JP3050696B2 - Oxidizing gas sensor - Google Patents

Oxidizing gas sensor

Info

Publication number
JP3050696B2
JP3050696B2 JP13603692A JP13603692A JP3050696B2 JP 3050696 B2 JP3050696 B2 JP 3050696B2 JP 13603692 A JP13603692 A JP 13603692A JP 13603692 A JP13603692 A JP 13603692A JP 3050696 B2 JP3050696 B2 JP 3050696B2
Authority
JP
Japan
Prior art keywords
weight
in2o3
sensitivity
sensor
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13603692A
Other languages
Japanese (ja)
Other versions
JPH05302903A (en
Inventor
吉展 松浦
博信 上野
徹 野村
英美 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP13603692A priority Critical patent/JP3050696B2/en
Publication of JPH05302903A publication Critical patent/JPH05302903A/en
Application granted granted Critical
Publication of JP3050696B2 publication Critical patent/JP3050696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、NOxやオゾン等の酸
化性ガスのセンサに関する。
The present invention relates to a sensor for oxidizing gas such as NOx and ozone.

【0002】[0002]

【従来技術】発明者らはWO3 の厚膜や薄膜を用いた酸
化性ガスのセンサを提案した(特開平4−65,662
号)。このセンサはNOxやオゾンを検出し、例えばデ
ィーゼル排ガス中のNOxを検出して、自動車の車室へ
の外気導入制御に用いる。またオゾンを検出してオゾン
脱臭器の制御に用いる。あるいはまたバーナーからのN
Oxを検出して、燃焼制御に用いる。
2. Description of the Related Art The inventors have proposed an oxidizing gas sensor using a thick or thin WO3 film (Japanese Patent Laid-Open No. 4-65,662).
issue). This sensor detects NOx and ozone, for example, detects NOx in diesel exhaust gas, and uses it for controlling the introduction of outside air into the cabin of an automobile. Ozone is detected and used for controlling an ozone deodorizer. Or also N from the burner
Ox is detected and used for combustion control.

【0003】次に発明者は、WO3 センサの経時安定性
を改善するため、あるいはNOx感度や応答速度を改善
するため、ReやS,Pb,Ru等の添加物を加えるこ
とを提案した(特願平2−269764号、平成2年1
0月8日出願)。
[0003] Next, the inventor proposed to add an additive such as Re, S, Pb, and Ru in order to improve the stability over time of the WO3 sensor or to improve the NOx sensitivity and response speed. No. 2-269768, 1990
(Application on 0/8).

【0004】しかしながらこれらの酸化性ガスのセンサ
は極めて高抵抗であり、空気中でも抵抗値は1MΩ弱に
達する。これらのセンサはNOxやオゾンに触れると抵
抗値が増加するので、検出雰囲気中での抵抗値は数10
MΩ程度にも達する。このため抵抗値の測定自体が困難
である。次にWO3 を用いた酸化性ガスのセンサは、エ
タノールやイソブタン、CO等には殆ど感度を示さな
い。しかしながら水素に対しては、僅かながら感度を示
す。このため妨害ガスとしては水素があり、排ガス中で
NOxと共存する水素、あるいはオゾン発生機でオゾン
とともに発生する水素による、検出精度の低下が問題と
なる。
[0004] However, these oxidizing gas sensors have extremely high resistance, and have a resistance value of just under 1 MΩ even in air. The resistance of these sensors increases when they come in contact with NOx or ozone.
It reaches about MΩ. Therefore, it is difficult to measure the resistance value itself. Next, an oxidizing gas sensor using WO3 shows almost no sensitivity to ethanol, isobutane, CO and the like. However, it shows a slight sensitivity to hydrogen. For this reason, there is hydrogen as an interfering gas, and there is a problem in that the detection accuracy is reduced due to hydrogen coexisting with NOx in the exhaust gas or hydrogen generated together with ozone in the ozone generator.

【0005】これ以外の先行技術を示すと、特開昭56
−69,546号公報は、In2O360重量%〜95重
量%に、WO3 を40〜5重量%添加することを提案し
ている。ここでのWO3 添加の目的は低抵抗なIn2O3
の抵抗値を増加させることであり、これ以外の目的と
してイソブタン等の可燃性ガスへの感度の向上、あるい
は可燃性ガスへの濃度依存性の向上を示している。また
ここでの測定温度は450℃である。
Another prior art is disclosed in Japanese Patent Application Laid-Open No.
No. 69,546 proposes to add 40 to 5% by weight of WO3 to 60 to 95% by weight of In2 O3. The purpose of adding WO3 here is to use low-resistance In2O3.
The purpose of the present invention is to increase the sensitivity to a flammable gas such as isobutane or to improve the concentration dependency to a flammable gas for other purposes. The measurement temperature here is 450 ° C.

【0006】[0006]

【発明の課題】この発明の課題は、(1) 低抵抗で、(2)
水素による妨害の少ない、酸化性ガスのセンサを提供
することにある。
The object of the present invention is (1) low resistance, (2)
An object of the present invention is to provide a sensor for an oxidizing gas which is less hindered by hydrogen.

【0007】[0007]

【発明の構成】この発明の酸化性ガスのセンサは、WO
3 95〜50重量%とIn2O3 5〜50重量%の混合
物を主成分とすることを特徴とする。ここにIn2O3
の役割は、(1) WO3 の抵抗値を減少させ、扱い易く
すること、(2) 水素感度を低下させ、ディーゼル排ガ
ス中やオゾン発生機からのガス中で、NOxやオゾンと
共存する水素の影響を小さくすること、にある。
An oxidizing gas sensor according to the present invention is a WO sensor.
3 to 50% by weight and a mixture of 5 to 50% by weight of In2 O3 as a main component. Here In2O3
The role of (1) is to reduce the resistance value of WO3 to make it easier to handle, and (2) to reduce the hydrogen sensitivity and to reduce the hydrogen coexisting with NOx and ozone in diesel exhaust gas and gas from an ozone generator. To reduce the impact.

【0008】In2O3 の添加によるNOxやオゾン感
度の低下は、In2O3 含有量が30重量%(WO3 7
0重量%)では極く小さく、In2O3 無添加のガスセ
ンサとほとんど同等である。In2O3 の含有量を40
重量%(WO3 60重量%)とすると、NOxやオゾン
感度は僅かに減少し、In2O3 の含有量を50重量%
とすると、NOxやオゾン感度は大きく低下する。また
In2O3 の含有量を60重量%(WO3 40重量%)
とすると、感度は著しく減少する。これらのことから、
センサの主成分の組成を、WO3 95〜50重量%、I
n2O3 5〜50重量%とし、好ましくはWO3 90〜
55重量%、In2O3 10〜45重量%、さらに好ま
しくはWO3 80〜55重量%、In2O3 20〜45
重量%、最も好ましくはWO3 80〜65重量%、In
2O3 20〜35重量%、とする。
The decrease in sensitivity to NOx and ozone due to the addition of In2O3 is caused by the fact that the In2O3 content is 30% by weight (WO3
(0% by weight), it is extremely small, and is almost equivalent to a gas sensor without addition of In2O3. In2O3 content of 40
% By weight (WO3 60% by weight), NOx and ozone sensitivity are slightly reduced, and the content of In2O3 is reduced to 50% by weight.
Then, NOx and ozone sensitivity are greatly reduced. Further, the content of In2O3 is reduced to 60% by weight (WO3 40% by weight).
Then, the sensitivity is significantly reduced. from these things,
The composition of the main component of the sensor is as follows.
n2O3 5 to 50% by weight, preferably WO3 90 to 50% by weight.
55% by weight, 10 to 45% by weight of In2O3, more preferably 80 to 55% by weight of WO3, 20 to 45% by weight of In2O3
% By weight, most preferably 80 to 65% by weight of WO3, In
2O3 20 to 35% by weight.

【0009】WO3 は可燃性ガスへの感度が小さく、可
燃性ガスでは水素感度しか問題とならない。例えばエタ
ノールやイソブタンへの感度は元々小さい。水素感度は
例えば、ディーゼル排ガス中のNOxを検出して、自動
車の外気導入制御を行う際に、排ガス中に共存する水素
の影響として、問題となる。同様にオゾン濃度を測定
し、オゾン発生機を制御する際に問題となる。In2O3
の添加は水素感度を低下させ、かつエタノール等のガ
スへの感度を増加させることは無い。
WO3 has low sensitivity to flammable gas, and only flammable gas has a problem with hydrogen sensitivity. For example, sensitivity to ethanol and isobutane is originally low. Hydrogen sensitivity poses a problem as an effect of hydrogen coexisting in exhaust gas when, for example, NOx in diesel exhaust gas is detected and outside air introduction control of an automobile is performed. Similarly, there is a problem in measuring the ozone concentration and controlling the ozone generator. In2O3
Does not reduce the sensitivity to hydrogen and does not increase the sensitivity to gases such as ethanol.

【0010】WO3 は厚膜、薄膜のいずれでも用いるこ
とができるが、極めて高抵抗であり、低抵抗でかつ被毒
物の蓄積の影響が少ない厚膜が好ましい。例えば自動車
の外気導入制御に用いる場合、センサに蓄積するカーボ
ン等の被毒物の影響が相対的に小さい、厚膜が好まし
い。WO3の厚膜を用いる場合でも、空気中の抵抗値
(例えば300℃)は1MΩ弱にも達する。酸化性ガス
に触れるとセンサの抵抗値はさらに増加するので、セン
サ抵抗の測定が困難となる。これに対してIn2O3を添
加すると、センサの抵抗値は1/10程度に減少し、N
Oxやオゾン中での抵抗値の測定が容易となる。抵抗値
を減少させるためには、WO3 とIn2O3との重量比を
95:5〜50:50とし、好ましくは80:20〜5
0:50とする。
WO3 can be used as either a thick film or a thin film. However, it is preferable to use a thick film having extremely high resistance, low resistance and little influence of accumulation of poisoning substances. For example, when used for outside air introduction control of an automobile, a thick film, which is relatively less affected by poisons such as carbon accumulated in the sensor, is preferable. Even when a WO3 thick film is used, the resistance value in air (for example, 300 [deg.] C.) reaches just under 1 M [Omega]. Touching the oxidizing gas further increases the resistance value of the sensor, making it difficult to measure the sensor resistance. On the other hand, when In2O3 is added, the resistance value of the sensor decreases to about 1/10,
It becomes easy to measure the resistance value in Ox or ozone. In order to reduce the resistance value, the weight ratio of WO3 to In2O3 is 95: 5 to 50:50, preferably 80:20 to 5:50.
0:50.

【0011】この発明の酸化性ガスのセンサでは、WO
3 とIn2O3 との混合物を主成分とすれば良く、これ
以外に経時変化の抑制等のためにRe,S,Pb,Ru
等の第3成分を加えても良い。
In the oxidizing gas sensor of the present invention, WO
The main component may be a mixture of In 3 and In 2 O 3. In addition to this, Re, S, Pb, and Ru may be used to suppress changes over time.
And the like may be added.

【0012】[0012]

【実施例】タングステン酸アンモニウムを最高温度50
0℃で1時間熱分解し、WO3 とした。次にInCl3
の水溶液をアンモニア水で中和し、得られた沈澱を乾燥
後に、空気中で最高温度500℃にて1時間焼成し、I
n2O3 とした。In2O3とWO3 を所定の重量比で混
合し、ボールミル中で粉砕し、有機溶媒で混練してアル
ミナ基板上に印刷した。印刷後に700℃で約30分間
焼成し、WO3 とIn2O3 の混合物を主成分とするガ
スセンサを得た。アルミナ基板には、一対の電極を印刷
してWO3 とIn2O3 の混合物の抵抗値を測定できる
ようにし、またヒータを設けてセンサを300℃程度に
加熱できるようにした。印刷したWO3 とIn2O3 の
混合物膜の形状は、0.6mm×1.2mmの長方形状
で、膜厚は約10μmである。
EXAMPLE Ammonium tungstate was heated to a maximum temperature of 50.
It was pyrolyzed at 0 ° C for 1 hour to obtain WO3. Next, InCl3
Is neutralized with aqueous ammonia, and the obtained precipitate is dried and calcined at a maximum temperature of 500 ° C. for 1 hour in air.
n2O3. In2O3 and WO3 were mixed at a predetermined weight ratio, pulverized in a ball mill, kneaded with an organic solvent, and printed on an alumina substrate. After printing, it was baked at 700 ° C. for about 30 minutes to obtain a gas sensor mainly containing a mixture of WO 3 and In 2 O 3. A pair of electrodes were printed on the alumina substrate so that the resistance value of a mixture of WO3 and In2O3 could be measured, and a heater was provided so that the sensor could be heated to about 300C. The shape of the printed mixture film of WO3 and In2O3 is a rectangular shape of 0.6 mm x 1.2 mm, and the film thickness is about 10 m.

【0013】焼成後のWO3 とIn2O3 の混合物膜に
硝酸Reの水溶液を含浸させ、乾燥後に650℃で10
分間熱処理して、Reの酸化物をWO3 やIn2O3に担
持させた。Reの添加量は、タングステン原子とIn原
子の合計量に対する原子比で約1atm%である。Reの
添加はセンサの経時安定性を改善するためで、特に添加
しなくても良く、Reに替えてSやPb、Ru等を添加
しても良い。
An aqueous solution of Re nitrate is impregnated into a film of a mixture of WO3 and In2O3 after firing, and dried at 650.degree.
After heat treatment for a minute, the oxide of Re was carried on WO3 or In2O3. The amount of Re added is about 1 atm% in atomic ratio to the total amount of tungsten atoms and In atoms. The addition of Re is for improving the stability over time of the sensor, and may not be particularly added, and S, Pb, Ru, or the like may be added instead of Re.

【0014】ここでは印刷型で厚膜のセンサを示した
が、WO3 とIn2O3 の混合物の薄膜を用いてもよ
く、形状は任意で、例えばあるいはアルミナパイプの表
面に膜状に塗布して厚膜型のセンサとしても良い。
Although a thick film sensor of a printing type is shown here, a thin film of a mixture of WO 3 and In 2 O 3 may be used, and the shape is arbitrary. It may be a type sensor.

【0015】得られたWO3 とIn2O3 との混合物の
ガスセンサを、1週間300℃に加熱し初期的な特性の
ドリフトを除いた後、NOxや水素、オゾン等に対する
感度を測定した。測定は組成の異なる多種類のガスセン
サを試験槽内に配置し、バッチ方式でガスを注入して行
った。NOxやオゾンの濃度を正確に測定することは困
難なので、NOXやオゾンの濃度は概算値である。NO
xやオゾンの濃度変動の影響を防止するため、多種類の
ガスセンサを同時に試験槽内に配置し、同時に感度を測
定した。この結果NOxやオゾンの濃度は正確ではない
が、全てのセンサを同じ濃度のNOxやオゾンに触れさ
せて抵抗値を測定した。
The obtained gas sensor of a mixture of WO 3 and In 2 O 3 was heated to 300 ° C. for one week to remove the drift of the initial characteristics, and then the sensitivity to NOx, hydrogen, ozone and the like was measured. The measurement was performed by arranging various kinds of gas sensors having different compositions in a test tank and injecting gas in a batch system. Since it is difficult to accurately measure the concentrations of NOx and ozone, the concentrations of NOx and ozone are approximate values. NO
In order to prevent the influence of concentration fluctuations of x and ozone, various types of gas sensors were simultaneously placed in the test tank, and the sensitivity was measured at the same time. As a result, although the concentrations of NOx and ozone were not accurate, all the sensors were exposed to the same concentration of NOx and ozone, and the resistance values were measured.

【0016】図1〜図4に、約1ppmのNO2と、約
2ppmのNO、1000ppmの水素に対する感度を
示す。測定温度は300℃である。図1にWO3 70重
量%とIn2O3 30重量%を主成分とするガスセンサ
の特性を示し、図2にWO360重量%とIn2O3 40
重量%の混合物を主成分とするガスセンサの特性を示
す。図3には、WO3 50重量%とIn2O3 50重量
%とを主成分とするガスセンサの特性を示し、図4に
は、In2O3 無添加のガスセンサの特性を示す。いず
れのガスセンサもタングステン原子とIn原子の合計に
対する原子比で約1atm%のReを添加してある。添加
したReは経時変化の抑制剤で、センサの感度や抵抗値
への影響は小さい。
1 to 4 show the sensitivity to about 1 ppm of NO2, about 2 ppm of NO, and 1000 ppm of hydrogen. The measurement temperature is 300 ° C. FIG. 1 shows the characteristics of a gas sensor whose main components are 70% by weight of WO3 and 30% by weight of In2O3, and FIG. 2 shows the characteristics of 60% by weight of WO3 and 40% by weight of In2O3.
5 shows the characteristics of a gas sensor whose main component is a mixture of weight%. FIG. 3 shows the characteristics of a gas sensor containing 50% by weight of WO3 and 50% by weight of In2 O3, and FIG. 4 shows the characteristics of a gas sensor containing no In2 O3. In each gas sensor, about 1 atm% of Re is added in an atomic ratio to the total of tungsten atoms and In atoms. The added Re is an inhibitor of change with time, and has little effect on the sensitivity and the resistance value of the sensor.

【0017】図1〜図4から明らかなように、In2O3
の添加によりセンサの抵抗値は減少し、NO約2pp
m中での抵抗値は、WO3 単味での数10MΩ程度か
ら、1MΩ程度へ減少する。この結果、センサの抵抗値
を正確に測定することが可能となる。また単味のWO3
では、図4に示すように水素感度がある。これはディー
ゼル排ガス中のNOxを検出する場合に、排ガス中の水
素により検出精度が低下する原因となる。水素感度は、
ボイラーからの排ガス中のNOx濃度を測定する際にも
問題となる。図1〜図3から明らかなように、In2O3
を添加したガスセンサでは水素感度は極めて小さく、
共存水素による検出精度の低下は問題とならない。なお
いずれのセンサも、エタノールやイソブタン、COへの
感度は極めて小さく、検出精度には影響しない。
As apparent from FIGS. 1 to 4, In2O3
The resistance value of the sensor decreases due to the addition of
The resistance value in m decreases from about several tens MΩ in WO3 alone to about 1 MΩ. As a result, it is possible to accurately measure the resistance value of the sensor. In addition, plain WO3
Has a hydrogen sensitivity as shown in FIG. This causes a decrease in detection accuracy due to hydrogen in exhaust gas when detecting NOx in diesel exhaust gas. Hydrogen sensitivity is
It is also a problem when measuring the NOx concentration in the exhaust gas from the boiler. As apparent from FIGS. 1-3, In2O3
Hydrogen sensitivity is extremely low in a gas sensor with
Decrease in detection accuracy due to coexisting hydrogen is not a problem. Note that all of the sensors have extremely low sensitivity to ethanol, isobutane, and CO, and do not affect the detection accuracy.

【0018】表1に、In2O3 の添加によるセンサ特
性の変化を示す。なお表中の試料1と試料7は比較例
で、センサの製造条件は前記のものであり、センサは図
1〜図4のものと共通である。
Table 1 shows changes in sensor characteristics due to the addition of In2O3. Note that Sample 1 and Sample 7 in the table are comparative examples, and the manufacturing conditions of the sensor are as described above, and the sensor is common to those in FIGS.

【0019】[0019]

【表1】 WO3 /In2O3 センサの特性 試料 WO3 /In2O3 抵抗値(MΩ) NO2感度 NO感度 水素感度No. (重量比) (NO2ppm中) (約1ppm)(約2ppm)(1000ppm) 1 100/ … 25 5 44 2 2 90/10 10 5 40 1.6 3 80/20 5 5 40 1.5 4 70/30 2.5 5 44 1.1 5 60/40 1.5 6 30 1.2 6 50/50 0.3 5 5 1.2 7 40/60 0.1 2 3 1.3 * 感度は空気中との抵抗値の比で示し、NOxに
ついては抵抗値の増加を感度とし、H2では抵抗値の減
少を感度とした、 * 測定温度は300℃、いずれも(W+In)と
の原子比で約1%のReを担持。
[Table 1] Characteristic sample of WO3 / In2O3 sensor WO3 / In2O3 Resistance value (MΩ) NO2 sensitivity NO sensitivity Hydrogen sensitivity No. (weight ratio) (in NO2ppm) (about 1ppm) (about 2ppm) (1000ppm) 1 100 / ... 25 5 44 2 2 90/10 10 5 40 1.6 3 80/20 5 5 40 1.5 4 70/30 2.5 5 44 1.15 60/40 1.56 30 1.2 6 50 / 50 0.35 5 1.2 7 40/60 0.12 3 1.3 * Sensitivity is indicated by the ratio of the resistance value to that in the air. For NOx, the increase in the resistance value is the sensitivity, and for H2, the resistance is the resistance. The decrease in the value was regarded as the sensitivity. * The measurement temperature was 300 ° C., and all carried about 1% of Re in atomic ratio with (W + In).

【0020】表1から明らかなように、In2O3 の添
加量と共に抵抗値は減少し、In2O3 を20重量%加
えた試料3のセンサで、NO2ppm中での抵抗値は1
0MΩ以下となり、充分に実用的な範囲となる。このこ
とからIn2O3 の添加量の下限をWO3 95重量%に
対しIn2O3 5重量%、好ましくはWO3 90重量%
に対しIn2O3 10重量%、さらに好ましくはWO3
80重量%に対しIn2O3 20重量%とした。次にN
O2への感度は、In2O3 の添加量にはあまり影響を受
けず、In2O3 50重量%までの範囲で。ほぼ一定で
ある。しかしながらIn2O3 を60重量%加えた試料
7では、NO2感度が激減する。一方NO感度はIn2O
3 30重量%までほぼ一定で、In2O3 40重量%で
減少が始まり、In2O3 50重量%では急激に減少す
る。このことからIn2O3 の添加量の上限は、WO3
50重量%以上でIn2O3 50重量%以下で、好まし
くはWO355重量%以上で、In2O3 45重量%以
下、さらに好ましくはWO3 65重量%以上で、In2
O3 35重量%以下とする。水素感度はIn2O3 の添
加により減少し、In2O3 の含有量に対する影響は小
さい。
As is apparent from Table 1, the resistance value decreases with the amount of In2O3 added. In the sensor of Sample 3 to which 20% by weight of In2O3 was added, the resistance value in NO2 ppm was 1%.
0 MΩ or less, which is a sufficiently practical range. For this reason, the lower limit of the amount of In2O3 added is 95% by weight of WO3, and 5% by weight of In2O3, preferably 90% by weight of WO3.
10% by weight of In2O3, more preferably WO3
The content was 20% by weight of In2O3 with respect to 80% by weight. Then N
The sensitivity to O2 is not significantly affected by the amount of In2O3 added, and is up to 50% by weight of In2O3. Almost constant. However, in Sample 7, to which 60% by weight of In2O3 was added, the NO2 sensitivity was drastically reduced. On the other hand, NO sensitivity is In2O
It is almost constant up to 30% by weight, and begins to decrease at 40% by weight of In2O3, and sharply decreases at 50% by weight of In2O3. From this, the upper limit of the amount of In2O3 added is WO3.
50% by weight or more and 50% by weight or less of In2O3, preferably 55% by weight or more of WO3 and 45% by weight or less of In2O3, more preferably 65% by weight or more of WO3 and In2O3.
O3 is 35% by weight or less. Hydrogen sensitivity decreases with the addition of In2O3, and has little effect on the In2O3 content.

【0021】ここでは酸化性ガスの代表であるNOxに
対して特性を示したが、オゾンに対してもほぼ同様の特
性が得られた。オゾンに対するセンサの感度は約100
℃程度で最大となったが、センサを常時100℃に保つ
と応答速度が徐々に低下した。そこでセンサを1分周期
で温度変化させ、20秒間300℃でヒートクリーニン
グした後、40秒間約100℃に保ち、100℃で40
秒目の特性を測定した。表1のセンサについてオゾン感
度を示すと、試料1〜試料5の範囲では0.1ppmの
オゾンへの感度はほぼ一定で約10であり、試料6のセ
ンサでは0.1ppmのオゾン感度は7で、試料7のセ
ンサではオゾン感度は5となった。
Although the characteristics are shown here for NOx, which is a representative of the oxidizing gas, almost the same characteristics were obtained for ozone. The sensitivity of the sensor to ozone is about 100
The maximum was reached at about ° C, but the response speed gradually decreased when the sensor was constantly kept at 100 ° C. Therefore, the temperature of the sensor is changed in a cycle of one minute, and heat cleaning is performed at 300 ° C. for 20 seconds.
Seconds characteristics were measured. When the ozone sensitivity is shown for the sensors in Table 1, the sensitivity to 0.1 ppm of ozone in the range of Sample 1 to Sample 5 is almost constant and about 10, and the ozone sensitivity of 0.1 ppm is 7 in the sensor of Sample 6. In the sensor of Sample 7, the ozone sensitivity was 5.

【0022】センサの温度依存性について示す。NOx
感度は低温側で大きくなるが、低温側では応答性能が低
下した。使用温度を増すとNOx感度は減少し、水素感
度が増加した。これらのことを加味した最適動作温度は
280℃〜300℃であり、このことから図1〜図4で
は300℃でのデータを示した。
The temperature dependence of the sensor will be described. NOx
The sensitivity increased at the low temperature side, but the response performance decreased at the low temperature side. As the operating temperature was increased, the NOx sensitivity decreased and the hydrogen sensitivity increased. The optimal operating temperature taking these factors into account is 280 ° C. to 300 ° C., and the data at 300 ° C. is shown in FIGS.

【0023】[0023]

【発明の効果】この発明の酸化性ガスのセンサでは、
(1) センサの抵抗値を低下させて、抵抗値の測定を容
易にすると共に、(2) 水素感度を減少させて、NOx
等と共存する水素による妨害を小さくする、ことができ
る。
According to the oxidizing gas sensor of the present invention,
(1) Lowering the resistance of the sensor to facilitate the measurement of the resistance, and (2) reducing the hydrogen sensitivity to reduce NOx
Interference with hydrogen coexisting with the like can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 WO3 70重量%,In2O3 30重量%の
混合物を主成分とする、実施例の酸化性ガスのセンサの
特性図
FIG. 1 is a characteristic diagram of an oxidizing gas sensor according to an embodiment mainly containing a mixture of 70% by weight of WO3 and 30% by weight of In2O3.

【図2】 WO3 60重量%,In2O3 40重量%の
混合物を主成分とする、実施例の酸化性ガスのセンサの
特性図
FIG. 2 is a characteristic diagram of an oxidizing gas sensor according to an embodiment mainly containing a mixture of WO3 60% by weight and In2 O3 40% by weight.

【図3】 WO3 50重量%,In2O3 50重量%の
混合物を主成分とする、実施例の酸化性ガスのセンサの
特性図
FIG. 3 is a characteristic diagram of an oxidizing gas sensor according to an embodiment mainly including a mixture of 50% by weight of WO3 and 50% by weight of In2O3.

【図4】 WO3 を主成分とし、In2O3 無添加の、
従来例の酸化性ガスのセンサの特性図
[FIG. 4] WO3 as a main component, without adding In2O3.
Characteristic diagram of conventional oxidizing gas sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 英美 箕面市船場西1丁目5番3号 フィガロ 技研株式会社内 (56)参考文献 特開 昭59−192950(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hidemi Murayama 1-3-5 Senba Nishi, Minoh City Inside Figaro Giken Co., Ltd. (56) References JP-A-59-192950 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) G01N 27/12 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 WO3 95〜50重量%とIn2O3 5
〜50重量%の混合物を主成分とする、酸化性ガスのセ
ンサ。
(1) 95 to 50% by weight of WO3 and In2 O3
An oxidizing gas sensor mainly containing a mixture of about 50% by weight.
JP13603692A 1992-04-27 1992-04-27 Oxidizing gas sensor Expired - Fee Related JP3050696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13603692A JP3050696B2 (en) 1992-04-27 1992-04-27 Oxidizing gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13603692A JP3050696B2 (en) 1992-04-27 1992-04-27 Oxidizing gas sensor

Publications (2)

Publication Number Publication Date
JPH05302903A JPH05302903A (en) 1993-11-16
JP3050696B2 true JP3050696B2 (en) 2000-06-12

Family

ID=15165685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13603692A Expired - Fee Related JP3050696B2 (en) 1992-04-27 1992-04-27 Oxidizing gas sensor

Country Status (1)

Country Link
JP (1) JP3050696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739604B2 (en) * 2007-12-20 2014-06-03 Amphenol Thermometrics, Inc. Gas sensor and method of making
JP4921556B2 (en) 2008-04-22 2012-04-25 日本特殊陶業株式会社 Gas sensor

Also Published As

Publication number Publication date
JPH05302903A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
Egashira et al. Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness
Rella et al. Air quality monitoring by means of sol–gel integrated tin oxide thin films
Yamada et al. NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties
US4129099A (en) Galvanic exhaust gas sensor with solid electrolyte
JP3050696B2 (en) Oxidizing gas sensor
US8177957B2 (en) Multiple frequency method for operating electrochemical sensors
JP3102886B2 (en) Method for measuring small amounts of carbon monoxide and nitrogen oxides in gas mixtures
JPH0618467A (en) Gas sensor
Sahner et al. HC-sensor for exhaust gases based on semiconducting doped SrTiO3 for On-Board Diagnosis
JPH10300702A (en) Low-concentration nox measuring instrument
JPH1019821A (en) Gas sensor
JP2544144B2 (en) Gas sensor and manufacturing method thereof
JP3933500B2 (en) Semiconductor gas detector
JPS6245495B2 (en)
JP2918393B2 (en) Nitrogen oxide detection sensor
JP2003344342A (en) Semiconductor hydrogen gas detecting element
Soltis Zirconia-Based Electrochemical Oxygen Sensor for Accurately Determining Water Vapor Concentration
JPS59120946A (en) Gaseous freon detecting element
JPH05302905A (en) Alcohol sensor
JP2001074681A (en) Semiconductor gas sensor
Soltis Zirconia-based electrochemical oxygen sensor for accurately determining water vapor concentration
Simonian et al. Chemical Sensors 14: Chemical and Biological Sensors and Analytical Systems
Park et al. The mixed potentials of NiO (+ YSZ) and CuO electrodes in a mixture gas of NO and NO2
Soltis et al. Blackening in Zirconia-based electrochemical oxygen sensor at high pumping potentials
KR100260346B1 (en) High selectivity semiconductor detector and sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees