JPH0735716A - Thick film gas sensor and manufacture thereof - Google Patents

Thick film gas sensor and manufacture thereof

Info

Publication number
JPH0735716A
JPH0735716A JP22766193A JP22766193A JPH0735716A JP H0735716 A JPH0735716 A JP H0735716A JP 22766193 A JP22766193 A JP 22766193A JP 22766193 A JP22766193 A JP 22766193A JP H0735716 A JPH0735716 A JP H0735716A
Authority
JP
Japan
Prior art keywords
oxide
thick film
gas sensor
layer
film gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22766193A
Other languages
Japanese (ja)
Other versions
JP3271635B2 (en
Inventor
Koichi Tsuda
孝一 津田
Noriyoshi Nagase
徳美 長瀬
Takashi Ishii
孝志 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22766193A priority Critical patent/JP3271635B2/en
Publication of JPH0735716A publication Critical patent/JPH0735716A/en
Application granted granted Critical
Publication of JP3271635B2 publication Critical patent/JP3271635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enhance stability and initial rumbling by forming a gas sensitive layer of a metal oxide semiconductor added with cobalt oxide, manganese oxide, etc. CONSTITUTION:Two electrodes 2, 2 are provided on a substrate 1 and a first oxidation combustion layer 3B is provided thereon. Furthermore, a gas sensitive layer 4 is formed on the oxidation combustion layer 3B and the electrodes 2, 2. A second oxidation combustion layer 3C is provided while covering the gas sensitive layer completely and the electrodes 2, 2 are connected with lead wires 7, 7. A heater 8 is formed on the other main surface of the substrate 1 and the electrodes 2A, 2A are connected with lead wires 9, 9. The oxidation combustion layers 3B, 3C are formed by supporting a noble metal catalyst on metal oxide carriers. The gas sensitive layer 4 is formed by adding at least one oxide, selected from a group of cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, etc., into a metal oxide semiconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はLPガス,都市ガス,
水素ガス等を検出するガス漏れ警報器用の厚膜ガスセン
サに係り、特に初期鳴動時間の短い圧膜ガスセンサの構
成に関する。
BACKGROUND OF THE INVENTION This invention relates to LP gas, city gas,
The present invention relates to a thick film gas sensor for a gas leak alarm that detects hydrogen gas and the like, and particularly to a configuration of a pressure film gas sensor having a short initial ringing time.

【0002】[0002]

【従来の技術】ガスセンサの一つとして酸化スズや酸化
亜鉛等の金属酸化物半導体を用いるものが知られてい
る。これら金属酸化物半導体は大気中において300な
いし500℃程度に加熱されると粒子表面に大気中の酸
素が活性化吸着し、高抵抗化するが還元性ガスである被
検ガス中では還元性ガスが吸着酸素に替えて金属酸化物
半導体に吸着され電気抵抗値が減少する。このような性
質を利用して金属酸化物半導体を利用するガスセンサが
LPガスや都市ガス等のガス漏れ警報器用に利用されて
いる。
2. Description of the Related Art As one of gas sensors, one using a metal oxide semiconductor such as tin oxide or zinc oxide is known. When these metal oxide semiconductors are heated to about 300 to 500 ° C. in the atmosphere, oxygen in the atmosphere is activated and adsorbed on the particle surface to increase the resistance, but the reducing gas is a reducing gas in the test gas which is a reducing gas. Is adsorbed on the metal oxide semiconductor instead of adsorbed oxygen, and the electric resistance value is reduced. A gas sensor using a metal oxide semiconductor by utilizing such a property is used for a gas leak alarm device for LP gas, city gas, or the like.

【0003】図9は従来の厚膜ガスセンサを示す平面図
である。図10は従来の厚膜ガスセンサを示す図9のC
−C矢視断面図である。従来の厚膜ガスセンサはアルミ
ナ等の絶縁性基板1の一主面上に感ガス層4と酸化燃焼
層3Aを積層して形成される。基板1の他の主面にはヒ
ータ8が形成され厚膜ガスセンサを所定の温度に加熱す
る。感ガス層4は例えば酸化スズからなる層である。酸
化燃焼層3Aは酸化スズに白金のような貴金属触媒を担
持して形成される。この酸化燃焼層3Aは感ガス層4の
可燃性ガスに対する感度の経時的な安定性を高めるとと
もに、可燃ガスに対する選択性を高めてアルコール等に
対する感度を低減させる。感ガス層4またはヒータ8に
は電極2,2Aを介して商用電源が直接的に印加され
る。
FIG. 9 is a plan view showing a conventional thick film gas sensor. FIG. 10: C of FIG. 9 showing a conventional thick film gas sensor
FIG. 6 is a cross-sectional view taken along the arrow C. A conventional thick film gas sensor is formed by laminating a gas sensitive layer 4 and an oxidative combustion layer 3A on one main surface of an insulating substrate 1 made of alumina or the like. A heater 8 is formed on the other main surface of the substrate 1 to heat the thick film gas sensor to a predetermined temperature. The gas sensitive layer 4 is a layer made of tin oxide, for example. The oxidation combustion layer 3A is formed by supporting a noble metal catalyst such as platinum on tin oxide. The oxidizing combustion layer 3A enhances the temporal stability of the sensitivity of the gas sensitive layer 4 to combustible gas, and enhances the selectivity to combustible gas to reduce the sensitivity to alcohol and the like. A commercial power source is directly applied to the gas sensitive layer 4 or the heater 8 via the electrodes 2 and 2A.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の二層型厚膜ガスセンサにおいては初期鳴動時
間が長くなるという問題があった。図11は従来の厚膜
ガスセンサの初期鳴動特性を示す線図である。この初期
鳴動はガスセンサに電源を投入してガスセンサの使用を
開始したときにセンサの抵抗が一旦減少してから上昇す
るために抵抗の減少している間は警報を発することとな
り初期鳴動時間はその警報を発している時間を指す。従
ってこの鳴動時間中はガスセンサが警報を発しないよう
に制御するがこの初期鳴動時間が長くなるとガスセンサ
の使用開始に手間取り好ましくないのである。二層型の
厚膜ガスセンサにおいて初期鳴動時間が長くなる原因は
電源投入後に感ガス層の金属酸化物半導体が酸素を吸着
して電気抵抗値を増大するがこの酸素吸着に時間がかか
るためである。従って酸素吸着速度を増大させる触媒を
感ガス層の金属酸化物半導体に担持すればよいが触媒の
種類によっては活性度の変化により金属酸化物半導体の
酸素吸着量を減少させて電気抵抗値の低下をもたらす。
However, the conventional two-layer type thick film gas sensor as described above has a problem that the initial ringing time becomes long. FIG. 11 is a diagram showing an initial ringing characteristic of a conventional thick film gas sensor. This initial ringing causes an alarm while the resistance of the gas sensor is decreasing because the resistance of the gas sensor first decreases and then rises when the gas sensor is turned on and the gas sensor is used. Refers to the time when an alarm is issued. Therefore, during this ringing time, the gas sensor is controlled so as not to give an alarm, but if this initial ringing time becomes long, it is not preferable to start using the gas sensor. In the double-layer thick-film gas sensor, the reason why the initial ringing time is long is that the metal oxide semiconductor in the gas-sensitive layer adsorbs oxygen to increase the electric resistance value after the power is turned on, but this oxygen adsorption takes time. . Therefore, it suffices to support a catalyst that increases the oxygen adsorption rate on the metal oxide semiconductor of the gas sensitive layer, but depending on the type of catalyst, the oxygen adsorption amount of the metal oxide semiconductor is reduced due to the change in the activity, and the electrical resistance value decreases. Bring

【0005】この発明は上述の点に鑑みてなされ、その
目的は金属酸化物半導体の抵抗値は変動させないが酸素
吸着速度は増大させる触媒を用いることにより安定性と
初期鳴動特性に優れる厚膜ガスセンサおよびその製造方
法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a thick film gas sensor excellent in stability and initial ringing characteristics by using a catalyst that does not change the resistance value of the metal oxide semiconductor but increases the oxygen adsorption rate. And to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上述の目的は第一の発明
によれば、金属酸化物半導体の抵抗値の変化を利用して
ガスの有無を検出する厚膜ガスセンサであって、基板
と、一対の電極と、第一の酸化燃焼層と、感ガス層と、
第二の酸化燃焼層とを包含し、基板はガスセンサの支持
体であり、一対の電極は基板上に離間して直接的に被着
され、第一の酸化燃焼層は基板と一対の電極上に選択的
に積層され、感ガス層は第一の酸化燃焼層と一対の電極
上に選択的に積層され、第二の酸化燃焼層は感ガス層の
全部を被覆して積層され、第一の酸化燃焼層は金属酸化
物担体に貴金属触媒を担持してなり、第二の酸化燃焼層
は金属酸化物担体に貴金属触媒を担持してなり、感ガス
層は金属酸化物半導体に酸化コバルト,酸化マンガン,
酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛,酸化クロ
ム,酸化バナジウム,酸化チタン,酸化アルミニウムの
群から選ばれた少なくとも一つを含有させてなるとする
ことにより達成される。
According to the first aspect of the present invention, there is provided a thick film gas sensor for detecting the presence or absence of gas by utilizing a change in resistance value of a metal oxide semiconductor. A pair of electrodes, a first oxidative combustion layer, a gas sensitive layer,
Including a second oxidative combustion layer, the substrate is a support for the gas sensor, the pair of electrodes is directly deposited on the substrate at a distance, and the first oxidative combustion layer is on the substrate and the pair of electrodes. , The gas-sensitive layer is selectively laminated on the first oxidation combustion layer and the pair of electrodes, and the second oxidation-combustion layer is laminated so as to cover the entire gas-sensing layer. The oxidation and combustion layer of No. 1 comprises a metal oxide carrier supporting a noble metal catalyst, the second oxidation and combustion layer comprises a metal oxide carrier supporting a noble metal catalyst, and the gas-sensitive layer comprises a metal oxide semiconductor containing cobalt oxide, Manganese oxide,
It is achieved by containing at least one selected from the group consisting of nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide and aluminum oxide.

【0007】第二の発明によれば金属酸化物半導体の抵
抗値の変化を利用してガスの有無を検出する厚膜ガスセ
ンサであって、基板と、一対の電極と、第三の酸化燃焼
層と、感ガス層とを包含し、基板はガスセンサの支持体
であり、一対の電極は基板上に離間して直接的に被着さ
れ、感ガス層は基板と一対の電極上に選択的に積層さ
れ、第三の酸化燃焼層は感ガス層の全部を被覆して積層
され、第三の酸化燃焼層は金属酸化物担体に貴金属触媒
を担持してなり、感ガス層は金属酸化物半導体に酸化コ
バルト,酸化マンガン,酸化ニッケル,酸化銅,酸化
鉄,酸化亜鉛,酸化クロム,酸化バナジウム,酸化チタ
ン,酸化アルミニウムの群から選ばれた少なくとも一つ
を含有させてなるとすることにより達成される。
According to a second aspect of the present invention, there is provided a thick film gas sensor for detecting the presence / absence of gas by utilizing a change in resistance value of a metal oxide semiconductor, the substrate, a pair of electrodes, and a third oxidation combustion layer. And a gas-sensitive layer, the substrate is a support of the gas sensor, the pair of electrodes is directly deposited on the substrate with a space, and the gas-sensitive layer selectively on the substrate and the pair of electrodes. The third oxidative combustion layer is laminated so as to cover the entire gas-sensitive layer, the third oxidative combustion layer is formed by supporting a noble metal catalyst on a metal oxide carrier, and the gas-sensitive layer is a metal oxide semiconductor. Is achieved by containing at least one selected from the group consisting of cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide and aluminum oxide. .

【0008】また第三の発明によれば金属酸化物半導体
の抵抗値の変化を利用してガスの有無を検出する厚膜ガ
スセンサの製造方法であって、(1)酸化燃焼層の成膜
工程と、(2)感ガス層の成膜工程とを包含し、酸化燃
焼層の成膜工程は貴金属触媒を担持した金属酸化物粉体
のペーストを調製し、塗布乾燥し、熱処理する工程であ
り、感ガス層の成膜工程は金属酸化物半導体の粉体にニ
ッケル,鉄,アルミニウムまたはクロムの金属粉体を添
加したペーストを調製し、塗布乾燥し、熱処理する工程
であるとすることにより達成される。
According to a third aspect of the present invention, there is provided a method of manufacturing a thick film gas sensor for detecting the presence / absence of a gas by utilizing a change in the resistance value of a metal oxide semiconductor, which comprises And (2) a gas-sensitive layer forming step, the oxidizing combustion layer forming step is a step of preparing a paste of metal oxide powder carrying a noble metal catalyst, coating and drying, and heat-treating. The process of forming the gas sensitive layer is achieved by preparing a paste in which a metal powder of nickel, iron, aluminum or chromium is added to a powder of a metal oxide semiconductor, coating, drying and heat treating the paste. To be done.

【0009】酸化燃焼層はアルコール等の干渉ガスを酸
化燃焼して厚膜ガスセンサに対する干渉ガスの影響をな
くす。感ガス層はLPガス等の被検ガスを吸着して電気
抵抗値を減少し被検ガスを検出する。第一の酸化燃焼層
と第二の酸化燃焼層は感ガス層に対する空気の供給速度
を高める。
The oxidative combustion layer oxidizes and burns the interference gas such as alcohol to eliminate the influence of the interference gas on the thick film gas sensor. The gas sensitive layer adsorbs a test gas such as LP gas to reduce the electric resistance value and detect the test gas. The first oxidative combustion layer and the second oxidative combustion layer increase the supply rate of air to the gas sensitive layer.

【0010】[0010]

【作用】酸化コバルト,酸化マンガン,酸化ニッケル,
酸化銅,酸化鉄,酸化亜鉛,酸化クロム,酸化バナジウ
ム,酸化チタン,酸化アルミニウム等の酸化物は感ガス
層の金属酸化物半導体中に含有された状態で金属酸化物
半導体が酸素吸着する際の触媒として機能する。
[Function] Cobalt oxide, manganese oxide, nickel oxide,
When oxides such as copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide are contained in the metal oxide semiconductor of the gas-sensitive layer when the metal oxide semiconductor adsorbs oxygen. Functions as a catalyst.

【0011】前記酸化物触媒は感ガス層の金属酸化物半
導体中に含有された状態で粒成長を起こさず、触媒活性
を一定に維持し金属酸化物半導体の酸素吸着量で決定さ
れる電気抵抗値を安定に維持する。
The oxide catalyst does not cause grain growth in a state of being contained in the metal oxide semiconductor of the gas sensitive layer, maintains a constant catalytic activity, and has an electric resistance determined by the oxygen adsorption amount of the metal oxide semiconductor. Keep the value stable.

【0012】[0012]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。 実施例1 図1は第一の発明の実施例に係る厚膜ガスセンサを示す
平面図である。図2は第一の発明の実施例に係る厚膜ガ
スセンサを示す図1のA−A矢視断面図である。
Embodiments of the present invention will now be described with reference to the drawings. Embodiment 1 FIG. 1 is a plan view showing a thick film gas sensor according to an embodiment of the first invention. 2 is a sectional view taken along the line AA of FIG. 1 showing a thick film gas sensor according to an embodiment of the first invention.

【0013】第一の発明の実施例に係る厚膜ガスセンサ
の構造は次の通りである。基板1の一主面上に離間して
二つの電極2が設けられる。基板1と電極2の上に第一
の酸化燃焼層3Bが選択的に設けられる。第一の酸化燃
焼層3Bと電極2の上に感ガス層4が選択的に形成され
る。感ガス層4を完全に被覆して第二の酸化燃焼層3C
が設けられる。電極2にリード線7が接続される。基板
1の他の主面には電極2Aが形成され、電極2Aと基板
1の上に選択的にヒータ8が形成され、電極2Aにはリ
ード線9が接続される。
The structure of the thick film gas sensor according to the embodiment of the first invention is as follows. Two electrodes 2 are provided on one main surface of the substrate 1 at a distance from each other. A first oxidative combustion layer 3B is selectively provided on the substrate 1 and the electrode 2. The gas sensitive layer 4 is selectively formed on the first oxidative combustion layer 3B and the electrode 2. The gas-sensitive layer 4 is completely covered to form the second oxidation combustion layer 3C.
Is provided. The lead wire 7 is connected to the electrode 2. An electrode 2A is formed on the other main surface of the substrate 1, a heater 8 is selectively formed on the electrode 2A and the substrate 1, and a lead wire 9 is connected to the electrode 2A.

【0014】基板1は厚さ0.5mmで縦3mm、横3
mmの研磨されたアルミナ基板である。ヒータは酸化ル
テニウム抵抗体からなる。このような厚膜ガスセンサは
次のようにして調製される。基板1の二つの主面に白金
電極ペーストを所定のパターンでスクリーン印刷し、乾
燥後約1100℃の温度で焼成した。酸化ルテニウムか
らなるヒータ用ペーストを所定のパターンでスクリーン
印刷し所定の温度で焼成した。
The substrate 1 has a thickness of 0.5 mm and a length of 3 mm and a width of 3
mm polished alumina substrate. The heater comprises a ruthenium oxide resistor. Such a thick film gas sensor is prepared as follows. A platinum electrode paste was screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, dried, and then baked at a temperature of about 1100 ° C. A heater paste made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature.

【0015】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第一の酸化燃焼層用のペーストを得た。
得られた第一の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated for 2 h with an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content was 2% of the tin oxide powder, kneaded, and then dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the first oxidative combustion layer.
The obtained paste for the first oxidative combustion layer was screen-printed with a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0016】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に酸化コバルトCo
O ,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,
酸化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3 ,酸化
バナジウムV2O5,酸化チタンTiO2もしくは酸化アルミニ
ウムAl2O3 の粉体を酸化スズ粉体に対して0.1重量%
の割合になるように加え混合しさらにエチルシリケー
ト,エチルセルロース,カルビトール等を適量加え混練
して感ガス層用のペーストを得た。得られたペーストを
所定のパターンにより50μm厚さにスクリーン印刷
し、120℃で2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated with cobalt oxide Co for 2 h.
O, Manganese oxide MnO, Nickel oxide NiO, Copper oxide CuO,
Powder of iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 was added to the tin oxide powder in 0.1 weight%
The mixture was added and mixed in such an amount that the ratio was 1), and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for a gas sensitive layer. The obtained paste was screen-printed in a predetermined pattern to a thickness of 50 μm and dried at 120 ° C. for 2 hours.

【0017】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第二の酸化燃焼層用のペーストを得た。
得られた第二の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated for 2 h with an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content was 2% of the tin oxide powder, kneaded, and then dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the second oxidative combustion layer.
The obtained paste for the second oxidative combustion layer was screen-printed in a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0018】第一の酸化燃焼層と感ガス層と第二の酸化
燃焼層を印刷し乾燥した後にこれらを630℃の温度で
3h同時に焼成して第一の酸化燃焼層3B、感ガス層
4、第二の酸化燃焼層3Cを形成した。続いて電極2,
2Aにそれぞれ白金リード線7,9を接続して厚膜ガス
センサを得た。それぞれのリード線を警報器の回路に接
続した。 比較例1 実施例1の厚膜ガスセンサと同一の構造のセンサを用い
た。
The first oxidative combustion layer, the gas-sensitive layer and the second oxidative combustion layer are printed and dried, and then these are simultaneously fired at a temperature of 630 ° C. for 3 hours to form a first oxidative combustion layer 3B and a gas-sensitive layer 4. , The second oxidation combustion layer 3C was formed. Then the electrode 2,
Platinum lead wires 7 and 9 were connected to 2A to obtain thick film gas sensors. Each lead wire was connected to the alarm circuit. Comparative Example 1 A sensor having the same structure as the thick film gas sensor of Example 1 was used.

【0019】比較例1に係る厚膜ガスセンサ次のように
して調製される。基板1の二つの主面に白金電極ペース
トをが所定のパターンでスクリーン印刷し、乾燥後約1
100℃の温度で焼成した。酸化ルテニウムからなるヒ
ータ用ペーストを所定のパターンでスクリーン印刷し所
定の温度で焼成した。酸化スズ粉体を乾燥空気中で温度
730℃で2h処理し、得られた酸化スズ粉体に白金の
含有量が酸化スズ粉体に対して2%になるように調整し
た塩化白金酸H2PtCl6 の水溶液を加え、混練したのち、
乾燥した。この粉体を温度600℃で3h熱処理し、塩
化白金酸H2PtCl6 を分解して酸化スズ粉体上に白金を担
持させた。得られた粉体をボールミルで粉砕したのち、
エチルシリケート,エチルセルロース,カルビトール等
を適量加え、混練して第一の酸化燃焼層用のペーストを
得た。得られた第一の酸化燃焼層用のペーストを所定の
パターンにより20μm厚さにスクリーン印刷し、12
0℃で2h乾燥した。
Thick film gas sensor according to Comparative Example 1 is prepared as follows. Platinum electrode paste was screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, and after drying about 1
It was fired at a temperature of 100 ° C. A heater paste made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature. Chloroplatinic acid H 2 was prepared by treating tin oxide powder in dry air at a temperature of 730 ° C. for 2 hours, and adjusting the content of platinum in the resulting tin oxide powder to 2% with respect to the tin oxide powder. After adding an aqueous solution of PtCl 6 and kneading,
Dried. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. After crushing the obtained powder with a ball mill,
Ethyl silicate, ethyl cellulose, carbitol, etc. were added in appropriate amounts and kneaded to obtain a paste for the first oxidative combustion layer. The obtained paste for the first oxidative combustion layer is screen-printed in a predetermined pattern to a thickness of 20 μm, and 12
It was dried at 0 ° C. for 2 hours.

【0020】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体にエチルシリケー
ト,エチルセルロース,カルビトール等を適量加え混練
して感ガス層用のペーストを得た。得られたペーストを
所定のパターンにより50μm厚さにスクリーン印刷
し、120℃で2h乾燥した。酸化スズ粉体を乾燥空気
中で温度730℃で2h処理し、得られた酸化スズ粉体
に白金の含有量が酸化スズ粉体に対して2%になるよう
に調整した塩化白金酸H2PtCl6 の水溶液を加え、混練し
たのち、乾燥した。この粉体を温度600℃で3h熱処
理し、塩化白金酸H2PtCl6 を分解して酸化スズ粉体上に
白金を担持させた。得られた粉体をボールミルで粉砕し
たのち、エチルシリケート,エチルセルロース,カルビ
トール等を適量加え、混練して第二の酸化燃焼層用のペ
ーストを得た。得られた第二の酸化燃焼層用のペースト
を所定のパターンにより20μm厚さにスクリーン印刷
し、120℃で2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The obtained tin oxide powder was added with an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like and kneaded to obtain a paste for a gas sensitive layer. The obtained paste was screen-printed in a predetermined pattern to a thickness of 50 μm and dried at 120 ° C. for 2 hours. Chloroplatinic acid H 2 was prepared by treating tin oxide powder in dry air at a temperature of 730 ° C. for 2 hours, and adjusting the content of platinum in the resulting tin oxide powder to 2% with respect to the tin oxide powder. An aqueous solution of PtCl 6 was added, and the mixture was kneaded and then dried. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the second oxidative combustion layer. The obtained paste for the second oxidative combustion layer was screen-printed in a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0021】第一の酸化燃焼層と感ガス層と第二の酸化
燃焼層を印刷し乾燥した後にこれらを630℃の温度で
3h同時に焼成して第一の酸化燃焼層3B、感ガス層
4、第二の酸化燃焼層3Cを形成した。続いて電極2,
2Aにそれぞれ白金リード線7,9を接続して厚膜ガス
センサを得た。それぞれのリード線を警報器の回路に接
続した。
The first oxidative combustion layer, the gas-sensitive layer and the second oxidative combustion layer are printed and dried, and then these are simultaneously baked at a temperature of 630 ° C. for 3 hours to form a first oxidative combustion layer 3B and a gas-sensitive layer 4. , The second oxidation combustion layer 3C was formed. Then the electrode 2,
Platinum lead wires 7 and 9 were connected to 2A to obtain thick film gas sensors. Each lead wire was connected to the alarm circuit.

【0022】実施例1と比較例1に係る厚膜ガスセンサ
につき30日間放置後の初期鳴動時間を測定した。結果
が表1に示される。
With respect to the thick film gas sensors according to Example 1 and Comparative Example 1, the initial ringing time after standing for 30 days was measured. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】感ガス層に酸化物触媒を含む厚膜ガスセン
サは初期鳴動時間が短いことがわかる。これに対し感ガ
ス層に酸化物触媒を含まない厚膜ガスセンサは初期鳴動
時間が長いことがわかる。図3は第一の発明の実施例に
係る厚膜ガスセンサの抵抗特性を示す線図である。厚膜
ガスセンサの抵抗値は0.2%イソブタンガス中で測定
された。第一の発明の実施例に係る厚膜ガスセンサは感
ガス層に酸化物触媒を含むが長期にわたってセンサ抵抗
値が安定であることがわかる。 実施例2 図4は第二の発明の実施例に係る厚膜ガスセンサを示す
平面図である。
It can be seen that the thick film gas sensor including the oxide catalyst in the gas sensitive layer has a short initial ringing time. On the other hand, it can be seen that the thick film gas sensor in which the gas sensitive layer does not contain an oxide catalyst has a long initial ringing time. FIG. 3 is a diagram showing the resistance characteristics of the thick film gas sensor according to the embodiment of the first invention. The resistance of the thick film gas sensor was measured in 0.2% isobutane gas. It can be seen that the thick film gas sensor according to the example of the first invention contains an oxide catalyst in the gas sensitive layer, but the sensor resistance value is stable for a long period of time. Embodiment 2 FIG. 4 is a plan view showing a thick film gas sensor according to an embodiment of the second invention.

【0025】図5は第二の発明の実施例に係る厚膜ガス
センサを示す図4のB−B矢視断面図である。第二の発
明の実施例に係る厚膜ガスセンサの構造は次の通りであ
る。基板1の一主面上に離間して二つの電極2が設けら
れる。基板1と電極2の上に感ガス層4が選択的に形成
される。感ガス層4を完全に被覆して第三の酸化燃焼層
3Dが設けられる。電極2にリード線7が接続される。
基板1の他の主面には電極2Aが形成され、電極2Aと
基板1の上に選択的にヒータ8が形成され、電極2Aに
はリード線9が接続される。
FIG. 5 is a sectional view taken along the line BB in FIG. 4 showing a thick film gas sensor according to an embodiment of the second invention. The structure of the thick film gas sensor according to the embodiment of the second invention is as follows. Two electrodes 2 are provided on one main surface of the substrate 1 at a distance from each other. The gas sensitive layer 4 is selectively formed on the substrate 1 and the electrode 2. A third oxidation combustion layer 3D is provided by completely covering the gas sensitive layer 4. The lead wire 7 is connected to the electrode 2.
An electrode 2A is formed on the other main surface of the substrate 1, a heater 8 is selectively formed on the electrode 2A and the substrate 1, and a lead wire 9 is connected to the electrode 2A.

【0026】基板1は厚さ0.5mmで縦3mm、横3
mmの研磨されたアルミナ基板である。ヒータは酸化ル
テニウム抵抗体からなる。このような厚膜ガスセンサは
次のようにして調製される。基板1の二つの主面に白金
電極ペーストを所定のパターンでスクリーン印刷し、乾
燥後約1100℃の温度で焼成した。酸化ルテニウムか
らなるヒータ用ペーストを所定のパターンでスクリーン
印刷し所定の温度で焼成した。
The substrate 1 has a thickness of 0.5 mm and a length of 3 mm and a width of 3 mm.
mm polished alumina substrate. The heater comprises a ruthenium oxide resistor. Such a thick film gas sensor is prepared as follows. A platinum electrode paste was screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, dried, and then baked at a temperature of about 1100 ° C. A heater paste made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature.

【0027】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に酸化コバルトCo
O ,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,
酸化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3 ,酸化
バナジウムV2O5,酸化チタンTiO2または酸化アルミニウ
ムAl2O3 を酸化スズ粉体に対して0.1重量%の割合に
なるように加え混合しさらにエチルシリケート,エチル
セルロース,カルビトール等を適量加え混練して感ガス
層用のペーストを得た。得られたペーストを所定のパタ
ーンにより50μm厚さにスクリーン印刷し、120℃
で2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated with cobalt oxide Co for 2 h.
O, Manganese oxide MnO, Nickel oxide NiO, Copper oxide CuO,
Iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 in an amount of 0.1% by weight based on the tin oxide powder. The mixture was added in proportions and mixed, and an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for a gas sensitive layer. The paste obtained is screen-printed to a thickness of 50 μm according to a predetermined pattern and 120 ° C.
And dried for 2 h.

【0028】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第三の酸化燃焼層用のペーストを得た。
得られた第三の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated for 2 h with an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content was 2% of the tin oxide powder, kneaded, and then dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the third oxidative combustion layer.
The obtained paste for the third oxidative combustion layer was screen-printed with a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0029】感ガス層と第三の酸化燃焼層を印刷し乾燥
した後にこれらを630℃の温度で3h同時に焼成して
感ガス層4、第三の酸化燃焼層3Dを形成した。続いて
電極2,2Aにそれぞれ白金リード線7,9を接続して
厚膜ガスセンサを得た。それぞれのリード線を警報器の
回路に接続した。 比較例2 実施例2の厚膜ガスセンサと同一の構造のセンサを用い
た。
After the gas-sensitive layer and the third oxidative combustion layer were printed and dried, they were simultaneously fired at a temperature of 630 ° C. for 3 hours to form a gas-sensitive layer 4 and a third oxidative combustion layer 3D. Subsequently, platinum lead wires 7 and 9 were connected to the electrodes 2 and 2A, respectively, to obtain a thick film gas sensor. Each lead wire was connected to the alarm circuit. Comparative Example 2 A sensor having the same structure as the thick film gas sensor of Example 2 was used.

【0030】比較例2に係る厚膜ガスセンサ次のように
して調製される。基板1の二つの主面に白金電極ペース
トをが所定のパターンでスクリーン印刷し、乾燥後約1
100℃の温度で焼成した。酸化ルテニウムからなるヒ
ータ用ペーストを所定のパターンでスクリーン印刷し所
定の温度で焼成した。酸化スズ粉体を乾燥空気中で温度
730℃で2h処理し、得られた酸化スズ粉体にエチル
シリケート,エチルセルロース,カルビトール等を適量
加え混練して感ガス層用のペーストを得た。得られたペ
ーストを所定のパターンにより50μm厚さにスクリー
ン印刷し、120℃で2h乾燥した。
Thick Film Gas Sensor According to Comparative Example 2 Prepared as follows. Platinum electrode paste was screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, and after drying about 1
It was fired at a temperature of 100 ° C. A heater paste made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature. The tin oxide powder was treated in dry air at a temperature of 730 ° C. for 2 hours, and an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added to the obtained tin oxide powder and kneaded to obtain a paste for a gas sensitive layer. The obtained paste was screen-printed in a predetermined pattern to a thickness of 50 μm and dried at 120 ° C. for 2 hours.

【0031】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第三の酸化燃焼層用のペーストを得た。
得られた第三の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated for 2 h with an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content was 2% of the tin oxide powder, kneaded, and then dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the third oxidative combustion layer.
The obtained paste for the third oxidative combustion layer was screen-printed with a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0032】感ガス層と第三の酸化燃焼層を印刷し乾燥
した後にこれらを630℃の温度で3h同時に焼成して
感ガス層4、第三の酸化燃焼層3Dを形成した。続いて
電極2,2Aにそれぞれ白金リード線7,9を接続して
厚膜ガスセンサを得た。それぞれのリード線を警報器の
回路に接続した。実施例2と比較例2に係る厚膜ガスセ
ンサにつき30日間放置後の初期鳴動時間を測定した。
結果が表2に示される。
After the gas-sensitive layer and the third oxidative combustion layer were printed and dried, they were simultaneously fired at a temperature of 630 ° C. for 3 hours to form a gas-sensitive layer 4 and a third oxidative combustion layer 3D. Subsequently, platinum lead wires 7 and 9 were connected to the electrodes 2 and 2A, respectively, to obtain a thick film gas sensor. Each lead wire was connected to the alarm circuit. The initial ringing time after leaving the thick film gas sensors according to Example 2 and Comparative Example 2 for 30 days was measured.
The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】感ガス層に酸化物触媒を含む厚膜ガスセン
サは初期鳴動時間が短いことがわかる。これに対し感ガ
ス層に酸化物触媒を含まない厚膜ガスセンサは初期鳴動
時間が長いことがわかる。厚膜ガスセンサの抵抗特性は
図示しないが長期にわたって安定である。実施例1,実
施例2においては一種類の酸化物を添加しているが一種
類の酸化物触媒に限定されるものではなく複数の種類の
酸化物触媒を混合して添加した場合においても同様な効
果が認められる。厚膜ガスセンサの熱処理温度は630
℃であり、この熱処理温度においては異なる酸化物間の
反応は起こらない。
It can be seen that the thick film gas sensor including the oxide catalyst in the gas sensitive layer has a short initial ringing time. On the other hand, it can be seen that the thick film gas sensor in which the gas sensitive layer does not contain an oxide catalyst has a long initial ringing time. Although not shown, the resistance characteristic of the thick film gas sensor is stable for a long period of time. Although one kind of oxide is added in Examples 1 and 2, the present invention is not limited to one kind of oxide catalyst, and the same applies when a plurality of kinds of oxide catalysts are mixed and added. The effect is recognized. The heat treatment temperature of the thick film gas sensor is 630.
C., and there is no reaction between different oxides at this heat treatment temperature.

【0035】実施例1,実施例2においては金属酸化物
半導体に酸化スズを用いているが酸化スズに替えて酸化
亜鉛を用いても同様な効果が得られる。酸化亜鉛は例え
ば塩化亜鉛とエチルナトリウムから合成したアルコキシ
ドを熱処理して製造することができる。実施例1,実施
例2においては酸化燃焼層に酸化スズを用い白金を担持
しているが酸化スズに替えて酸化亜鉛ZnO ,酸化アルミ
ニウムAl2O3 ,酸化マグネシウムMgO ,酸化ジルコニウ
ムZrO2,アルミニウムマグネシウムスピネルMgAl2O4
用いることができる。
Although tin oxide is used as the metal oxide semiconductor in Examples 1 and 2, the same effect can be obtained by using zinc oxide instead of tin oxide. Zinc oxide can be produced, for example, by heat-treating an alkoxide synthesized from zinc chloride and ethyl sodium. In Examples 1 and 2, tin oxide was used to support platinum in the oxidation combustion layer, but zinc oxide ZnO, aluminum oxide Al 2 O 3 , magnesium oxide MgO, zirconium oxide ZrO 2 , aluminum was used instead of tin oxide. Magnesium spinel MgAl 2 O 4 can be used.

【0036】感ガス層に酸化コバルトを0.1重量%の
割合で加え第一の酸化燃焼層と第二の酸化燃焼層の金属
酸化物担体に酸化亜鉛ZnO ,酸化アルミニウムAl2O3
酸化マグネシウムMgO または酸化ジルコニウムZrO2を用
いた三層型の厚膜ガスセンサにつき30日間放置後の初
期鳴動時間を測定した。結果が表3に示される。
Cobalt oxide was added to the gas-sensitive layer in a proportion of 0.1% by weight, and zinc oxide ZnO, aluminum oxide Al 2 O 3 , was added to the metal oxide carriers of the first oxidation combustion layer and the second oxidation combustion layer.
The initial ringing time after standing for 30 days was measured for a three-layer thick-film gas sensor using magnesium oxide MgO or zirconium oxide ZrO 2 . The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】酸化燃焼層に担持する触媒には白金の他パ
ラジウムを用いることができ、触媒の担持量としては1
ないし10重量%が適当である。さらに酸化燃焼層の金
属酸化物担体には前記酸化コバルトCoO ,酸化マンガMn
O ,酸化ニッケルNiO, 酸化銅CuO ,酸化鉄Fe2O3 ,酸
化亜鉛ZnO ,酸化クロムCr2O3 ,酸化バナジウムV2O5
酸化チタンTiO2または酸化アルミニウムAl2O3 等を触媒
として添加することができる。 実施例3 実施例1に示す厚膜ガスセンサと同一の構造のセンサを
用いた。
Platinum can be used in addition to platinum for the catalyst supported on the oxidation combustion layer, and the supported amount of the catalyst is 1
It is suitable to be 10 to 10% by weight. Further, as the metal oxide carrier of the oxidation combustion layer, the cobalt oxide CoO and the manganese oxide Mn are used.
O, nickel oxide NiO, copper oxide CuO, iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 ,
Titanium oxide TiO 2 or aluminum oxide Al 2 O 3 can be added as a catalyst. Example 3 A sensor having the same structure as the thick film gas sensor shown in Example 1 was used.

【0039】このような厚膜ガスセンサは次のようにし
て調製される。基板1の二つの主面に白金電極ペースト
を所定のパターンでスクリーン印刷し、乾燥後約110
0℃の温度で焼成した。酸化ルテニウムからなるヒータ
用ペーストを所定のパターンでスクリーン印刷し所定の
温度で焼成した。酸化スズ粉体を乾燥空気中で温度73
0℃で2h処理し、得られた酸化スズ粉体に白金の含有
量が酸化スズ粉体に対して2%になるように調整した塩
化白金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥
した。この粉体を温度600℃で3h熱処理し、塩化白
金酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持さ
せた。得られた粉体をボールミルで粉砕したのち、エチ
ルシリケート,エチルセルロース,カルビトール等を適
量加え、混練して第一の酸化燃焼層用のペーストを得
た。得られた第一の酸化燃焼層用のペーストを所定のパ
ターンにより20μm厚さにスクリーン印刷し、120
℃で2h乾燥した。
Such a thick film gas sensor is prepared as follows. Platinum electrode paste is screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, and after drying about 110
It was calcined at a temperature of 0 ° C. A heater paste made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature. Tin oxide powder in dry air at temperature 73
After treatment at 0 ° C. for 2 h, an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content is 2% with respect to the tin oxide powder is added to the obtained tin oxide powder and kneaded. Dried. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the first oxidative combustion layer. The obtained paste for the first oxidative combustion layer is screen-printed in a predetermined pattern to a thickness of 20 μm,
It was dried at 0 ° C. for 2 hours.

【0040】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に酸化コバルトCo
O ,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,
酸化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3 ,酸化
バナジウムV2O5,酸化チタンTiO2または酸化アルミニウ
ムAl2O3 を酸化スズ粉体に対して0.008ないし1.
2重量%の割合になるように加え混合しさらにエチルシ
リケート,エチルセルロース,カルビトール等を適量加
え混練して感ガス層用のペーストを得た。得られたペー
ストを所定のパターンにより50μm厚さにスクリーン
印刷し、120℃で2h乾燥した。
The tin oxide powder was dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated with cobalt oxide Co for 2 h.
O, Manganese oxide MnO, Nickel oxide NiO, Copper oxide CuO,
Iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 is added to the tin oxide powder in an amount of 0.008 to 1.
The mixture was added so as to have a ratio of 2% by weight, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a gas layer paste. The obtained paste was screen-printed in a predetermined pattern to a thickness of 50 μm and dried at 120 ° C. for 2 hours.

【0041】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第二の酸化燃焼層用のペーストを得た。
得られた第二の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
The tin oxide powder is dried in air at a temperature of 730 ° C.
The resulting tin oxide powder was treated for 2 h with an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted so that the platinum content was 2% of the tin oxide powder, kneaded, and then dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose chloroplatinic acid H 2 PtCl 6 to support platinum on the tin oxide powder. The obtained powder was pulverized with a ball mill, and then an appropriate amount of ethyl silicate, ethyl cellulose, carbitol, etc. was added and kneaded to obtain a paste for the second oxidative combustion layer.
The obtained paste for the second oxidative combustion layer was screen-printed in a predetermined pattern to a thickness of 20 μm and dried at 120 ° C. for 2 hours.

【0042】第一の酸化燃焼層と感ガス層と第二の酸化
燃焼層を印刷し乾燥した後にこれらを630℃の温度で
3h同時に焼成して第一の酸化燃焼層3B、感ガス層
4、第二の酸化燃焼層3Cを形成した。続いて電極2,
2Aにそれぞれ白金リード線7,9を接続して厚膜ガス
センサを得た。それぞれのリード線を警報器の回路に接
続した。
The first oxidative combustion layer, the gas-sensitive layer, and the second oxidative combustion layer are printed, dried, and then simultaneously baked at a temperature of 630 ° C. for 3 hours to form the first oxidative combustion layer 3B and the gas-sensitive layer 4. , The second oxidation combustion layer 3C was formed. Then the electrode 2,
Platinum lead wires 7 and 9 were connected to 2A to obtain thick film gas sensors. Each lead wire was connected to the alarm circuit.

【0043】表4に初期鳴動時間(s)の酸化物触媒添
加量依存性が示される。初期鳴動時間は30日放置後の
ものである。
Table 4 shows the dependency of the initial ringing time (s) on the amount of oxide catalyst added. The initial ringing time is after leaving for 30 days.

【0044】[0044]

【表4】 [Table 4]

【0045】酸化物の種類に依存せず添加量が0.01
ないし1.0重量%の範囲で初期鳴動時間が短くなるこ
とがわかる。 実施例4 感ガス層用のペーストの調製において酸化コバルトCoO
,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,
酸化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3,酸化
バナジウムV2O5,酸化チタンTiO2もしくは酸化アルミニ
ウムAl2O3 の粉体を酸化スズ粉体に対して0.1重量%
の割合になるように加え混合することに替えて金属ニッ
ケル.金属クロム,金属鉄もしくは金属アルミニウムの
粉体を100ないし5000ppmの範囲で添加してエ
チルアルコールを分散媒としてボールミルで20h混合
しアルコールを自然乾燥して混合することにする他は実
施例1と同様にして厚膜ガスセンサを調製した。上記金
属は熱処理により金属酸化物半導体中において酸化物に
変わり触媒として機能する。
The addition amount is 0.01 regardless of the kind of oxide.
It can be seen that the initial ringing time becomes shorter in the range of 1.0 to 1.0% by weight. Example 4 Cobalt oxide CoO in preparation of paste for gas sensitive layer
, Manganese oxide MnO, Nickel oxide NiO, Copper oxide CuO,
Powder of iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 was added to the tin oxide powder in 0.1 weight%
Metal nickel. Similar to Example 1 except that powder of metallic chromium, metallic iron or metallic aluminum is added in the range of 100 to 5000 ppm, and the mixture is mixed for 20 h in a ball mill using ethyl alcohol as a dispersion medium and the alcohol is naturally dried and mixed. Then, a thick film gas sensor was prepared. The above metal changes into an oxide in the metal oxide semiconductor by heat treatment and functions as a catalyst.

【0046】図6は第三の発明の実施例に係る厚膜ガス
センサの初期鳴動特性(イ)を従来の厚膜ガスセンサの
特性(ア)と対比して示す線図である。触媒はニッケル
である。本発明の実施例に係る厚膜ガスセンサは無通電
時間の如何に係わらず初期鳴動時間は小さい。これに対
し従来の厚膜ガスセンサは初期鳴動時間が無通電時間と
ともに急速に増大することがわかる。
FIG. 6 is a diagram showing the initial ringing characteristic (A) of the thick film gas sensor according to the third embodiment of the present invention in comparison with the characteristic (A) of the conventional thick film gas sensor. The catalyst is nickel. The thick film gas sensor according to the embodiment of the present invention has a small initial ringing time regardless of the non-energization time. On the other hand, in the conventional thick film gas sensor, it can be seen that the initial ringing time increases rapidly with the non-energization time.

【0047】図7は第三の発明の実施例に係る厚膜ガス
センサにつきセンサ抵抗値の経時安定性(ウ)を従来の
厚膜ガスセンサの特性(エ)と対比して示す線図であ
る。触媒はニッケルである。測定は0,2%のイソブタ
ンガス中で行われた。第一の発明の異なる実施例に係る
厚膜ガスセンサは7日間でほぼ抵抗値が安定するが従来
の厚膜ガスセンサは徐徐に抵抗値が減少することがわか
る。
FIG. 7 is a diagram showing the temporal stability (c) of the sensor resistance value of the thick film gas sensor according to the embodiment of the third invention in comparison with the characteristic (d) of the conventional thick film gas sensor. The catalyst is nickel. The measurement was carried out in 0.2% isobutane gas. It can be seen that the resistance values of the thick film gas sensors according to the different embodiments of the first invention are almost stable in 7 days, but the resistance values of the conventional thick film gas sensor gradually decrease.

【0048】図8は第三の発明の実施例に係る厚膜ガス
センサにつきセンサ抵抗値の電圧依存性(オ)を従来の
厚膜ガスセンサの特性(カ)と対比して示す線図であ
る。触媒はニッケルを用いた。第三の発明の実施例に係
る厚膜ガスセンサは空気中でのセンサ抵抗値が従来のも
のに比し大きい。この結果同一のセンサ抵抗値を示す電
圧が本発明の厚膜ガスセンサにおいては従来のものに比
し5V程度高くなり、厚膜ガスセンサの警報発信の電圧
依存性が少なくなる。
FIG. 8 is a diagram showing the voltage dependence (e) of the sensor resistance value of the thick film gas sensor according to the embodiment of the third invention in comparison with the characteristic (f) of the conventional thick film gas sensor. Nickel was used as the catalyst. The thick film gas sensor according to the third embodiment of the present invention has a larger sensor resistance value in air than the conventional one. As a result, in the thick film gas sensor of the present invention, the voltage exhibiting the same sensor resistance value is increased by about 5V as compared with the conventional one, and the voltage dependency of the alarm transmission of the thick film gas sensor is reduced.

【0049】クロム,鉄もしくはアルミニウム等の触媒
についても同様の特性が観測される。
Similar characteristics are observed for catalysts such as chromium, iron or aluminum.

【0050】[0050]

【発明の効果】第一の発明によれば、金属酸化物半導体
の抵抗値の変化を利用してガスの有無を検出する厚膜ガ
スセンサであって、基板と、一対の電極と、第一の酸化
燃焼層と、感ガス層と、第二の酸化燃焼層とを包含し、
基板はガスセンサの支持体であり、一対の電極は基板上
に離間して直接的に被着され、第一の酸化燃焼層は基板
と一対の電極上に選択的に積層され、感ガス層は第一の
酸化燃焼層と一対の電極上に選択的に積層され、第二の
酸化燃焼層は感ガス層の全部を被覆して積層され、第一
の酸化燃焼層は金属酸化物担体に貴金属触媒を担持して
なり、第二の酸化燃焼層は金属酸化物担体に貴金属触媒
を担持してなり、感ガス層は金属酸化物半導体に酸化コ
バルト,酸化マンガン,酸化ニッケル,酸化銅,酸化
鉄,酸化亜鉛,酸化クロム,酸化バナジウム,酸化チタ
ン,酸化アルミニウムの群から選ばれた少なくとも一つ
を含有させてなるとし、また第二の発明によれば金属酸
化物半導体の抵抗値の変化を利用してガスの有無を検出
する厚膜ガスセンサであって、基板と、一対の電極と、
第三の酸化燃焼層と、感ガス層とを包含し、基板はガス
センサの支持体であり、一対の電極は基板上に離間して
直接的に被着され、感ガス層は基板と一対の電極上に選
択的に積層され、第三の酸化燃焼層は感ガス層の全部を
被覆して積層され、第三の酸化燃焼層は金属酸化物担体
に貴金属触媒を担持してなり、感ガス層は金属酸化物半
導体に酸化コバルト,酸化マンガン,酸化ニッケル,酸
化銅,酸化鉄,酸化亜鉛,酸化クロム,酸化バナジウ
ム,酸化チタン,酸化アルミニウムの群から選ばれた少
なくとも一つを含有させてなるとし、第三の発明によれ
ば金属酸化物半導体の抵抗値の変化を利用してガスの有
無を検出する厚膜ガスセンサの製造方法であって、
(1)酸化燃焼層の成膜工程と、(2)感ガス層の成膜
工程とを包含し、酸化燃焼層の成膜工程は貴金属触媒を
担持した金属酸化物粉体のペーストを調製し、塗布乾燥
し、熱処理する工程であり、感ガス層の成膜工程は金属
酸化物半導体の粉体にニッケル,鉄,アルミニウムまた
はクロムの金属粉体を添加したペーストを調製し、塗布
乾燥し、熱処理する工程であるとするので、酸化コバル
ト,酸化マンガン,酸化ニッケル,酸化銅,酸化鉄,酸
化亜鉛,酸化クロム,酸化バナジウム,酸化チタン,酸
化アルミニウム等の酸化物触媒は感ガス層の金属酸化物
半導体中に含有された状態で金属酸化物半導体が酸素吸
着する際の触媒として機能しまた前記酸化物触媒は感ガ
ス層の金属酸化物半導体中に含有された状態で粒成長を
起こさず、触媒活性を一定に維持し金属酸化物半導体の
酸素吸着量を安定に維持し、その結果初期鳴動特性と安
定性に優れる厚膜ガスセンサが得られる。
According to the first aspect of the present invention, there is provided a thick film gas sensor for detecting the presence or absence of gas by utilizing a change in resistance value of a metal oxide semiconductor, the substrate, a pair of electrodes, and Including an oxidative combustion layer, a gas sensitive layer, and a second oxidative combustion layer,
The substrate is a support of the gas sensor, the pair of electrodes is directly deposited on the substrate with a space therebetween, the first oxidative combustion layer is selectively laminated on the substrate and the pair of electrodes, and the gas sensitive layer is The first oxidative combustion layer and the pair of electrodes are selectively laminated, the second oxidative combustion layer is laminated so as to cover the entire gas-sensitive layer, and the first oxidative combustion layer is a metal oxide carrier and a noble metal. A catalyst is supported, the second oxidation combustion layer is a metal oxide carrier carrying a noble metal catalyst, and the gas-sensitive layer is a metal oxide semiconductor having cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide. , Zinc oxide, chromium oxide, vanadium oxide, titanium oxide, aluminum oxide, and at least one selected from the group, and according to the second invention, the change in resistance of the metal oxide semiconductor is used. Thick film gas sensor that detects the presence or absence of gas There, a substrate, a pair of electrodes,
A third oxidative combustion layer and a gas-sensitive layer are included, the substrate is a support of the gas sensor, the pair of electrodes is directly and separately disposed on the substrate, and the gas-sensitive layer and the substrate are paired. Selectively laminated on the electrode, the third oxidative combustion layer covers the entire gas-sensitive layer and is laminated, and the third oxidative combustion layer comprises a metal oxide carrier carrying a noble metal catalyst. The layer comprises a metal oxide semiconductor containing at least one selected from the group consisting of cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide. Then, according to the third invention, a method of manufacturing a thick film gas sensor for detecting the presence or absence of gas by utilizing the change in the resistance value of the metal oxide semiconductor,
The method includes the steps of (1) forming an oxidation combustion layer and (2) forming a gas-sensitive layer. The oxidation combustion layer is formed by preparing a paste of a metal oxide powder carrying a noble metal catalyst. The steps of coating, drying, and heat treatment are performed. In the step of forming the gas-sensitive layer, a paste prepared by adding a metal powder of nickel, iron, aluminum, or chromium to powder of a metal oxide semiconductor is prepared, coated, dried, Since this is a heat treatment step, oxide catalysts such as cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide are used for the metal oxidation of the gas-sensitive layer. A metal oxide semiconductor functioning as a catalyst when adsorbing oxygen in a state of being contained in the semiconductor, and the oxide catalyst does not cause grain growth in a state of being contained in the metal oxide semiconductor of the gas-sensitive layer, Catalytic activity Was stably maintained the oxygen adsorption amount of the metal oxide semiconductor is kept constant, a thick film gas sensor excellent result initial sounding characteristics and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明の実施例に係る厚膜ガスセンサを示
す平面図
FIG. 1 is a plan view showing a thick film gas sensor according to an embodiment of the first invention.

【図2】第一の発明の実施例に係る厚膜ガスセンサを示
す図1のA−A矢視断面図
FIG. 2 is a sectional view taken along the line AA of FIG. 1 showing a thick film gas sensor according to an embodiment of the first invention.

【図3】第一の発明の実施例に係る厚膜ガスセンサの抵
抗特性を示す線図
FIG. 3 is a diagram showing resistance characteristics of a thick film gas sensor according to an embodiment of the first invention.

【図4】第二の発明の実施例に係る厚膜ガスセンサを示
す平面図
FIG. 4 is a plan view showing a thick film gas sensor according to an embodiment of the second invention.

【図5】第二の発明の実施例に係る厚膜ガスセンサを示
す図4のB−B矢視断面図
5 is a sectional view taken along the line BB of FIG. 4 showing a thick film gas sensor according to an embodiment of the second invention.

【図6】第三の発明の実施例に係る厚膜ガスセンサの初
期鳴動特性(イ)を従来の厚膜ガスセンサの特性(ア)
と対比して示す線図
FIG. 6 shows the initial ringing characteristic (a) of the thick film gas sensor according to the embodiment of the third invention as the characteristic (a) of the conventional thick film gas sensor.
Diagram shown in contrast to

【図7】第三の発明の実施例に係る厚膜ガスセンサにつ
きセンサ抵抗値の経時安定性(ウ)を従来の厚膜ガスセ
ンサの特性と対比して示す線図
FIG. 7 is a diagram showing the temporal stability (c) of the sensor resistance value of the thick film gas sensor according to the embodiment of the third invention in comparison with the characteristics of a conventional thick film gas sensor.

【図8】第三の発明の実施例に係る厚膜ガスセンサにつ
きセンサ抵抗値の電圧依存性(オ)を従来の厚膜ガスセ
ンサの特性(カ)と対比して示す線図
FIG. 8 is a diagram showing the voltage dependence (e) of the sensor resistance value of the thick film gas sensor according to the embodiment of the third invention in comparison with the characteristic (f) of the conventional thick film gas sensor.

【図9】従来の厚膜ガスセンサを示す平面図FIG. 9 is a plan view showing a conventional thick film gas sensor.

【図10】従来の厚膜ガスセンサを示す図6のC−C矢
視断面図
10 is a sectional view taken along the line CC of FIG. 6 showing a conventional thick film gas sensor.

【図11】厚膜ガスセンサの初期鳴動特性を示す線図FIG. 11 is a diagram showing an initial ringing characteristic of a thick film gas sensor.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 2A 電極 3A 酸化燃焼層 3B 第一の酸化燃焼層 3C 第二の酸化燃焼層 3D 第三の酸化燃焼層 4 感ガス層 7 リード線 8 ヒータ 9 リード線 1 Substrate 2 Electrode 2A Electrode 3A Oxidative combustion layer 3B First oxidative combustion layer 3C Second oxidative combustion layer 3D Third oxidative combustion layer 4 Gas sensitive layer 7 Lead wire 8 Heater 9 Lead wire

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物半導体の抵抗値の変化を利用し
てガスの有無を検出する厚膜ガスセンサであって、 (1)基板と、 (2)一対の電極と、 (3)第一の酸化燃焼層と、 (4)感ガス層と、 (5)第二の酸化燃焼層とを包含し、 基板はガスセンサの支持体であり、 一対の電極は基板上に離間して直接的に被着され、 第一の酸化燃焼層は基板と一対の電極上に選択的に積層
され、 感ガス層は第一の酸化燃焼層と一対の電極上に選択的に
積層され、 第二の酸化燃焼層は感ガス層の全部を被覆して積層さ
れ、 第一の酸化燃焼層は金属酸化物担体に貴金属触媒を担持
してなり、 第二の酸化燃焼層は金属酸化物担体に貴金属触媒を担持
してなり、 感ガス層は金属酸化物半導体に酸化コバルト,酸化マン
ガン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛,酸化
クロム,酸化バナジウム,酸化チタン,酸化アルミニウ
ムの群から選ばれた少なくとも一つを含有させてなるこ
とを特徴とする厚膜ガスセンサ。
1. A thick film gas sensor for detecting the presence or absence of gas by utilizing a change in resistance of a metal oxide semiconductor, comprising: (1) a substrate, (2) a pair of electrodes, and (3) a first electrode. And (4) a gas-sensitive layer, and (5) a second oxidation-combustion layer. The substrate is a support for the gas sensor, and the pair of electrodes are directly separated from each other on the substrate. The first oxidation combustion layer is selectively laminated on the substrate and the pair of electrodes, and the gas-sensitive layer is selectively laminated on the first oxidation combustion layer and the pair of electrodes. The combustion layer is laminated so as to cover the entire gas-sensitive layer, the first oxidation combustion layer has a metal oxide carrier supporting a noble metal catalyst, and the second oxidation combustion layer has a metal oxide carrier supporting a noble metal catalyst. The gas sensitive layer is carried on the metal oxide semiconductor by cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide. , A thick film gas sensor comprising at least one selected from the group consisting of zinc oxide, chromium oxide, vanadium oxide, titanium oxide and aluminum oxide.
【請求項2】金属酸化物半導体の抵抗値の変化を利用し
てガスの有無を検出する厚膜ガスセンサであって、 (1)基板と、 (2)一対の電極と、 (3)第三の酸化燃焼層と、 (4)感ガス層とを包含し、 基板はガスセンサの支持体であり、 一対の電極は基板上に離間して直接的に被着され、 感ガス層は基板と一対の電極上に選択的に積層され、 第三の酸化燃焼層は感ガス層の全部を被覆して積層さ
れ、 第三の酸化燃焼層は金属酸化物担体に貴金属触媒を担持
してなり、 感ガス層は金属酸化物半導体に酸化コバルト,酸化マン
ガン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛.酸化
クロム,酸化バナジウム,酸化チタン,酸化アルミニウ
ムの群から選ばれた少なくとも一つを含有させてなるこ
とを特徴とする厚膜ガスセンサ。
2. A thick film gas sensor for detecting the presence / absence of gas by utilizing a change in resistance value of a metal oxide semiconductor, comprising: (1) a substrate, (2) a pair of electrodes, and (3) a third electrode. And the (4) gas sensitive layer, the substrate is a support of the gas sensor, the pair of electrodes are directly and separately deposited on the substrate, and the gas sensitive layer is paired with the substrate. Is selectively laminated on the electrode of, the third oxidation combustion layer is laminated so as to cover the entire gas-sensitive layer, and the third oxidation combustion layer is formed by supporting the noble metal catalyst on the metal oxide carrier. The gas layer contains metal oxide semiconductors such as cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, and zinc oxide. A thick film gas sensor comprising at least one selected from the group consisting of chromium oxide, vanadium oxide, titanium oxide and aluminum oxide.
【請求項3】請求項1または2に記載の厚膜ガスセンサ
において、金属酸化物半導体はn型金属酸化物半導体で
あることを特徴とする厚膜ガスセンサ。
3. The thick film gas sensor according to claim 1 or 2, wherein the metal oxide semiconductor is an n-type metal oxide semiconductor.
【請求項4】請求項3記載の厚膜ガスセンサにおいて、
n型金属酸化物半導体は酸化スズであることを特徴とす
る厚膜ガスセンサ。
4. The thick film gas sensor according to claim 3, wherein
The thick film gas sensor, wherein the n-type metal oxide semiconductor is tin oxide.
【請求項5】請求項3記載の厚膜ガスセンサにおいて、
n型金属酸化物半導体は酸化亜鉛であることを特徴とす
る厚膜ガスセンサ。
5. The thick film gas sensor according to claim 3,
A thick film gas sensor, wherein the n-type metal oxide semiconductor is zinc oxide.
【請求項6】請求項1または2に記載の厚膜ガスセンサ
において、金属酸化物担体は酸化スズ,酸化亜鉛.酸化
アルミニウム,酸化マグネシウム,酸化ジルコニウムの
群から選ばれた少なくとも一つからなることを特徴とす
る厚膜ガスセンサ。
6. The thick film gas sensor according to claim 1 or 2, wherein the metal oxide carrier is tin oxide, zinc oxide. A thick film gas sensor comprising at least one selected from the group consisting of aluminum oxide, magnesium oxide and zirconium oxide.
【請求項7】請求項1または2に記載の厚膜ガスセンサ
において、金属酸化物担体は酸化コバルト,酸化マンガ
ン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛.酸化ク
ロム,酸化バナジウム,酸化チタン,酸化アルミニウム
の群から選ばれた少なくとも一つを含有してなることを
特徴とする厚膜ガスセンサ。
7. The thick film gas sensor according to claim 1, wherein the metal oxide carrier is cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide. A thick film gas sensor comprising at least one selected from the group consisting of chromium oxide, vanadium oxide, titanium oxide and aluminum oxide.
【請求項8】請求項1または2に記載の厚膜ガスセンサ
において、金属酸化物半導体は酸化コバルト,酸化マン
ガン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛.酸化
クロム,酸化バナジウム,酸化チタン,酸化アルミニウ
ムの群から選ばれた少なくとも一つを0.01ないし
1.0重量%の割合で含有してなることを特徴とする厚
膜ガスセンサ。
8. The thick film gas sensor according to claim 1, wherein the metal oxide semiconductors are cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide. A thick film gas sensor comprising at least one selected from the group consisting of chromium oxide, vanadium oxide, titanium oxide and aluminum oxide in a proportion of 0.01 to 1.0% by weight.
【請求項9】金属酸化物半導体の抵抗値の変化を利用し
てガスの有無を検出する厚膜ガスセンサの製造方法であ
って、 (1)酸化燃焼層の成膜工程と、 (2)感ガス層の成膜工程とを包含し、 酸化燃焼層の成膜工程は貴金属触媒を担持した金属酸化
物粉体のペーストを調製し、塗布乾燥し、熱処理する工
程であり、 感ガス層の成膜工程は金属酸化物半導体の粉体にニッケ
ル,鉄,アルミニウムまたはクロムの金属粉体を添加し
たペーストを調製し、塗布乾燥し、熱処理する工程であ
ることを特徴とする厚膜ガスセンサの製造方法。
9. A method of manufacturing a thick film gas sensor for detecting the presence / absence of gas by utilizing a change in resistance value of a metal oxide semiconductor, which comprises (1) a step of forming an oxidation combustion layer, and (2) a feeling. Including the gas layer forming step, the oxidizing combustion layer forming step is a step of preparing a paste of metal oxide powder carrying a noble metal catalyst, coating and drying it, and heat-treating it. The film forming step is a step of preparing a paste obtained by adding a metal powder of nickel, iron, aluminum or chromium to a powder of a metal oxide semiconductor, coating, drying and heat treating the paste, and a method for manufacturing a thick film gas sensor. .
【請求項10】請求項9に記載の厚膜ガスセンサの製造
方法において、金属酸化物半導体の粉体に対する金属粉
体の添加量は100ないし5000ppmの範囲にある
ことを特徴とする厚膜ガスセンサの製造方法。
10. The method for manufacturing a thick film gas sensor according to claim 9, wherein the addition amount of the metal powder to the powder of the metal oxide semiconductor is in the range of 100 to 5000 ppm. Production method.
JP22766193A 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same Expired - Fee Related JP3271635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22766193A JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11508293 1993-05-18
JP5-115082 1993-05-18
JP22766193A JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0735716A true JPH0735716A (en) 1995-02-07
JP3271635B2 JP3271635B2 (en) 2002-04-02

Family

ID=26453685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22766193A Expired - Fee Related JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3271635B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483304B1 (en) * 2002-04-15 2005-04-15 한라산업개발 주식회사 Method for Making Thick Film Gas Sensors
KR101131702B1 (en) * 2009-02-27 2012-04-03 포항공과대학교 산학협력단 Gas sensor material, gas sensor having the same and method of manufacturing the gas sensor material
CN113433171A (en) * 2021-06-24 2021-09-24 兰州大学 Gas-sensitive material, gas-sensitive sensor, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256166B (en) * 2008-04-16 2012-05-09 北京航空航天大学 Method of preparing zinc oxide/titanium dioxide composite self-assembly thin film gas sensitive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483304B1 (en) * 2002-04-15 2005-04-15 한라산업개발 주식회사 Method for Making Thick Film Gas Sensors
KR101131702B1 (en) * 2009-02-27 2012-04-03 포항공과대학교 산학협력단 Gas sensor material, gas sensor having the same and method of manufacturing the gas sensor material
CN113433171A (en) * 2021-06-24 2021-09-24 兰州大学 Gas-sensitive material, gas-sensitive sensor, and preparation method and application thereof

Also Published As

Publication number Publication date
JP3271635B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US4242303A (en) Gas detecting element
JPH0735716A (en) Thick film gas sensor and manufacture thereof
JPH07128268A (en) Hydrogen gas sensor
JP3191544B2 (en) Thick film type gas sensor
JPS6366448A (en) Gas detector
JPH08271465A (en) Ammonia gas sensor and its manufacture
JP3026523B2 (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP3046387B2 (en) Gas sensor
JPH07198651A (en) Thin film type gas sensor
JPH07198650A (en) Thick film type gas sensor
JPH0221256A (en) Gas sensor
JPH0743331A (en) Thick film gas sensor
JPH07120425A (en) Contact combustion type gas sensor
JPH07209234A (en) Semiconductor gas sensor
JPH0252247A (en) Gas sensor
JP3191523B2 (en) Thick film gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JP2575479B2 (en) Gas sensor
JPH04344450A (en) Gas sensor
JPS58118953A (en) Preparation of gas sensitive element
JPH053897B2 (en)
JPH06186191A (en) Thick-film gas sensor
JPS63279150A (en) Semiconductor type gas sensor
JPH01304350A (en) Gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees