JP2517291B2 - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JP2517291B2
JP2517291B2 JP62155032A JP15503287A JP2517291B2 JP 2517291 B2 JP2517291 B2 JP 2517291B2 JP 62155032 A JP62155032 A JP 62155032A JP 15503287 A JP15503287 A JP 15503287A JP 2517291 B2 JP2517291 B2 JP 2517291B2
Authority
JP
Japan
Prior art keywords
fluorine
sensor
vanadium
sno
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62155032A
Other languages
Japanese (ja)
Other versions
JPS63317754A (en
Inventor
太郎 天本
▲吉▼展 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP62155032A priority Critical patent/JP2517291B2/en
Publication of JPS63317754A publication Critical patent/JPS63317754A/en
Application granted granted Critical
Publication of JP2517291B2 publication Critical patent/JP2517291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、SnO2の抵抗値の変化を用いたガスセンサ
に関する。
Description: FIELD OF APPLICATION OF THE INVENTION The present invention relates to a gas sensor using a change in the resistance value of SnO 2 .

[従来技術] SnO2ガスセンサで、CO等のガスを検出する場合の問題
は、以下の点に有る。
[Prior Art] Problems in detecting a gas such as CO with a SnO 2 gas sensor are as follows.

(1) センサ特性が経時的に不安定である。(1) Sensor characteristics are unstable over time.

(2) 周囲の湿度、特に絶対湿度の影響が大きい。(2) The influence of ambient humidity, especially absolute humidity, is large.

(3) ガスへの応答速度が低い。(3) Response speed to gas is low.

これらのことは、比較的低温でCOへのセンサ感度が増
すため、センサの加熱温度を低く押さえねばならないこ
と、また高活性なSnO2を用いるため、経時的に不安定な
材料を用いねばならないことと関連する。センサの経時
変化や湿度依存性は、CO等の検出精度を低下させる。
These are because the sensor sensitivity to CO increases at relatively low temperatures, so the heating temperature of the sensor must be kept low, and because SnO 2 with high activity is used, materials that are unstable over time must be used. Related to things. The aging of the sensor and the dependency on humidity reduce the detection accuracy of CO and the like.

なおここで関連する先行技術を示す。特開昭50-56,29
6号は、SnO2に1wt%以下の塩素を添加したCOセンサを開
示している。この公報によると、塩素の添加はCOへの感
度を高めるとされるが、経時変化や湿度依存性に付いて
は検討していない。
Here, the related prior art is shown. JP-A-50-56,29
No. 6 discloses a CO sensor in which 1 wt% or less of chlorine is added to SnO 2 . According to this publication, the addition of chlorine enhances the sensitivity to CO, but we have not examined the change over time and the dependence on humidity.

また特開昭60-100,752〜755号、特に60-100,753号
は、SnO2にバナディウムを添加することを開示してい
る。バナディウムの添加は例えば、含浸法によりセンサ
の焼結後に行い、バナディウム添加によりセンサの経時
変化を抑制できることを示している。次ぎに特開昭62-9
0530号は、SnO2へのReの添加により経時変化を抑制でき
ることを示している。
Further, JP-A-60-100,752-755, especially 60-100,753, discloses adding vanadium to SnO 2 . It is shown that vanadium is added after the sensor is sintered by, for example, an impregnation method, and that the addition of vanadium can suppress the change with time of the sensor. Next, JP-A-62-9
No. 0530 shows that addition of Re to SnO 2 can suppress the change with time.

[発明の課題] この発明の課題は、CO等のガスの検出において、ガス
センサの経時変化と湿度依存性とを抑制する点に有る。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to suppress the temporal change and humidity dependency of a gas sensor in detecting gas such as CO.

[発明の構成] この発明のガスセンサでは、SnO2に不純物量以上のフ
ッ素とバナディウムとを添加する。好ましい添加量は、
SnO21gr当たりの原子換算で、フッ素は0.5〜100mgr、バ
ナディウムは0.3〜10mgrである。更に好ましい添加量
は、SnO21gr当たりフッ素を2〜60mgrとバナディウムを
0.8〜10mgrであり、最も好ましい添加量の範囲は、SnO2
1gr当たりフッ素を2〜50mgrとバナディウムを0.8〜5mg
rである。
[Structure of the Invention] In the gas sensor of the present invention, fluorine and vanadium in an amount not less than the amount of impurities are added to SnO 2 . The preferred addition amount is
In terms of atoms per SnO 2 1gr, fluorine is 0.5 to 100 mgr and vanadium is 0.3 to 10 mgr. More preferable addition amount of fluorine is 2 to 60 mgr and vanadium per 1 gr of SnO 2.
0.8 to 10 mgr, and the most preferable range of addition amount is SnO 2
2 to 50 mgr fluorine and 0.8 to 5 mg vanadium per 1 gr
r.

フッ素の第1の効果は、CO,H2,エタノール等のガス
へのセンサの湿度依存性を抑制する点に有る。フッ素の
第2の効果は、COへの感度を高める点に有る。フッ素の
添加は水素やエタノール等のガスへの感度をほとんど変
えないため、COへの相対感度も向上する。フッ素の第3
の効果は、センサ出力のCOへの濃度依存性を高める点に
ある。更にフッ素の第4の効果は、CO等のガスへのセン
サの応答特性を改善する点にある。しかしフッ素は、セ
ンサ出力の加熱温度依存性を増す欠点が有る。
The first effect of fluorine lies in suppressing the humidity dependence of the sensor on gases such as CO, H 2 and ethanol. The second effect of fluorine is to increase the sensitivity to CO. Since the addition of fluorine hardly changes the sensitivity to gases such as hydrogen and ethanol, the relative sensitivity to CO is also improved. Third of fluorine
The effect of is to increase the dependence of sensor output on CO concentration. The fourth effect of fluorine is to improve the response characteristics of the sensor to gases such as CO. However, fluorine has the drawback of increasing the heating temperature dependence of the sensor output.

発明者は、フッ素による湿度依存性の改善機構を、以
下のように推定した。即ち、添加したフッ素はSnO2の表
面水酸基と置換する。センサの湿度依存性の主因は表面
水酸基に有り、表面水酸基が減少すると、湿度依存性も
減少する。
The inventor estimated the mechanism for improving the humidity dependence by fluorine as follows. That is, the added fluorine replaces the surface hydroxyl group of SnO 2 . The main cause of humidity dependency of the sensor is the surface hydroxyl group, and when the surface hydroxyl group decreases, the humidity dependency also decreases.

バナディウムの効果は、主としてセンサの経時変化を
抑制する点に有る。またバナディウムはセンサの加熱温
度依存性を抑制し、加熱温度の変動による検出誤差を抑
制する。このようにしてフッ素の欠点である、加熱温度
依存性の増加をバナディウムの添加で補償する。しかし
バナディウムはCOへの相対感度やセンサ出力のCOへの濃
度特性を低下させ、湿度依存性に対するフッ素の効果を
弱める。
The effect of vanadium lies mainly in suppressing the aging of the sensor. Further, vanadium suppresses the heating temperature dependence of the sensor and suppresses the detection error due to the fluctuation of the heating temperature. In this way, the disadvantage of fluorine, that is, the increase in heating temperature dependence is compensated by the addition of vanadium. However, vanadium reduces the relative sensitivity to CO and the concentration characteristics of the sensor output to CO, and weakens the effect of fluorine on the humidity dependence.

これらのことを総合して得られる効果は、センサの経
時変化や湿度依存性の抑制と、応答特性の改善である。
The effects obtained by combining all of these are the suppression of aging of the sensor and the dependence on humidity, and the improvement of response characteristics.

なお発明者は、バナディウムに変えレニウムを用いる
ことを検討した。しかしCOの検出に適した温度では、レ
ニウムによる経時変化の抑制は不充分であった。
The inventor examined using rhenium instead of vanadium. However, at the temperature suitable for CO detection, rhenium did not sufficiently suppress the change over time.

なおSnO2への添加量は以下の用語法で示す。添加量は
全て原子、あるいは単体に換算して示し、SnO21gr当た
り10mgrの添加を1%とする。例えば1%のバナディウ
ム添加とは、金属換算でSnO21grに10mgrのバナディウム
を加えたことを意味し、V25に換算すると13.1mgrの
添加に相当する。
The amount added to SnO 2 is shown by the following nomenclature. The amount of addition is shown in terms of atoms or simple substance, and addition of 10 mgr per 1 gr of SnO 2 is 1%. For example, 1% addition of vanadium means that 10 mgr of vanadium was added to SnO 2 1gr in terms of metal, and it corresponds to addition of 13.1 mgr in terms of V 2 O 5 .

[実施例] ガスセンサの調整 SnCl4の水溶液をアンモニアで中和し、スズ酸のゾル
を得た。ゾルに水を加えて遠心分離し、硝酸銀試験紙で
塩素イオンが検出できなくなるまで、洗浄した。洗浄後
のゾルを乾燥し、600℃で1時間空気中で熱分解し、SnO
2とした。
[Example] Adjustment of gas sensor An aqueous solution of SnCl 4 was neutralized with ammonia to obtain a stannic acid sol. Water was added to the sol and the mixture was centrifuged and washed until silver ions could not be detected with a silver nitrate test paper. The sol after washing is dried and pyrolyzed in air at 600 ° C for 1 hour.
2

得られたSnO2をボールミルで4時間粉砕し、HFの水溶
液をSnO2粉末のかさ高さまで加えて、1時間放置した。
その後200℃で粉体を乾燥し、さらに450℃に1時間空気
中で加熱して、フッ素をSnO2に担持させた。フッ素は主
としてフッ素イオンとして、SnO2粒子の表面に存在す
る。実施例ではフッ素の添加量を、0.1%、0.25%、0.5
%、2%、3%の5者とした。なお以下では特に断らな
い限り、フッ素添加量は0.5%とする。
The obtained SnO 2 was crushed with a ball mill for 4 hours, an aqueous solution of HF was added to the bulkiness of the SnO 2 powder, and the mixture was left for 1 hour.
After that, the powder was dried at 200 ° C. and further heated in air at 450 ° C. for 1 hour to support fluorine on SnO 2 . Fluorine mainly exists as fluorine ions on the surface of the SnO 2 particles. In the examples, the amount of fluorine added is 0.1%, 0.25%, 0.5.
%, 2%, 3%. In the following, the amount of fluorine added is 0.5% unless otherwise specified.

フッ素添加後のSnO2を再度ボールミルで4時間粉砕
し、低温でのガス温度を高めるため、貴金属触媒を添加
した。貴金属触媒は添加しなくても良い。ここでは触媒
として、0.5%のPdを用い、Pdの王水溶液をSnO2に含浸
させ、乾燥後に1時間600℃で熱分解した。Pdは、Au、P
t、Rh、Ir、Re等の任意の貴金属に変えることができ
る。
The SnO 2 after the addition of fluorine was pulverized again in a ball mill for 4 hours, and a noble metal catalyst was added to increase the gas temperature at low temperature. The noble metal catalyst may not be added. Here, 0.5% Pd was used as a catalyst, SnO 2 was impregnated with a Pd aqua regia solution, and after pyrolyzed for 1 hour at 600 ° C. Pd is Au, P
It can be changed to any noble metal such as t, Rh, Ir and Re.

次いで、SnO2を再度ボールミルで4時間粉砕した後、
絶縁パイプの表面に塗布し、シリカゾルバインダーを含
浸させて、550℃で10時間焼結しガスセンサとした。セ
ンサの形状は、絶縁パイプの表面に一対の金電極を印刷
し、SnO2の膜を設けたものである。なおSnO2の膜厚は数
十μm程度である。またパイプの内部にはコイル状のヒ
ータを配置し、センサを加熱できるようにした。このセ
ンサの形状は、出願人のガスセンサ“TGS711"として周
知である。なおシリカゾル等のバインダーは用いなくて
も良い。
Then, SnO 2 was pulverized again in a ball mill for 4 hours,
It was applied on the surface of an insulating pipe, impregnated with a silica sol binder, and sintered at 550 ° C for 10 hours to obtain a gas sensor. The shape of the sensor is such that a pair of gold electrodes are printed on the surface of an insulating pipe and a SnO 2 film is provided. The film thickness of SnO 2 is about several tens of μm. A coil-shaped heater was placed inside the pipe so that the sensor could be heated. The shape of this sensor is known as the applicant's gas sensor "TGS711". A binder such as silica sol may not be used.

焼結後のガスセンサは、バナディウム化合物の溶液
(ここではバナディウムのシュー酸水溶液)を滴下し、
バナディウムを担持させた。担持後のセンサを乾燥し、
450℃に1時間加熱し、バナディウム化合物をV25
に熱分解した。バナディウム濃度には濃度分布が有り、
センサ表面には高濃度で、センサの内部には低濃度で分
布する。しかしバナディウムの濃度分布の正確な測定は
困難で、ここではSnO2の総量に対するバナディウムの添
加量を示す。バナディウムの添加量は、0.05%、0.1
%、0.2%の3者とした。経時特性の安定化に対するバ
ナディウムの効果は、添加量と共に増す。一方湿度依存
性の悪化やCO感度の低下等の悪影響は、バナディウム添
加量を0.1%としても0.2%としても大差はない。従っ
て、バナディウム添加量の好ましい範囲は0.03〜1%、
より好ましくは0.08〜1%、更に好ましくは0.08〜0.5
%である。
For the gas sensor after sintering, a solution of a vanadium compound (here, an aqueous solution of vanadium succinate) was dropped,
Vanadium was supported. Dry the loaded sensor,
It was heated to 450 ° C. for 1 hour to thermally decompose the vanadium compound into V 2 O 5 or the like. There is a concentration distribution in vanadium concentration,
High concentration is distributed on the sensor surface and low concentration is distributed inside the sensor. However, it is difficult to accurately measure the concentration distribution of vanadium, and the amount of vanadium added to the total amount of SnO 2 is shown here. The addition amount of vanadium is 0.05%, 0.1
% And 0.2%. The effect of vanadium on the stabilization of aging characteristics increases with the addition amount. On the other hand, adverse effects such as deterioration of humidity dependence and reduction of CO sensitivity are not significantly different even if the amount of vanadium added is 0.1% or 0.2%. Therefore, the preferred range of vanadium addition is 0.03 to 1%,
More preferably 0.08 to 1%, still more preferably 0.08 to 0.5
%.

フッ素やバナディウムの添加条件に付いて、補足す
る。発明者は、乾燥後のスズ酸ゾルを2wt%濃度のHF水
溶液に浸し、乾燥後に600℃で1時間焼成してSnO2とし
た。得られたSnO2の元素分析では、フッ素は検出できな
かった。従ってフッ素はSnO2が得られた段階で添加す
る。これ以外の点に付いては、フッ素の添加時期や添加
方法は任意である。例えばフッ素はセンサの焼結後に添
加しても良く、水溶媒に変え有機溶媒に溶解したものを
用いても良い。またフッ素は例えばSnO2粉体をHF気流中
にさらすこと等で添加しても良い。
We will supplement the conditions for adding fluorine and vanadium. The inventor dipped the dried stannic acid sol in a 2 wt% concentration HF aqueous solution, baked it at 600 ° C. for 1 hour, and made SnO 2 . Fluorine could not be detected by elemental analysis of the obtained SnO 2 . Therefore, fluorine is added when SnO 2 is obtained. Regarding the points other than this, the timing and method of addition of fluorine are arbitrary. For example, fluorine may be added after sintering the sensor, or may be dissolved in an organic solvent instead of the water solvent. Fluorine may be added, for example, by exposing SnO 2 powder to an HF gas stream.

フッ素はHFとして添加したが、他の添加形態でも良
い。好ましい添加形態は、HFや、HFのアンモニウム塩、
アミン化合物のHF塩等の、フッ素の非金属化合物、もし
くは貴金属触媒を添加する場合には貴金属触媒のフッ素
塩、あるいはバナディウムのフッ素化合物である。フッ
素とこれ以外の金属との塩を添加すると、添加した金属
の影響が問題となる。そこでこのような添加形態は、好
ましくない。例えば比較のため、SnO2にBiやPbの硝酸塩
水溶液を滴下し、熱分解してこれらの金属を3mol%程度
添加した。BiやPbを添加すると、センサの湿度依存性は
著しく悪化した。従ってフッ素は、非金属化合物や単体
で、あるいは貴金属触媒のフッ素化合物もしくはバナデ
ィウムのフッ素化合物として、添加するのが好ましい。
Fluorine was added as HF, but other addition forms may be used. A preferred addition form is HF or an ammonium salt of HF,
A non-metal compound of fluorine, such as an HF salt of an amine compound, or a fluorine salt of a noble metal catalyst when a noble metal catalyst is added, or a vanadium fluorine compound. When a salt of fluorine and a metal other than this is added, the effect of the added metal becomes a problem. Therefore, such an addition form is not preferable. For example, for comparison, an aqueous solution of a nitrate of Bi or Pb was dropped into SnO 2 and thermally decomposed to add about 3 mol% of these metals. When Bi or Pb was added, the humidity dependence of the sensor deteriorated significantly. Therefore, it is preferable to add fluorine as a non-metal compound or a simple substance, or as a fluorine compound of a noble metal catalyst or a fluorine compound of vanadium.

バナディウムの添加方法や添加時期は任意である。し
かしバナディウムは、センサの焼結後に添加することが
好ましい。この場合、主として含浸法により、あるいは
バナディウム化合物の蒸気中にセンサをさらすこと等に
より、バナディウムを添加する。これはセンサの焼結後
にバナディウムを添加し、バナディウムをセンサの表面
に偏柝させたほうが、経時変化の抑制効果が大きく、か
つ湿度依存性の低下や、相対感度の低下、ガス濃度特性
の低下等の悪影響が小さいためである。
The addition method and the addition timing of vanadium are arbitrary. However, vanadium is preferably added after sintering the sensor. In this case, vanadium is added mainly by the impregnation method or by exposing the sensor to the vapor of the vanadium compound. This is because if vanadium is added after the sensor is sintered and the vanadium is biased to the surface of the sensor, the effect of suppressing the change over time is greater, and the humidity dependence is reduced, the relative sensitivity is lowered, and the gas concentration characteristics are lowered. This is because the adverse effects of the above are small.

バナディウムの添加量は、滴下した溶液の量から定め
た。フッ素の含有量は、センサの完成後に元素分析によ
り定めた。表1に、フッ素含有量を示す。表中水溶液濃
度は添加に用いたHF水溶液の濃度を示し、フッ素含有量
はSnO2中のフッ素の量を示す。なお用いたHF水溶液中の
全てのフッ素がSnO2に移行した場合、SnO2中のフッ素含
有量はHF濃度が1wt%で0.5%となる。またHF処理後に45
0℃で焼成した段階では、2wt%のHF水溶液を用いた際
に、フッ素含有量は0.7%であった。
The addition amount of vanadium was determined from the amount of the dropped solution. The fluorine content was determined by elemental analysis after the sensor was completed. Table 1 shows the fluorine content. In the table, the aqueous solution concentration shows the concentration of the HF aqueous solution used for the addition, and the fluorine content shows the amount of fluorine in SnO 2 . If it should be noted all of fluorine in the HF aqueous solution used has moved to SnO 2, fluorine content in the SnO 2 is HF concentration of 0.5% 1 wt%. After HF treatment, 45
At the stage of firing at 0 ° C, the fluorine content was 0.7% when a 2 wt% HF aqueous solution was used.

表1 フッ素含有量 HF水溶液濃度(wt%) フッ素含有量(%) 0.4 0.1 1 0.25 2 0.5 10 2 23 3 ガスセンサの特性 センサ特性は原則としてセンサの加熱温度を210℃と
して評価し、各4個〜8個のセンサの平均値で結果を示
す。また測定はいずれも空気中で行った。
Table 1 Fluorine content HF aqueous solution concentration (wt%) Fluorine content (%) 0.4 0.1 1 0.25 2 0.5 10 2 23 3 Gas sensor characteristics As a general rule, the sensor characteristics are evaluated by setting the heating temperature of the sensor to 210 ° C, and 4 each Results are shown as the average of ~ 8 sensors. All measurements were performed in air.

第1図に、経時変化に対する加速テストの結果を示
す。このテストでは、センサ温度を280℃に昇温して、
経時変化を加速して、図中縦軸は、CO100ppm中での抵抗
値の変化を現し、製造5日後のCO100ppm中でのセンサの
抵抗値Roを基準に表示する。SnO2に0.2%のバナディウ
ムと0.5%のフッ素を加えた実施例では、経時変化は小
さい。バナディウムを加えず0.5%のフッ素のみを加え
たもの、あるいはバナディウム、フッ素のいずれも無添
加の比較例では、経時変化は大きい。図から、バナディ
ウム添加によりセンサの経時変化を抑制できることと、
フッ素は経時変化の抑制には寄与していないことが分か
る。210℃にセンサを加熱した際の、経時特性を表2に
示す。
FIG. 1 shows the results of the acceleration test with respect to changes with time. In this test, the sensor temperature was raised to 280 ° C,
By accelerating the change over time, the vertical axis in the figure shows the change in resistance value in CO 100 ppm, and is displayed based on the resistance value Ro of the sensor in CO 100 ppm after 5 days of manufacture. In the example in which 0.2% vanadium and 0.5% fluorine were added to SnO 2 , the change with time is small. The change with time is large in the case of adding only 0.5% of fluorine without adding vanadium or the comparative example in which neither vanadium nor fluorine is added. From the figure, it is possible to suppress the change with time of the sensor by adding vanadium,
It can be seen that fluorine does not contribute to the suppression of change over time. Table 2 shows the characteristics over time when the sensor was heated to 210 ° C.

表2 経時特性 試料 R/Ro(CO) R/Ro(EtOH) V,Fとも無添加* 0.50 0.82 F 0.5%* 0.42 0.68 V 0.05% F 0.5% 0.57 0.96 V 0.1% F 0.5% 0.62 0.98 V 0.2% F 0.5% 0.75 0.92 V 0.2% F 0%* 0.88 0.84 Re1%* F 0%* 0.60 **印は比較例、R/Roは各100ppmのガスに対する製造後
13日目の抵抗値を基準とする76日後の抵抗値。またレニ
ウムは、バナディウム溶液の代わりに硝酸レニウムの溶
液を滴下することで添加。
Table 2 Aging characteristics sample R / Ro (CO) R / Ro (EtOH) No addition of V and F * 0.50 0.82 F 0.5% * 0.42 0.68 V 0.05% F 0.5% 0.57 0.96 V 0.1% F 0.5% 0.62 0.98 V 0.2 % F 0.5% 0.75 0.92 V 0.2% F 0% * 0.88 0.84 Re1% * F 0% * 0.60 * * indicates comparative example, R / Ro is after production for 100ppm gas
The resistance value after 76 days based on the resistance value on the 13th day. Rhenium was added by dropping a solution of rhenium nitrate instead of the vanadium solution.

表ではバナディウムに比べ多量のレニウムを加えてい
るが、経時特性の改善への寄与は小さい。以下では、原
則としてセンサの加熱温度を210℃とし、製造13日後の
特性を記載する。
In the table, a larger amount of rhenium is added than vanadium, but the contribution to the improvement of the characteristics over time is small. In the following, the heating temperature of the sensor is set to 210 ° C in principle, and the characteristics after 13 days of production are described.

第2図、第3図に、COに対するセンサの湿度依存性を
示す。横軸はCO濃度をppm単位で現し、縦軸は、各条件
でのセンサの抵抗値Rと20℃、R.H65%でCO100ppm中の
センサの抵抗値Roとの比R/Roを現す。また湿度の条件
は、−10℃R.H100%と、20℃R.H65%、50℃R.H65%の3
者とした。周知のようにセンサの温度依存性はわずかで
あり、これらの温湿度条件によるセンサ抵抗の差は、大
部分センサの湿度依存性、特にセンサの絶対湿度依存性
によるものである。
2 and 3 show the humidity dependence of the sensor for CO. The horizontal axis represents the CO concentration in ppm, and the vertical axis represents the ratio R / Ro between the sensor resistance value R under each condition and the sensor resistance value Ro in CO 100 ppm at 20 ° C. and 65% R.H. Humidity conditions are -10 ℃ R.H100%, 20 ℃ R.H65%, 50 ℃ R.H65%.
The person As is well known, the temperature dependence of the sensor is small, and the difference in sensor resistance due to these temperature and humidity conditions is largely due to the humidity dependence of the sensor, particularly the absolute humidity dependence of the sensor.

第2図はフッ素、バナディウムとも無添加の比較例で
の結果を示し、第3図は0.5%のフッ素と0.2%のバナデ
ィウムとを添加した際の結果を示す。実施例では湿度依
存性は小さく、比較例では湿度依存性は大きい。
FIG. 2 shows the result in a comparative example in which neither fluorine nor vanadium was added, and FIG. 3 shows the result when 0.5% fluorine and 0.2% vanadium were added. The humidity dependency is small in the example, and the humidity dependency is large in the comparative example.

表3に、COに対するセンサの湿度依存性を示す。 Table 3 shows the humidity dependence of the sensor for CO.

表3 湿度依存性(CO) 試 料 湿度依存性* V,Fとも無添加* 7 F 0.5%* 3.0 V 0.05% F 0.5% 3.2 V 0.1% F 0.5% 3.4 V 0.2% F 0.5% 3.5 V 0.2% F 0.1% 4.5 V 0.2% F 0.25% 3.8 V 0.2% F 2% 3.2 V 0.2% F 3% 3.2 V 0.2% F 0% 10 V 0.2% Cl 0.5%* 10 **印は比較例を現し、Rel%の系はバナディウムに変
えReを加えた試料を現し、V 0.2%、Cl0.5%の系はフッ
素に変え、HCl溶液を用いて塩素をSnO2に担持させた試
料を現す、湿度依存性は100ppmのCOに対する−10℃R.H1
00%での抵抗値と、50℃R.H65%での抵抗値との比を示
す。なおフッ素に変え塩素を添加した比較例を検討した
が、湿度依存性は改善できていない。フッ素の作用はハ
ロゲン一般の性質ではなく、フッ素の固有の性質である
と考えられる。
Table 3 Humidity Dependence (CO) Sample Humidity Dependence * No addition of V and F * 7 F 0.5% * 3.0 V 0.05% F 0.5% 3.2 V 0.1% F 0.5% 3.4 V 0.2% F 0.5% 3.5 V 0.2 % F 0.1% 4.5 V 0.2% F 0.25% 3.8 V 0.2% F 2% 3.2 V 0.2% F 3% 3.2 V 0.2% F 0% 10 V 0.2% Cl 0.5% * 10 ** indicates a comparative example, The Rel% system shows a sample in which Re is changed to vanadium, the V 0.2% and Cl 0.5% system is changed to fluorine, and a sample in which chlorine is carried on SnO 2 by using an HCl solution is shown. Is -10 ℃ R.H1 against 100ppm CO
The ratio between the resistance value at 00% and the resistance value at 50 ° C R.H65% is shown. A comparative example in which chlorine was added instead of fluorine was examined, but the humidity dependency could not be improved. The action of fluorine is considered to be an inherent property of fluorine, not a general property of halogen.

バナディウムやフッ素の添加による、ガス感度への影
響を表4に示す。測定条件等は、表1〜表3の場合と同
様である。表中、COへのガス感度は清浄空気中の抵抗値
と、CO100ppm中の抵抗値との比を現す。またエタノール
や水素へのガス感度は、CO100ppm中の抵抗値と、各100p
pmのエタノールや水素中の抵抗値との比を現す。この比
が小さいほどCOへの相対感度が高く、エタノールや水素
への相対感度が小さい。また勾配は、センサ出力のガス
濃度依存性を示し、CO100〜300ppmの区間で測定した。
勾配は、 LogR=K−n・Log(Pco) Kは定数とした際のnの
値を示す。周囲の温湿度は全て、20℃R.H65%である
(以下同じ)。
Table 4 shows the effect of vanadium and fluorine on the gas sensitivity. The measurement conditions and the like are the same as those in Tables 1 to 3. In the table, the gas sensitivity to CO indicates the ratio between the resistance value in clean air and the resistance value in CO 100 ppm. Also, the gas sensitivity to ethanol and hydrogen is 100p for each resistance value in CO100ppm.
It expresses the ratio of pm to the resistance value in ethanol or hydrogen. The smaller this ratio, the higher the relative sensitivity to CO and the smaller the relative sensitivity to ethanol and hydrogen. The slope shows the gas concentration dependence of the sensor output, and was measured in the interval of CO100-300ppm.
The slope indicates the value of n when LogR = K−n · Log (Pco) K is a constant. Ambient temperature and humidity are all 20 ° C R.H 65% (the same applies below).

表から、フッ素の添加によりCOへの感度やCOへのセン
サ出力のガス濃度依存性が増すが、バナディウムの添加
によりこの効果が弱められることが明らかである。
From the table, it is clear that the addition of fluorine increases the sensitivity to CO and the gas concentration dependence of the sensor output to CO, but the addition of vanadium weakens this effect.

第4図〜第6図に、センサ抵抗の加熱電圧依存性を示
す。横軸はセンサのヒータへの印加電圧を示し、5V印加
時にセンサ温度は210℃となる。縦軸はヒータ電圧5Vで
のCO100ppmへの抵抗値Roを基準とする、各100ppmのガス
中での抵抗値を示す。なお温湿度条件は、20℃65%であ
る。
4 to 6 show the heating voltage dependence of the sensor resistance. The horizontal axis shows the voltage applied to the heater of the sensor, and the sensor temperature becomes 210 ° C when 5V is applied. The vertical axis represents the resistance value in each 100 ppm gas, based on the resistance value Ro to 100 ppm CO at a heater voltage of 5V. The temperature and humidity conditions are 20 ° C and 65%.

第4図にフッ素、バナディウムとも無添加の試料の結
果を、第5図にバナディウム無添加で0.5%のフッ素を
添加した試料の結果を、第6図に0.2%のバナディウム
と0.5%のフッ素とを加えた試料の結果を示す。フッ素
の添加によりセンサ抵抗の加熱温度依存性が増し、バナ
ディウムを加えると温度依存性が減少する。これらの結
果は、バナディウムとフッ素とを添加した実施例では、
センサの加熱温度依存性が小さく、電源電圧の変動によ
る検出誤差が小さいことを示す。
Fig. 4 shows the result of the sample without addition of fluorine and vanadium, Fig. 5 shows the result of the sample with addition of 0.5% fluorine without addition of vanadium, and Fig. 6 shows the result of 0.2% vanadium and 0.5% fluorine. The result of the sample which added is shown. The addition of fluorine increases the heating temperature dependence of the sensor resistance, and the addition of vanadium decreases the temperature dependence. These results show that in the examples in which vanadium and fluorine were added,
It shows that the heating temperature dependence of the sensor is small and the detection error due to the fluctuation of the power supply voltage is small.

第7図に加熱温度210℃での、COへの応答特性を示
す。図の上部にはフッ素、バナディウムとも無添加の比
較例の結果を、下部には0.5%のフッ素と0.2%のバナデ
ィウムとを添加した実施例の結果を示す。時刻2分にCO
を注入し、その後COを除く。実施例の方がCOへの応答が
速やかである。なおこの結果はフッ素に起因するもの
で、バナディウムは応答特性には無関係である。また温
湿度条件は20℃65%である。
Fig. 7 shows the response characteristics to CO at a heating temperature of 210 ° C. The upper part of the figure shows the result of the comparative example in which neither fluorine nor vanadium was added, and the lower part shows the result of the example in which 0.5% fluorine and 0.2% vanadium were added. CO at 2 minutes
And then remove CO. The example responds to CO more quickly. This result is due to fluorine, and vanadium has nothing to do with the response characteristics. The temperature and humidity conditions are 20 ° C and 65%.

バナディウムの添加は、SnO2の焼結後に行うのが好ま
しい。これは、センサの経時変化をより有効に除去し、
湿度依存性へのバナディウムの副作用を抑制するためで
ある。SnO2の焼結後に含浸法で加えた際の結果と、焼結
前のSnO2に均一に添加した際の結果とを、表5に示す。
The addition of vanadium is preferably performed after SnO 2 is sintered. This more effectively eliminates sensor aging,
This is because the side effect of vanadium on the humidity dependence is suppressed. Results when added by an impregnation method after sintering of SnO 2, and a result at the time of uniformly added to SnO 2 before sintering, shown in Table 5.

* いずれもSnO2に0.5%のフッ素と、0.2%のバナディ
ウムとを添加、含浸法ではSnO2の焼結後にバナディウム
溶液を滴下してバナディウムを含浸させた、均一添加で
はSnO2の材料段階でバナディウムを添加し、バナディウ
ムはSnO2中に均一に分布する、経時変化は100ppmのCOに
対する製造後13日目の抵抗値を基準とする76日後の抵抗
値を示し、湿度依存性は100ppmのCOに対する−10℃100
%での抵抗値と、50℃65%での抵抗値との比を示す、CO
感度は清浄空気中の抵抗値と100ppmのCO中の抵抗値の比
を現し、勾配は、 LogR=K−n・Log(Pco) K−は定数とした際のn
値を現す。
* Both the on SnO 2 of 0.5% fluorine, added with 0.2% Banadiumu, the impregnation method was impregnated with Banadiumu dropwise Banadiumu solution after sintering of SnO 2, the uniform addition of a material stage SnO 2 With vanadium added, vanadium is evenly distributed in SnO 2 , and the change with time shows the resistance value after 76 days based on the resistance value on the 13th day after production for 100ppm CO, and the humidity dependence is 100ppm CO Against −10 ℃ 100
CO, which indicates the ratio of the resistance value in% to the resistance value in 50% at 65%
Sensitivity represents the ratio of the resistance value in clean air to the resistance value in 100 ppm CO, and the slope is n when LogR = K-n-Log (Pco) K- is a constant.
Reveals a value.

なおここではガスセンサ単独での特性を示したが、こ
れは実際のガス検出装置の特性とは異なる。例えば絶対
湿度の変動は、気温の変動による飽和蒸気圧の変動と、
相対湿度の変動とに分離することができる。そして気温
の変動をサーミスタ等で検出して補償すれば、ガス検出
装置の湿度依存性は減少する。また実施例では、COより
もエタノールに高感度なガスセンサしか得られなていな
い。しかし活性炭等のエタノール除去フィルターをセン
サに装着すれば、エタノールへの感度を抑制することが
できる。
Although the characteristic of the gas sensor alone is shown here, this is different from the characteristic of the actual gas detection device. For example, changes in absolute humidity are caused by changes in saturated vapor pressure due to changes in temperature,
Can be separated into fluctuations in relative humidity. If temperature fluctuations are detected and compensated by a thermistor or the like, the humidity dependency of the gas detection device is reduced. Further, in the examples, only a gas sensor having higher sensitivity to ethanol than CO has been obtained. However, if an ethanol removal filter such as activated carbon is attached to the sensor, the sensitivity to ethanol can be suppressed.

さらにここではセンサ温度を一定にする使用条件に付
いて説明したが、COやエタノール等の検出の場合、セン
サに温度変化を与えて、温度変化時の過渡現象からガス
を検出する技術が周知である。そこでセンサに温度変化
を与えながら、ガスを検出するようにしても良い。また
ここでは特定のセンサ構造に付いて説明したが、他の構
造を用いる場合にも同様に実施できる。
Furthermore, although the explanation has been given here on the usage conditions for keeping the sensor temperature constant, in the case of detecting CO, ethanol, etc., a technology is known in which the temperature is applied to the sensor and the gas is detected from the transient phenomenon when the temperature changes. is there. Therefore, the gas may be detected while changing the temperature of the sensor. Further, although a specific sensor structure has been described here, it can be similarly implemented when another structure is used.

[発明の効果] この発明では、ガスセンサの経時変化と湿度依存性と
を抑制できる。
[Advantages of the Invention] According to the present invention, it is possible to suppress the aging of the gas sensor and the humidity dependency.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例の特性図、第2図は従来例の特性図、第
3図は実施例の特性図、第4図、第5図は従来例の特性
図、第6図、第7図は実施例の特性図である。
FIG. 1 is a characteristic diagram of an embodiment, FIG. 2 is a characteristic diagram of a conventional example, FIG. 3 is a characteristic diagram of an embodiment, FIGS. 4 and 5 are characteristic diagrams of a conventional example, FIG. 6, and FIG. The figure is a characteristic diagram of the example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SnO2の抵抗値の変化を用いたガスセンサに
おいて、 SnO2には、フッ素とバナディウムとを添加したことを特
徴とする、ガスセンサ。
1. A gas sensor using the change in the SnO 2 in the resistance value, the SnO 2, characterized in that the addition of fluorine and Banadiumu gas sensor.
【請求項2】フッ素のSnO21gr当たりの添加量をフッ素
原子換算で0.5〜100mgrとし、 バナディウムのSnO21gr当たりの添加量を、バナディウ
ム原子換算で0.3〜10mgrとしたことを特徴とする、特許
請求の範囲第1項記載のガスセンサ。
2. The addition amount of fluorine per SnO 2 1gr is 0.5 to 100 mgr in terms of fluorine atom, and the addition amount of vanadium per SnO 2 1gr is in the range of 0.3 to 10 mgr in terms of vanadium atom. The gas sensor according to claim 1.
JP62155032A 1987-06-22 1987-06-22 Gas sensor Expired - Fee Related JP2517291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155032A JP2517291B2 (en) 1987-06-22 1987-06-22 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155032A JP2517291B2 (en) 1987-06-22 1987-06-22 Gas sensor

Publications (2)

Publication Number Publication Date
JPS63317754A JPS63317754A (en) 1988-12-26
JP2517291B2 true JP2517291B2 (en) 1996-07-24

Family

ID=15597181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155032A Expired - Fee Related JP2517291B2 (en) 1987-06-22 1987-06-22 Gas sensor

Country Status (1)

Country Link
JP (1) JP2517291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265546A (en) * 2004-03-17 2005-09-29 Tdk Corp Hydrogen gas detecting material and hydrogen gas sensor using it

Also Published As

Publication number Publication date
JPS63317754A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
Fryburg et al. Kinetics of the Oxidation of Platinum
DE4445359A1 (en) Sensor for the detection of flammable gases
US8338206B2 (en) Gas sensitive materials for gas detection and method of making
KR870001258B1 (en) Gas sensor
Volynsky et al. Behaviour of selenium (IV) in a transversely heated graphite atomizer for electrothermal atomic absorption spectrometry in the presence of platinum metals as chemical modifiers
Černý et al. The calorimetric heats of adsorption of hydrogen on platinum films
AU2002216358B2 (en) Thin film ethanol sensor and a process for the preparation
JP2517291B2 (en) Gas sensor
JP2766853B2 (en) Gas sensor
JPH09166567A (en) Semiconductor type gas sensor and manufacture thereof
KR100994779B1 (en) Gas sensor for sensing VOCs gas and manufacturing method at the same
Garje et al. LPG sensing properties of platinum doped nanocrystalline SnO2 based thick films with effect of dipping time and sintering temperature
JP3327335B2 (en) Highly active electrode for exhaust gas sensor
JP2868845B2 (en) Amine sensor
JP7403232B2 (en) Semiconductor gas detection element
KR100776981B1 (en) Surface renewable iridium oxide composite hydrogen ion electrodes and their preparation methods
JP6233562B2 (en) Precious metal catalyst
EP0261275B1 (en) A hydrogen gas detecting element and method of producing same
JP3087972B2 (en) Gas sensor manufacturing method
JP3171734B2 (en) Carbon monoxide gas sensing element
Zelinková et al. Stabilizing agents for calibration in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry
JP3919306B2 (en) Hydrocarbon gas detector
JPH0589719A (en) Paste for oxygen sensor
Cai et al. Preparation and application of selenite ion selective electrode
RU2049993C1 (en) Sensitive element of partial pressure transducer of no 002 of gas mixtures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees