JPS63305583A - Integrated wavelength controlling semiconductor laser - Google Patents

Integrated wavelength controlling semiconductor laser

Info

Publication number
JPS63305583A
JPS63305583A JP14168187A JP14168187A JPS63305583A JP S63305583 A JPS63305583 A JP S63305583A JP 14168187 A JP14168187 A JP 14168187A JP 14168187 A JP14168187 A JP 14168187A JP S63305583 A JPS63305583 A JP S63305583A
Authority
JP
Japan
Prior art keywords
semiconductor laser
internal reflection
integrated
layer
interference type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14168187A
Other languages
Japanese (ja)
Inventor
Toru Tsuruta
徹 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14168187A priority Critical patent/JPS63305583A/en
Publication of JPS63305583A publication Critical patent/JPS63305583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate its manufacturing and to obtain high yield, by separating two resonators by an internal reflection plane so that a length of a larger resonator and that of shorter one are made to be L1 and L2 respectively and next by integrating a plurality of internal reflection interference type semiconductors, which are different in values L1-L2 from each other, on a similar substrate. CONSTITUTION:Two resonators are separated by an internal reflection plane of an internal reflection interference type semiconductor laser so that a length of a longer resonator and that of a shorter one are made to be L1 and L2 respectively. A plurality of the internal reflection interference type semiconductor lasers, which are different in values L1-L2 from each other, are integrated on a similar substrate. Wavelength control can be hence performed, and further an integrated wavelength controlling semiconductor laser, which oscillates at a plurality of arbitrary wavelengths when the values L1-L2 are varied in the order of several mum to tens of mum between adjacent lasers, can be easily manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用光源、特に広帯域大容量伝送用の半
導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light source for optical communication, and particularly to a semiconductor laser for broadband high-capacity transmission.

従来の技術 近年、長距離光通信用光源として、安定な単−縦モード
動作をする半導体レーザが要望されている。さらに、多
種多様な情報を一度に伝送する大容量光伝送方式の一つ
に波長多重光通信方式が提案され、この目的の光源とし
て、集積化波長制菌半導体レーザがあり、例えば、「東
芝レビュー39巻6号 P、521〜542 1984
に記載の舶松 豊 他゛′集積化波長制御半導体レーザ
″」がある。
2. Description of the Related Art In recent years, there has been a demand for semiconductor lasers that operate in a stable single-longitudinal mode as light sources for long-distance optical communications. Furthermore, a wavelength multiplexing optical communication system has been proposed as one of the large-capacity optical transmission systems that transmits a wide variety of information at once, and integrated wavelength sterilization semiconductor lasers are available as light sources for this purpose. Volume 39, No. 6, P, 521-542 1984
``Integrated Wavelength Controlled Semiconductor Laser'' by Yutaka Nakamatsu et al.

第別閾はこの従来の集積化波侵制闘半導体レーザのfi
l造を示すものであシ、201はn−InP基板、20
2はn−rnGaAsP光導波路層、203はn−In
Pnツクド層、204はInGaAsP活性層、205
はp−1nPクラッド層、206はp−InGaAsP
キャップ層、2Q7のp−InP層と208のn−In
P層は電流阻止層、209はp−InGaAsP層、2
10は5in2.211はAu/Zn/Au電極、21
2はAu/Ge/Au電極、213は201n−1nP
基板上に形成された回折格子である。このレーザは、回
折格子の波長選択性によって発振波長の制御を行い、が
っ、一方のレーザの回折格子の周期を2000人、他方
のレーザの回折格子の周期を2002八とそれぞれ鶏な
らせることにより、両レーザ間で発振波長を約15人異
ならせることができる。
Another threshold is the fi of this conventional integrated wave invasion fighting semiconductor laser.
1 structure, 201 is an n-InP substrate, 20
2 is an n-rnGaAsP optical waveguide layer, 203 is an n-In
Pn covered layer, 204 is InGaAsP active layer, 205
is p-1nP cladding layer, 206 is p-InGaAsP
Cap layer, 2Q7 p-InP layer and 208 n-In
P layer is a current blocking layer, 209 is a p-InGaAsP layer, 2
10 is 5in2.211 is Au/Zn/Au electrode, 21
2 is Au/Ge/Au electrode, 213 is 201n-1nP
This is a diffraction grating formed on a substrate. In this laser, the oscillation wavelength is controlled by the wavelength selectivity of the diffraction grating, and the period of the diffraction grating of one laser is set to 2000, and the period of the diffraction grating of the other laser is set to 20028. As a result, the oscillation wavelength can be varied by about 15 between the two lasers.

発明が解決しようとする問題点 しかしながら上記のよりなt1η成では、波長制御のた
めに、活性層に隣接して、周期が約2000人という極
めて微細構造の回折格子を作成することを心安とし、か
つ多波長集積化するために、隣接するレーザ間で回折格
子の周期を数人という高精度で作成する必要があるとい
う問題点を有していた。
Problems to be Solved by the Invention However, in the above-mentioned more t1η formation, it is safe to create a diffraction grating with an extremely fine structure with a period of about 2000 nm adjacent to the active layer for wavelength control. Another problem was that in order to integrate multiple wavelengths, it was necessary to create the period of the diffraction grating between adjacent lasers with high accuracy, such as by several people.

;イー1..16明:はかかる点に鑑み、作成が容易で
高歩留りの集積化波長制御半導体レーザを提供すること
を目的とする。
;E1. .. In view of the above, the object of the present invention is to provide an integrated wavelength-controlled semiconductor laser that is easy to manufacture and has a high yield.

間;但点を解決するだめの手段 本発明は、内部反射干渉型半導体レーザの内部反射iで
分断される二つの共振器のうち、艮い方の共振器長をL
l、短い方の共振器長をL2としたとき、L、−L2の
値が異なる複数の内部反射干渉型半導体レーザを同一基
板に集積した。
However, in the present invention, the resonator length of one of the two resonators separated by the internal reflection i of the internal reflection interference type semiconductor laser is set to L.
A plurality of internal reflection interference type semiconductor lasers having different values of L and -L2 were integrated on the same substrate, where L2 is the shorter resonator length.

作用 本発明は、前記した構成のように内部反射干渉型半導体
レーザとすることにより波艮制御するごとができ、かつ
り、−L2の値を隣接するレーザ間で数/1m から数
十μm変えることにより、容易に任西、の複数波長で発
振する集積化波長制御半導体レーザを作成することがで
きる。
Effect of the present invention By using an internal reflection interference type semiconductor laser as in the above-mentioned configuration, it is possible to control the wave pattern, and the value of -L2 can be varied by several tens of μm from several/1 m between adjacent lasers. By doing so, it is possible to easily create an integrated wavelength-controlled semiconductor laser that oscillates at multiple wavelengths.

実施例 第1図は本発明の一実施例における集積化波長制御半導
体レーザの2波長集積の場合の構造図である。本集精化
レーザは、第1半導体レーザと第2半導体レーザからな
るものである。第2図は第1図に示す半導体レーザにお
いてLl−L2と発振波長の関係図である。
Embodiment FIG. 1 is a structural diagram of a two-wavelength integrated wavelength-controlled semiconductor laser in an embodiment of the present invention. This refined laser consists of a first semiconductor laser and a second semiconductor laser. FIG. 2 is a diagram showing the relationship between Ll-L2 and oscillation wavelength in the semiconductor laser shown in FIG. 1.

まず、第1半導体レーザの製造方法を説明する。First, a method for manufacturing the first semiconductor laser will be explained.

第3図は、本発明の実施例における樅モード制御レーザ
の共振器端面を示す図a1及び横方向から見た活性層を
含む断面図すである。第4図は第1の成長後のエツチン
グ過程における溝の上面図(第4図a)及び断面図(第
4図す、c)である。
FIG. 3 is a cross-sectional view including the active layer seen from the lateral direction and FIG. a1 showing the cavity end face of the fir mode control laser according to the embodiment of the present invention. FIG. 4 shows a top view (FIG. 4a) and a cross-sectional view (FIGS. 4S and 4C) of the groove during the etching process after the first growth.

第3図4において第1の成長によってn−InP基板1
01に、n−1nPバッファ層IQ2、電流ブロック層
として働(p−InP103及びn−InP104、エ
ツチングのマスク層としてn−InGaAsP層104
が成長される。次にエツチングマスク層105の上に8
102を堆積させて約1.5μm幅のストライプ状にホ
トエツチングにより窓あけを行い、ストライプ状にエツ
チングマスク層106を露出させる。
In FIG. 3, the n-InP substrate 1 is grown by the first growth.
01, an n-1nP buffer layer IQ2 acts as a current blocking layer (p-InP103 and n-InP104, and an n-InGaAsP layer 104 acts as an etching mask layer).
is grown. Next, on the etching mask layer 105, 8
102 is deposited and a window is opened by photoetching in a stripe shape of approximately 1.5 μm width, thereby exposing the etching mask layer 106 in a stripe shape.

続いて、SiO□ストライプに垂直に約1μm幅のレジ
ストストライプをホトリソグラフィにより形成し、上記
のS10□及びレジストをマスクとしてH2SO4系エ
ンチャントによりn−InGaAsP層105のエツチ
ングを行い、5102のストライプ状窓を有し、かつS
iO□ストライプ窓内に一部1n−InGaAsPを残
す(第4図a)。
Next, a resist stripe with a width of approximately 1 μm is formed perpendicular to the SiO□ stripe by photolithography, and the n-InGaAsP layer 105 is etched using an H2SO4 enchantment using the above S10□ and resist as a mask to form striped windows 5102. and S
A portion of 1n-InGaAsP is left within the iO□ stripe window (FIG. 4a).

第4図1に示すようなマスクを用いてHCe をエッチ
ャントとしてエツチングすると5lo2のストライブ状
窓のストライプ方向の断面図は第4図すのようになる。
When etching is performed using HCe as an etchant using a mask as shown in FIG. 1, the cross-sectional view in the stripe direction of the striped window of 5lo2 becomes as shown in FIG.

再びH2SO4系エンチャントにより51o2ストライ
プ状窓内のn−InGaAsp106をエツチングして
除去した後に、再びHC(jをエッチャントとしてエツ
チングして凸部112を形成する(第4図C)。
After removing the n-InGaAsp 106 within the 51o2 striped window by etching again using H2SO4 enchantment, etching is performed again using HC (j) as an etchant to form a convex portion 112 (FIG. 4C).

SiO膜116を除去した後に、 n I n + x 、 G ax1人S y 、 P
 1y1  クラ′ド層1o6゛n−In=xG&xA
syP、 、活性層107、p−In、 、Gax2人
572PI Y2  クラット、910 B、p−In
GaAsPキャップ層109を順次成長させたn−In
、 −xGaxAsyPl−y活性層107は凸部11
2の最上端113とn−InGaAsPマスク層の位置
114の間に位置する。x=0.24.x1=x2=O
、o6 。
After removing the SiO film 116, n I n + x, G ax1 S y, P
1y1 Clad layer 1o6゛n-In=xG&xA
syP, , Active layer 107, p-In, , Gax 2 people 572PI Y2 Krat, 910 B, p-In
n-In with a GaAsP cap layer 109 grown in sequence
, -xGaxAsyPl-y The active layer 107 has the convex portion 11
2 and a position 114 of the n-InGaAsP mask layer. x=0.24. x1=x2=O
, o6.

Y=0.55,7.=72=0.14  として、クラ
ッド層のバンドギャップを1.25(θV)、屈折率を
3.43、活性層のバンドギャップを1.3ei(ev
)、屈折率を3.51とした。凸部112は第1の成長
によって成長した電流ブロック層の一部なので屈折率は
InPの屈折率3.40である。活性層の幅は約2.2
μm、中心付近の厚さは約0.1671mである。
Y=0.55,7. =72=0.14, the bandgap of the cladding layer is 1.25 (θV), the refractive index is 3.43, and the bandgap of the active layer is 1.3ei (ev
), and the refractive index was set to 3.51. Since the convex portion 112 is a part of the current blocking layer grown by the first growth, its refractive index is 3.40, which is the refractive index of InP. The width of the active layer is approximately 2.2
μm, and the thickness near the center is approximately 0.1671 m.

このようなウェハーにオーミック電極110゜111を
とりつけた。
Ohmic electrodes 110° and 111 were attached to such a wafer.

第2半導体レーザは、第1半導体レーザと同時に、同一
のプロセスで、同一基板上尾製造される、オーミック電
極110,111の形成後に、ホトレジストをマスクに
して、オーミック電極110をエンチング除去し、次い
で、InGaAsP  層に対してはH2So4系エッ
チャントを、InP  に対しては、HCt系エッチャ
ントをそれぞれ順次用いてn−InPパンフ7層102
に達する分離溝118を第1半導体レーザと第2半導体
レーザとの間に形成した。
The second semiconductor laser is manufactured on the same substrate in the same process and at the same time as the first semiconductor laser. After the ohmic electrodes 110 and 111 are formed, the ohmic electrode 110 is etched away using a photoresist as a mask, and then, The seven n-InP pamphlet layers 102 are sequentially applied to the InGaAsP layer using an H2So4 etchant and the InP layer using an HCt etchant.
A separation groove 118 reaching 100 mm was formed between the first semiconductor laser and the second semiconductor laser.

本発明の実施例の集積化レーザは、上述の製造方法によ
り、2つの内部反射干渉型半導体レーザを同一基板上に
集積したものである(第1図a)。
The integrated laser according to the embodiment of the present invention is one in which two internal reflection interference type semiconductor lasers are integrated on the same substrate by the above-described manufacturing method (FIG. 1a).

各内部反射干渉型半導体レーザは、幅dを有する内部反
射領域119で分断された二重共振器レーザである。第
1半導体レーザの二つの共振器長はり、、L2であり、
第2半導体レーザはL12.L12である。
Each internal reflection interference type semiconductor laser is a double cavity laser separated by an internal reflection region 119 having a width d. The two cavity length beams of the first semiconductor laser are L2,
The second semiconductor laser is L12. It is L12.

d=2/jm、全共振器長(L、+L2+d、L1′+
L2′−I−d)を200μm としたときの発振波長
とり、−L、、の関係は、第1図すに示すようになる。
d=2/jm, total resonator length (L, +L2+d, L1'+
When L2'-I-d) is 200 .mu.m, the relationship between -L and oscillation wavelength is shown in FIG.

本実施例においては、第1半導体レーザのり、−L2=
6E5μmとしだとき、発振波長を13000人±3人
となり、第2半導体レーザのL 、 ’ −L 2’=
6911m  としたとさ13011±3八となった。
In this example, the first semiconductor laser glue, -L2=
When starting with 6E5μm, the oscillation wavelength becomes 13000 ± 3, and L of the second semiconductor laser, ' -L 2' =
If we set it to 6911m, the height would be 13011±38.

各レーザの発振しきい値工th−30〜60m人であり
、はとんどの素子は工thの1.2倍程度で単一モード
動作を示し、工thの4倍程度までモードホッピングの
ない極めて安定な単−縦モード発振を示しだ。
The oscillation threshold of each laser is -30 to 60 m, and most devices exhibit single mode operation at about 1.2 times the threshold, and there is no mode hopping up to about 4 times the threshold. It shows extremely stable single-longitudinal mode oscillation.

なお、本実施例においては、InP/TnGaAsPを
用いた長波長レーザについて述べたが、GaAs/(、
aA7AS系の材料を用いたレーザにおいても同様の効
果が得られることは言う壕でもない。
In this example, a long wavelength laser using InP/TnGaAsP was described, but a laser using GaAs/(,
It is no secret that a similar effect can be obtained with a laser using aA7AS material.

発明の効果 以上述べたように、本発明によれば、L、−L2の値が
数μm〜土数μm異なる内部反射干渉型半導体レーザを
同一基板上に集積することにより、容易に集積化波長制
御半導体レーザを実現でき、その実用的効果は太きい。
Effects of the Invention As described above, according to the present invention, by integrating internal reflection interference type semiconductor lasers in which the values of L and -L2 differ by several μm to several μm on the same substrate, the integrated wavelength can be easily changed. A controlled semiconductor laser can be realized, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における集積化波長制御半導
体レーザの構造図、第2図はLl−L2と発振波長の関
係図、第3図a、bは第1図に示す半導体レーザの共振
器の端面図及び横方向から見た活性領域を含む断面図、
第4図a−Cは同半導体レーザの作成工程のうちのエツ
チング工程図、第5図は従来例の集積化波長制御半導体
レーザの構造図である。 101−−−−・・n −I nP基板、1Q6・・・
・・・n−工nG2LASFクラッド層、1oy=・・
n−InGaAsP活性層、10El−・・−p−In
GaAsPクラッド層、112−・・・凸部、115,
116・・・・・・端面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2良体し一寸一    蔦1キ腓レーサ。 l/δ倚11鼻 第 2I21 籠 Ll−12と発1:aの関4尾(L++12”4−20
0.un)第 3 図 //6局面8 第 4 口       几−InGtaAs P0S
FIG. 1 is a structural diagram of an integrated wavelength-controlled semiconductor laser according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between Ll-L2 and the oscillation wavelength, and FIGS. 3a and 3b are diagrams of the semiconductor laser shown in FIG. an end view of the resonator and a cross-sectional view including the active region seen from the side;
4a to 4C are etching process diagrams of the manufacturing process of the same semiconductor laser, and FIG. 5 is a structural diagram of a conventional integrated wavelength control semiconductor laser. 101---...n-I nP substrate, 1Q6...
...n-engine nG2LASF cladding layer, 1oy=...
n-InGaAsP active layer, 10El-...-p-In
GaAsP cladding layer, 112-... Convex portion, 115,
116...End face. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Fig. 2 Good condition, 1 inch, 1 piece of vine, 1 piece of leg racer. l/δ倚11 Nose 2I21 Basket Ll-12 and release 1: a Seki 4 tails (L++12”4-20
0. un) Figure 3//6 Phase 8 4th mouth - InGtaAs P0S

Claims (1)

【特許請求の範囲】[Claims] 活性層の一部を他の部分と異なる屈折率とすることによ
り内部反射面を形成し、前記内部反射面で分断される二
つの共振器のうち、長い方の共振器長をL_1、短い方
の共振器長をL_2としたとき、L_1−L_2の値が
異なる複数の内部反射干渉型半導体レーザを同一基板に
集積したことを特徴とする集積化波長制御半導体レーザ
An internal reflection surface is formed by making a part of the active layer have a different refractive index from other parts, and of the two resonators separated by the internal reflection surface, the length of the longer one is L_1, and the length of the shorter one is L_1. 1. An integrated wavelength control semiconductor laser characterized in that a plurality of internal reflection interference type semiconductor lasers having different values of L_1-L_2 are integrated on the same substrate, where the resonator length of is L_2.
JP14168187A 1987-06-05 1987-06-05 Integrated wavelength controlling semiconductor laser Pending JPS63305583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14168187A JPS63305583A (en) 1987-06-05 1987-06-05 Integrated wavelength controlling semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14168187A JPS63305583A (en) 1987-06-05 1987-06-05 Integrated wavelength controlling semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63305583A true JPS63305583A (en) 1988-12-13

Family

ID=15297733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14168187A Pending JPS63305583A (en) 1987-06-05 1987-06-05 Integrated wavelength controlling semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63305583A (en)

Similar Documents

Publication Publication Date Title
JPH0262090A (en) Manufacture of optical semiconductor device
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JPH05110187A (en) Array type semiconductor laser and manufacture of the same
JPS63305583A (en) Integrated wavelength controlling semiconductor laser
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
JPH07263655A (en) Optical integrated circuit and its production
JP2003069134A (en) Semiconductor optical device and method of manufacturing the same
JPS61137388A (en) Semiconductor laser
JP4453937B2 (en) Optical integrated device and manufacturing method thereof
JPS60152086A (en) Semiconductor laser device
JPH0642583B2 (en) Semiconductor laser device
JPH01206681A (en) Semiconductor laser and manufacture thereof
JPS63302586A (en) Manufacture of semiconductor laser device
JPS63305582A (en) Semiconductor laser
JPS62282481A (en) Semiconductor laser
JP2750180B2 (en) Edge emitting light emitting diode and method of manufacturing the same
JPH04176180A (en) Semiconductor laser element chip
JPS61134096A (en) Distributed feedback type semiconductor laser
JPH01160075A (en) Semiconductor laser
JPS6167977A (en) Semiconductor laser
JP2000286501A (en) Distributed feedback semiconductor laser element
JPH02237189A (en) Manufacture of single wavelength laser
JPH0380589A (en) Semiconductor laser element and manufacture thereof
JPH0430198B2 (en)
JPH01238180A (en) Manufacture of semiconductor laser and semiconductor laser