferable, and a pulse energization type is adopted.
[0017]
On the other hand, the sensitivity of the semiconductor gas sensor shows different sensitivity characteristics to the raw fuel gas and the hydrogen gas at different sensor temperatures, and it is possible to selectively detect each gas type. Therefore, when detecting a raw fuel gas and a hydrogen gas in a plurality of temperature ranges until reaching a predetermined heating state, the present invention aims at adopting a pulse energization mode and heating the sensor element to a steady temperature. By detecting the two types of gases, the object of the present invention can be suitably achieved.
[0018]
That is, as described in claim 3, upon detecting the gas within a single pulse energizing time,
A raw fuel gas detection time range for the raw fuel gas and a hydrogen gas detection time range for the hydrogen gas are separately provided,
The raw fuel gas may be detected in the raw fuel gas detection time range, and the hydrogen gas may be detected in the hydrogen gas detection time range.
[0019]
To explain this point in more detail, for example, hydrogen gas has high sensitivity in a state where the temperature of the gas detection element has not yet risen, and for a raw fuel gas such as methane gas, the gas detection element Upon reaching a predetermined heating state, the selection sensitivity is exhibited. Therefore, the detection time range for hydrogen gas and the detection time range for raw fuel gas are set separately, and the sensitivity to both gases can be observed within a single pulse energization time, so that the possibility of leakage gas is increased. Can be reliably detected.
[0020]
Now, as described in claim 4, the semiconductor type gas sensor includes a tin oxide sintered body containing lanthanum and zirconium, and detects the hydrogen gas in a thermal initial transient response region. It is preferable that the raw fuel gas is detected in a steady output region after the thermal initial transient response.
In the semiconductor type gas sensor, in the case where the sensitive portion which comes into contact with the gas to be detected is provided with a lanthanum and zirconium, or a tin oxide sintered body containing a compound thereof as, for example, an oxide, this includes hydrogen and Responds to methane. Therefore, by using this type of sensor, the detection purpose of the present application can be achieved, and the detection time range of the hydrogen gas and the detection time range of the raw fuel gas can be set based on the change in the temperature of the sensor element during the pulse current. If specified, it will be as described above. Similarly, hydrogen gas and raw fuel gas can be selectively detected.
[0021]
Further, as described in claim 5, the semiconductor gas sensor may be configured to include a tin oxide sintered body containing at least one of alkaline earth elements.
That is, in the case of a tin oxide sintered body containing at least one kind of alkaline earth element or a compound thereof as an oxide, for example, in a sensitive part that comes into contact with the gas to be detected, this is sensitive to alcohol and hydrogen. I do. Therefore, by using this type of sensor, the detection object of the present application can be achieved.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on examples.
(Overview of packaged fuel cell power generator)
FIG. 1 is a simplified elevation view showing a package-type fuel cell power generator 1 according to an embodiment of the present invention.
[0022]
As shown in FIG. 1, the packaged fuel cell power generator 1 stores raw fuel gas tanks 3 (specifically, city gas tanks) in a predetermined package 2 and supplies raw fuel gas from the raw fuel gas tanks 3. Receiving a reformer 4, a fuel cell 5 that uses hydrogen gas generated by the reformer 4 as one gas, and an electric power as an external output device that converts the power output from the fuel cell 5 into a predetermined alternating current. It is provided with a conversion device 6, an exhaust heat recovery device 7 for utilizing exhaust heat from each device, and the like.
Further, there is provided a control device 9 that integrates information from a measuring instrument (not shown) for detecting the operation state of these devices and outputs a control command to each device.
[0023]
One of these measuring devices is provided with a gas detector 10 unique to the present application. When a shut-off output is output from the gas detector 10, basically, the fuel cell power generator 1 is shifted to a stop operation. It is configured to be started.
[0024]
Hereinafter, details of the gas detector 10 will be described with reference to FIGS.
(Outline of gas detector)
The gas detector 10 includes a semiconductor gas sensor 11, a pulse energizing unit 12 for energizing the semiconductor gas sensor 11 with a pulse, and a detecting unit 13 for detecting a gas based on an electrical output of the semiconductor gas sensor 11 in a pulse energized state. It is comprised including.
[0025]
The sequential energizing drive of the pulse energizing means 12, the processing of the detection result detected by the detecting means 13, and the processing related to the shutoff output accompanying the energizing driving are performed by the main CPU 16 as a control means in the gas detector 10. Do these.
[0026]
(Semiconductor gas sensor)
The electric resistance of the semiconductor gas sensor 11 changes due to contact with the gas to be detected in the energized state. By detecting this change, the detection target gas (hydrogen gas and methane gas as raw fuel gas) can be detected. The driving is performed by, for example, a battery.
[0027]
The gas detector 10 detects a change in the resistance value of a semiconductor gas sensor 11 (hereinafter simply referred to as “sensor 11”) via a predetermined detection electric circuit 14 such as a Wheatstone bridge. By comparing this detected value with data (threshold) relating to the concentration of the gas to be detected, which is obtained in advance, the presence / absence of the gas to be detected can be determined.
[0028]
The sensor element used as the sensor 11 is, for example, similar to the combustible gas detecting element disclosed in Japanese Patent Application Laid-Open No. 10-142183.
The outline of the sensor 11 is shown in FIG. The sensor 11 is provided with a tin oxide sintered body 11a obtained by dispersing and mixing tin oxide in water to form a paste and applying it to a platinum wire coil 11b, drying and firing at 400 ° C. for 1 hour. ing.
[0029]
The tin oxide sintered body 11a is impregnated with a predetermined amount of a mixed solution of lanthanum nitrate and zirconyl nitrate. Thereby, in the tin oxide sintered body, the sensitive part 11c containing 0.9 mol% of the lanthanum compound in terms of lanthanum oxide (La 2 O 3 ) and 1.8 mol% of the zirconium compound in terms of zirconium oxide (ZrO 2 ) is provided. Is formed.
[0030]
(Gas detection)
The gas detector 10 is driven by the battery power supply 15 as described above. Therefore, in consideration of the life, in order to obtain a power saving effect, the element is heated by a pulse conduction method.
[0031]
(Hydrogen gas detection and raw fuel gas detection)
Regarding the pulse energization, a predetermined detection time set for the hydrogen gas and the methane gas at the time of energization while repeating the pulse-like energization (see the voltage pattern of “applied voltage” shown in FIG. 6) at a predetermined cycle. In the range, the electric output of the sensor 11 is detected to perform gas detection. In other words, pulse energization and accompanying gas detection are both performed during a single pulse energization operation, both for hydrogen gas detection for hydrogen gas and raw fuel gas detection for methane gas.
[0032]
3 and 4 show a form of pulse current application by the gas detector. FIG. 3 shows an operation state at the time of the initial start, and FIG. 4 shows a normal operation state after the end of the start. Monitoring is performed in this normal operation state.
In these figures, the horizontal axis indicates time, and the vertical axis indicates gas concentration or operation, respectively, shown at the left end. Each vertical bar shown in the column of the pulse signal corresponds to individual pulse energization.
[0033]
(Pulse energizing operation at initial startup)
As shown in FIG. 3, at the time of the initial startup, the operation is performed by pulse energization every 10 seconds of the driving cycle. In this operation mode, one minute is required for the initial stabilization, and thereafter, a two-minute inspection operation is performed. At the time of this inspection, the operator blows methane gas from a cylinder filled with methane gas, which is a gas for inspection (the appearance is no different from a normal lighter), to a predetermined location to check whether the gas detector works properly. Check whether it is. If there is no problem, the operation shifts to the normal operation shown in FIG.
[0034]
(Pulse energizing operation during normal operation)
A description will be given based on FIG.
This figure shows, from the top, “change state of gas concentration”, “drive state of sensor (specifically, change state of energization frequency of pulse energization)”, “lighting state of alarm”, “output state of cut-off output”. Is shown.
[0035]
As the “change state of the gas concentration”, two examples of the concentration increase mode are shown.
Since the first concentration increase has been continued for a relatively long time, it actually represents a situation where a shut-off operation is necessary.
The second increase in concentration is representative of a situation in which the sensor may malfunction due to a short duration. These are basically separate examples.
[0036]
(Pulse energization control)
As can be seen from the diagram showing the “driving state of the sensor”, the frequency control of the pulse energization is controlled to switch between a relatively coarse “normal mode” and a dense “alert mode”. In the “normal mode”, pulse energization is repeated at a driving cycle of 60 s. In the “warning mode”, pulse energization is repeated at a drive cycle of 10 s.
In both modes, the single pulse energization is 2.5 s as described later.
Switching from "normal mode" to "warning mode" is performed when the gas concentration exceeds the warning level for a single pulse energization cycle, and switching in the reverse direction does not exceed "warning level". Is executed four consecutive times. The switching of the operation mode is performed by a main CPU 16 as control means provided in the gas detector 10 described later.
[0037]
(Gas detection within the pulse energization time)
The detection of gas within each pulse energization will be described with reference to FIGS.
The energization time T0 of the pulse energization is set to 2.5 seconds as described above, and the pulse energization for this energization time is executed in the "normal mode" and the "alert mode". The pulse energization is controlled by the pulse energization means 12, and the mode is switched by the main CPU 16.
[0038]
As shown by the “detection signal” in FIG. 6 or the short vertical broken line in FIGS. 5A and 5B, the sensor output is captured in the single pulse energization as follows.
In the hydrogen gas detection, the sensor output is monitored until one second elapses after the start of energization, and the sensor output after one second elapses (hydrogen gas detection time range) is taken. On the other hand, in the methane gas detection, the sensor output is monitored until 2.5 seconds have elapsed since the start of energization, that is, until the end of energization, and the sensor output is captured just before the end of energization (methane gas detection time range).
These times can be set as appropriate according to the type of the sensor 2 or the type of the gas to be detected.
[0039]
The reason why the hydrogen gas detection and the methane gas detection are performed in different time zones as described above is as follows.
In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates sensor output, and the change in sensor output is shown. Among them, FIG. 5A shows how the sensor output changes when detecting hydrogen gas, and FIG. 5B shows how the sensor output changes when detecting methane gas.
FIG. 6 shows “sensor surface temperature”, “applied voltage”, and “detection signal / time” at the time of corresponding pulse energization.
[0040]
0:00 indicates the start of the pulse energization, and 2.5 sec indicates the end of the pulse energization. In FIG. 5, the dashed line extending in the horizontal direction indicates the base output, that is, the sensor output in air in which no specific gas exists. The solid line shows the sensor output for 5000 ppm of hydrogen. The dashed line indicates the sensor output for 4000 ppm of methane. The numerical values of the concentrations shown here are values that are usually obtained when these gases are detected.
Further, as can be seen from the “surface temperature” shown in FIG. 6, a thermal transient response occurs from 0:00 to about 2 s with respect to the surface temperature, and thereafter, a steady output range is maintained until 2.5 s. It turns out that there is.
[0041]
Paying attention to FIG. 5A, the sensitivity characteristics of the semiconductor gas sensor can be classified into types according to the gas to be detected.
One is to stabilize to a constant output value corresponding to the gas concentration through the initial rise s1 and the output fall s2 of the energization process. As such a gas, methane indicated by a dashed line corresponds. In this case, the longer the energization time, the more stable the sensor output.
[0042]
The other is that, after an initial rise and a drop in output, a high sensitivity (a time region showing a sensitivity higher than the sensitivity of methane gas) is obtained in a relatively short time, and the sensitivity gradually decreases. That is, as this kind of gas, the hydrogen gas of the solid line corresponds. In this case, an appropriate sensor output can be obtained only for a very short time before the temperature of the sensor sufficiently rises.
[0043]
As is clear from FIG. 5A, the output for hydrogen gas is superior to the output for methane gas in the initial period of energization. As described above, here, the concentrations of the hydrogen gas and the methane gas are set to very general values.
Therefore, at the beginning of energization, hydrogen gas is detected with priority over methane gas.
Such a time zone in which the output for hydrogen gas is higher than the output for methane gas is referred to as a high sensitivity time zone Th. Therefore, the threshold value on the hydrogen gas side in this time range is larger than the output by methane gas having a general gas concentration.
[0044]
As apparent from FIGS. 5A and 5B, when the high sensitivity time range Th is exceeded, methane gas can be detected preferentially with respect to hydrogen gas until power supply is stopped. The threshold value on the methane gas side in this time range is larger than the output by hydrogen gas having a general gas concentration.
[0045]
In the present application, detection using the above characteristics is performed by the detection means 13 provided in the gas detector 10.
The detection means 13 takes in the electrical output, converts the data into data corresponding to the gas concentration, and outputs the data to the main CPU 16.
That is, when the pulse energization starts, the sensor output in the time range indicated by the “detection signal” in FIG. 6 is taken in as the time elapses, and the sensor output in the hydrogen gas detection time range corresponds to the hydrogen gas, and the methane gas detection time It is assumed that the sensor output in the region corresponds to methane gas.
[0046]
This detection mode is separated by the identification detection unit 130 provided inside the detection unit 13. The operation control of the macro of the pulse energizing means 12 and the detecting means 13 is performed by the main CPU 16.
[0047]
(External alarm)
The gas detection signal obtained as described above is sent from the detection means to the main CPU 16, and the main CPU 16 compares a warning level, which is a preset threshold value for these signals, with each gas. Is done. That is, the sensor outputs taken in the respective detection time ranges are compared with the cutoff thresholds set separately for the hydrogen gas and the methane gas in advance.
[0048]
When any one of the gases exceeds the cutoff threshold, the cutoff output is output to the outside via the external output means 18 as described above.
More specifically, as shown in the column of “interruption output” in FIG. 4, the interruption output for executing the operation interruption of each device provided in the package is shifted to the alert mode, and the alert level is increased four times. It is configured to output at successive points in time. Therefore, a delay of 30 s occurs.
[0049]
(Alarm lighting)
The main CPU 16 outputs a predetermined operation control command to each functional unit based on the result of the external determination. As shown in FIG. 2, the operation control command includes, for example, an output command for turning on the lighting warning output unit 17. The lighting alarm output means 17 includes an LED 17a and a lighting alarm circuit 17b for driving the LED, and blinks the LED 17a at predetermined intervals in accordance with an output command from the main CPU 16. Specifically, lighting is performed once every 5 seconds.
As shown in the column of alarm lighting in FIG. 4, a lighting mode is adopted as the alarm, and the lighting is red when the gas concentration exceeds the alert level, and green when the gas concentration does not exceed the alert level.
[0050]
(Interrupt output)
Further, the cutoff output is sent to the control device 9 of the fuel cell power generation device, and the device 9 starts a fuel cell operation stop sequence.
[0051]
[Another embodiment]
(1) As a semiconductor type gas sensor, when the content of lanthanum oxide is 0.9 to 1.2 mol% and the content of zirconium oxide is 1.8 to 2.4 mol% with respect to the additive content, both gases are used. High discrimination detection ability can be exhibited.
[0052]
(2) Further, in the above-described embodiment, the case where the main component of the raw fuel gas is methane has been described. However, the present invention provides a semiconductor gas sensor around a platinum wire coil as described above. A structure having a tin oxide sintered body and containing an oxide of an alkaline earth element (for example, calcium oxide CaO) may be used.
In this case, alcohol as raw fuel gas can be detected together with hydrogen detection. Also, when using this type of sensor, the sensitivity to alcohol appears first, followed by the sensitivity to hydrogen.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a packaged fuel cell power generation device of the present application; FIG. 2 is a functional block diagram of a gas detector used in the device; FIG. FIG. 4 is a diagram illustrating a form of pulse energization for a semiconductor gas sensor. FIG. 5 is a diagram illustrating a change in sensor output during pulse energization. FIG. 6 is a diagram illustrating a relationship between a surface temperature and a detection time region during pulse energization. Diagram showing structure of gas sensor [Explanation of symbols]
REFERENCE SIGNS LIST 1 Package type fuel cell power generator 2 Package 4 Reformer 9 Control device 10 Gas detector 11 Semiconductor gas sensor 12 Pulse energizing means 13 Detecting means 15 Power battery 130 Identification detecting means

Claims (5)

原燃料ガスを受け入れ、前記原燃料ガスを改質して水素ガスを得る改質装置と、前記改質装置から生成される前記水素ガスを受け入れるとともに、別途、酸素ガスを受け入れて働く燃料電池と、前記燃料電池により発電される電力を外部出力する外部出力装置とを備え、
前記改質装置、燃料電池及び外部出力装置をパッケージ内に収容したパッケージ型燃料電池発電装置であって、
前記原燃料ガス及び前記水素ガスに対して、各別に選択的な感度を有する半導体式ガスセンサを前記パッケージ内に備えるとともに、前記半導体式ガスセンサの電気的出力に基づいて、いずれかの前記ガスを検知する検知手段を備え、前記原燃料ガス及び前記水素ガスを検出可能に構成されるパッケージ型燃料電池発電装置。
A reformer that receives a raw fuel gas and reforms the raw fuel gas to obtain hydrogen gas, and a fuel cell that receives the hydrogen gas generated from the reformer and separately works by receiving oxygen gas. An external output device that externally outputs power generated by the fuel cell,
A package-type fuel cell power generation device containing the reformer, a fuel cell, and an external output device in a package,
A semiconductor gas sensor having selective sensitivity to the raw fuel gas and the hydrogen gas is provided in the package, and any of the gases is detected based on an electrical output of the semiconductor gas sensor. A packaged fuel cell power generation apparatus, comprising: a detection unit that detects the raw fuel gas and the hydrogen gas.
前記半導体式ガスセンサに対してパルス通電するパルス通電手段を備え、前記半導体式ガスセンサに対する通電をパルス通電方式で実行するとともに、ガス検知をパルス通電時間内に実行する請求項1記載のパッケージ型燃料電池発電装置。2. The package type fuel cell according to claim 1, further comprising a pulse energizing means for energizing the semiconductor gas sensor with a pulse, performing energization of the semiconductor gas sensor by a pulse energizing method, and performing gas detection within a pulse energizing time. Power generator. 単一回のパルス通電時間内における前記ガス検知に際し、
前記原燃料ガスに対する原燃料ガス検知時間域と、前記水素ガスに対する水素ガス検知時間域とを各別に備え、
前記原燃料ガス検知時間域において前記原燃料ガスを、前記水素ガス検知時間域において前記水素ガスを検知する請求項2記載のパッケージ型燃料電池発電装置。
Upon detecting the gas within a single pulse energizing time,
A raw fuel gas detection time range for the raw fuel gas and a hydrogen gas detection time range for the hydrogen gas are separately provided,
The package fuel cell power generator according to claim 2, wherein the raw fuel gas is detected in the raw fuel gas detection time range, and the hydrogen gas is detected in the hydrogen gas detection time range.
前記半導体式ガスセンサが、ランタン及びジルコニウムが含有された酸化スズ焼結体を備えて構成され、熱的な初期過渡応答域において前記水素ガスを検知し、前記熱的な初期過渡応答後の定常出力域において、前記原燃料ガスを検知する請求項1〜3の何れか1項に記載のパッケージ型燃料電池発電装置。The semiconductor gas sensor includes a tin oxide sintered body containing lanthanum and zirconium, detects the hydrogen gas in a thermal initial transient response region, and outputs a steady output after the thermal initial transient response. The packaged fuel cell power generator according to any one of claims 1 to 3, wherein the raw fuel gas is detected in a region. 前記半導体式ガスセンサが、アルカリ土類元素の少なくとも一種が含有された酸化スズ焼結体を備えて構成される請求項1〜3の何れか1項に記載のパッケージ型燃料電池発電装置。The package-type fuel cell power generator according to any one of claims 1 to 3, wherein the semiconductor-type gas sensor includes a tin oxide sintered body containing at least one of alkaline earth elements.
JP2002323939A 2002-11-07 2002-11-07 Package type fuel cell power generator Expired - Fee Related JP4187506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323939A JP4187506B2 (en) 2002-11-07 2002-11-07 Package type fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323939A JP4187506B2 (en) 2002-11-07 2002-11-07 Package type fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2004158340A true JP2004158340A (en) 2004-06-03
JP4187506B2 JP4187506B2 (en) 2008-11-26

Family

ID=32803678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323939A Expired - Fee Related JP4187506B2 (en) 2002-11-07 2002-11-07 Package type fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4187506B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124358A (en) * 2003-10-20 2005-05-12 Suzuki Motor Corp Hydrogen leakage detecting device for vehicle with fuel cell system mounted thereto
JP2005129491A (en) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2006112911A (en) * 2004-10-14 2006-04-27 Riken Keiki Co Ltd Gas detector for modified fuel cell
CN100377909C (en) * 2004-09-29 2008-04-02 本田技研工业株式会社 Two-wheeled fuel-cell vehicle
WO2018110441A1 (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Hydrogen detecting device, fuel cell vehicle, hydrogen leak monitoring system, compound sensor module, hydrogen detecting method, and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129491A (en) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP4732723B2 (en) * 2003-10-01 2011-07-27 パナソニック株式会社 Fuel cell power generation system
JP2005124358A (en) * 2003-10-20 2005-05-12 Suzuki Motor Corp Hydrogen leakage detecting device for vehicle with fuel cell system mounted thereto
CN100377909C (en) * 2004-09-29 2008-04-02 本田技研工业株式会社 Two-wheeled fuel-cell vehicle
JP2006112911A (en) * 2004-10-14 2006-04-27 Riken Keiki Co Ltd Gas detector for modified fuel cell
WO2018110441A1 (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Hydrogen detecting device, fuel cell vehicle, hydrogen leak monitoring system, compound sensor module, hydrogen detecting method, and program
CN110088608A (en) * 2016-12-15 2019-08-02 松下知识产权经营株式会社 Hydrogen detection device, fuel cell car, hydrogen leakage monitoring self system, compound sensor module, hydrogen detection method and program
JPWO2018110441A1 (en) * 2016-12-15 2019-10-24 パナソニックIpマネジメント株式会社 Hydrogen detection device, fuel cell vehicle, hydrogen leak monitoring system, composite sensor module, hydrogen detection method, and program
EP3557236A4 (en) * 2016-12-15 2020-01-15 Panasonic Intellectual Property Management Co., Ltd. Hydrogen detecting device, fuel cell vehicle, hydrogen leak monitoring system, compound sensor module, hydrogen detecting method, and program
US11027604B2 (en) 2016-12-15 2021-06-08 Panasonic Semiconductor Solutions Co., Ltd. Hydrogen detection apparatus, fuel cell vehicle, hydrogen leak monitoring system, compound sensor module, hydrogen detection method, and recording medium
CN110088608B (en) * 2016-12-15 2021-06-08 新唐科技日本株式会社 Hydrogen detection device, fuel cell vehicle, hydrogen leakage monitoring system, composite sensor module, hydrogen detection method, and program recording medium

Also Published As

Publication number Publication date
JP4187506B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US7342505B2 (en) Gas detection apparatus and method for controlling gas sensor
JP5295535B2 (en) Fuel cell power generation system and ventilation control method thereof
JP3788512B2 (en) Device having a monitoring unit and method of operating the same
JP2004158340A (en) Package type fuel cell power plant
EP1189055B1 (en) Gas detector-alarm employing hot-wire gas sensor and method of detection
JP2009271018A (en) Gas detection device for burning appliance
CN109630297A (en) The lambda sensor control strategy of hybrid vehicle natural gas engine
JP3873848B2 (en) CO alarm
JP4397135B2 (en) Battery-operated gas alarm operation method and gas alarm
JP3885648B2 (en) Safety sensor
JP3935789B2 (en) Gas alarm
JP4849544B2 (en) In-vehicle hydrogen detector
JP2004239548A (en) Combustion system with combustible gas sensor
JP2604164B2 (en) Catalytic combustion device
JP2007003421A (en) Gas detector and gas detecting method
US11060991B2 (en) Gas alarm device and gas detection method
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP2009295095A (en) Gas leak alarm
JP3549322B2 (en) Gas detection method and gas detection device
JP4803658B2 (en) Intermittent drive type combustible gas detector
US8086418B2 (en) Imperfect combustion detecting device
JP2010054213A (en) Gas detecting method and device of thin film gas sensor
JP3885649B2 (en) Safety sensor
JP2004205507A (en) Operation method for gas sensor, and device for executing the method
JP2007300775A (en) Device and method for determining phase sequence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees