JPH0430198B2 - - Google Patents

Info

Publication number
JPH0430198B2
JPH0430198B2 JP10699583A JP10699583A JPH0430198B2 JP H0430198 B2 JPH0430198 B2 JP H0430198B2 JP 10699583 A JP10699583 A JP 10699583A JP 10699583 A JP10699583 A JP 10699583A JP H0430198 B2 JPH0430198 B2 JP H0430198B2
Authority
JP
Japan
Prior art keywords
layer
waveguide
groove
active
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10699583A
Other languages
Japanese (ja)
Other versions
JPS59232478A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10699583A priority Critical patent/JPS59232478A/en
Publication of JPS59232478A publication Critical patent/JPS59232478A/en
Publication of JPH0430198B2 publication Critical patent/JPH0430198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Description

【発明の詳細な説明】 本発明は埋め込み構造分布反射型半導体レーザ
及びその製造方法に関するものである。分布反射
型半導体レーザ及び分布帰還型半導体レーザは、
高速変調時にも単一軸姿態発振する事により長距
離広帯域光フアイバ通信用光源として有望視され
ている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried structure distributed reflection type semiconductor laser and a manufacturing method thereof. Distributed reflection semiconductor lasers and distributed feedback semiconductor lasers are
It is seen as a promising light source for long-distance broadband optical fiber communications because it oscillates in a single-axis configuration even during high-speed modulation.

分布反射型半導体レーザは利得を有する活性領
域と発振波長を決める分布反射領域の2領域を有
する。
A distributed reflection semiconductor laser has two regions: an active region that has a gain and a distributed reflection region that determines an oscillation wavelength.

第1図は従来の埋め込み構造分布反射型半導体
レーザの構造及び製造過程を上記の2領域に分け
て示したウエフアの断面図であり、第1図aはダ
ブルヘテロ構造のウエフアであり、基板101上
に活性層102が形成され、さらに、この上に1
03はクラツド層103が形成されている。第1
図aに示したウエフアで、分布反射領域120と
する部分のクラツド層103と活性層102を第
1図bの如く除去した後に、そこに導波路層10
4及び分布反射領域120におけるクラツド層1
05を積層し、第1図cのようにする。活性層1
02とクラツド層103が残つている部分が活性
領域110となる。第1図a,b,cは共振器方
向の断面図である。第1図cのウエフアをメサ加
工し、活性領域110においては第1図d1、分
布反射領域120においては第1図d2のように
し、埋め込み成長により各々の領域においてe
1,e2のように、活性層102及び導波路層1
04を第1の埋め込み層106及び第2の埋め込
み層107により完全に結晶内部に埋め込む。さ
らに分布反射領域120においては、第1図fの
ように導波路層104の上部が露出するようにエ
ツチングした後、その表面にグレーテイングを形
成する。以上が従来の埋め込み構造分布反射型半
導体レーザの導波路形状及び製造方法であるが、
第1図e2からfの工程において、導波路層10
4とその導波路を埋め込んでいる結晶とで化学エ
ツチング特性に選択性をもつエツチング液を用い
てグレーテイング作製の表面を得ようとするた
め、導波路層104は結晶より突起してしまう事
が起こる。
FIG. 1 is a cross-sectional view of a wafer showing the structure and manufacturing process of a conventional buried structure distributed reflection type semiconductor laser divided into the above two regions. An active layer 102 is formed on top of the active layer 102, and a layer of 1
03, a cladding layer 103 is formed. 1st
After removing the cladding layer 103 and the active layer 102 in the portion that will become the distributed reflection region 120 as shown in FIG. 1b from the wafer shown in FIG.
4 and the cladding layer 1 in the distributed reflection region 120
05 is laminated as shown in Fig. 1c. active layer 1
02 and the remaining portion of the cladding layer 103 becomes an active region 110. FIGS. 1a, b, and c are cross-sectional views in the direction of the resonator. The wafer shown in FIG. 1c is mesa-processed, and the active region 110 is formed as shown in FIG.
1, e2, the active layer 102 and the waveguide layer 1
04 is completely buried inside the crystal by the first buried layer 106 and the second buried layer 107. Further, in the distributed reflection region 120, as shown in FIG. 1F, after etching is performed so that the upper part of the waveguide layer 104 is exposed, a grating is formed on the surface thereof. The above is the waveguide shape and manufacturing method of the conventional buried structure distributed reflection semiconductor laser.
In the steps e2 to f in FIG. 1, the waveguide layer 10
4 and the crystal in which the waveguide is embedded, using an etching solution that has selectivity in chemical etching characteristics to obtain a surface for the grating fabrication. Therefore, the waveguide layer 104 may protrude from the crystal. happen.

このような導波路層104を含めた分布反射領
域120での導波路構造のばらつきは、導波路内
の波長のばらつきとなり、活性領域の利得のピー
ク波長に設定されるべきかつ所望する波長を決定
するグレーテイングのピツチの決定上大きな問題
となる。また導波路層104突起によるグレーテ
イング作製表面の平坦性の悪化はレジストの均一
塗布等に問題を起し、光の干渉露光によるグレー
テイングの作製の歩留りを悪化させる。エツチン
グ特性に選択性をもたないエツチング液により場
合は、いうまでもなく高精度なエツチング制御が
必要で、歩留りに影響する。さらに第1図e2の
表面においても、結晶成長で上面を平坦にする事
は難しく、それはfの表面にも影響する。
Such variations in the waveguide structure in the distributed reflection region 120 including the waveguide layer 104 result in variations in the wavelength within the waveguide, and determine the desired wavelength that should be set as the peak wavelength of the gain of the active region. This poses a major problem in determining the pitch of the grating to be used. Further, deterioration of the flatness of the surface on which the grating is manufactured due to the protrusions of the waveguide layer 104 causes problems in uniform application of resist, etc., and deteriorates the yield of manufacturing the grating by optical interference exposure. Needless to say, when using an etching solution that does not have selectivity in etching characteristics, highly accurate etching control is required, which affects the yield. Furthermore, it is difficult to flatten the upper surface of the surface shown in FIG. 1 e2 through crystal growth, which also affects the surface of f.

本発明の目的は上記の問題点を除き、作製が容
易な分布反射型半導体レーザ並びにその製造方法
を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a distributed reflection type semiconductor laser that is easy to manufacture and a method for manufacturing the same, which eliminates the above-mentioned problems.

本発明の半導体レーザは、溝が形成された半導
体結晶上の前記溝の前記溝の長手方向に部分的に
前記溝を平坦に埋める前記半導体結晶より屈折率
の大きな第1の導波路層を有し、前記第1の導波
路層によつて埋め込まれていない部分の前記溝の
少なくとも内部から上部にかけて、第1のクラツ
ド層、前記第1の導波路層の端面に接する端面を
具備する活性層、前記活性層より屈折率が小さな
第2のクラツド層、第2のクラツド層より屈折率
が等しいかあるいは小さい第3のクラツド層を含
んた多層構造を備え、かつ前記第1の導波路層あ
るいは前記第1の導波路層上に積層された少なく
とも1つの半導体層上に凹凸の周期構造を有する
構成となつている。また本発明の製造方法は、溝
を形成した半導体結晶上全面に、前記溝を含め表
面が平坦になるように、前記半導体結晶より屈折
率が大きい第1の導波路層を積層し、前記第1の
導波路層のみ選択的に除去するエツチング液を用
いて前記溝の長手方向の少なくとも1部分の前記
第1の導波路層を除去して、前記第1の溝を再現
し、その後に、少なくとも第1のクラツド層、活
性層、第2のクラツド層、第3のクラツド層をこ
の順に積層する工程を含む構成となつている。
The semiconductor laser of the present invention includes a first waveguide layer having a refractive index higher than that of the semiconductor crystal, which partially fills the groove flatly in the longitudinal direction of the groove on the semiconductor crystal in which the groove is formed. and an active layer comprising a first cladding layer and an end surface in contact with an end surface of the first waveguide layer, at least from the inside to the top of the groove in a portion not buried by the first waveguide layer. , a multilayer structure including a second cladding layer having a refractive index smaller than that of the active layer, and a third cladding layer having a refractive index equal to or smaller than the second cladding layer, and the first waveguide layer or The at least one semiconductor layer stacked on the first waveguide layer has a periodic structure of projections and depressions. Further, in the manufacturing method of the present invention, a first waveguide layer having a refractive index higher than that of the semiconductor crystal is laminated on the entire surface of the semiconductor crystal in which the groove is formed so that the surface including the groove is flat. Reproducing the first groove by removing at least a portion of the first waveguide layer in the longitudinal direction of the groove using an etching solution that selectively removes only one waveguide layer; The structure includes the step of laminating at least a first cladding layer, an active layer, a second cladding layer, and a third cladding layer in this order.

本構成によれば、溝を埋める第1の導波路層
は、分布反射領域の導波路となり、光は溝部分の
第1の導波路層でのみ導波され分布反射領域で光
は広がらず活性領域に有効に光を帰還する事がで
きる。そして、第1の導波路層上面は平坦で、か
つ、第1の導波路層は分布反射領域全体に存在す
るため、半導体組成によりエツチング特性の異な
るエツチング液により、再現性よく第1の導波路
層上面を露出させる事が容易で再現性よく良好な
グレーテイングを形成できる。さらに本発明の製
造方法によればさらに次のような効果が得られ
る。第1図に示した従来の製造方法から容易に類
推されるように、活性層を除去し、分布反射領域
とする部分に溝を形成して分布反射領域の導波路
を形成すると活性領域の光軸と分布反射領域の光
軸を一致させなければならない。この欠点を回避
する方法としてはあらかじめ形成した溝の中に形
成する方法がある。しかし、この方法でも通常の
やり方だと下記のような欠点がある。第2図は埋
め込まれた活性層201を示す活性領域の断面図
の一例を示す。
According to this configuration, the first waveguide layer filling the groove becomes a waveguide in the distributed reflection region, and light is guided only in the first waveguide layer in the groove portion, and the light does not spread in the distributed reflection region and becomes active. It is possible to effectively return light to the area. Since the top surface of the first waveguide layer is flat and the first waveguide layer exists in the entire distributed reflection region, the first waveguide layer can be etched with good reproducibility using an etching solution with different etching characteristics depending on the semiconductor composition. It is easy to expose the top surface of the layer, and a good grating can be formed with good reproducibility. Furthermore, according to the manufacturing method of the present invention, the following effects can be obtained. As can be easily inferred from the conventional manufacturing method shown in FIG. The axis must match the optical axis of the distributed reflection area. As a method to avoid this drawback, there is a method of forming it in a pre-formed groove. However, even this method has the following drawbacks when it is a normal method. FIG. 2 shows an example of a cross-sectional view of an active region showing a buried active layer 201. FIG.

埋め込まれた活性層の幅は2μm程度あるいは
それ以下であり、それに合わして分布反射領域の
光の導波路を決定する溝を形成する事は難しく、
さらには、活性層は結晶内部にあるため、まず活
性層位置を検出しなければならないため工程も複
雑となる。活性層はわん曲し、かつ、部分的にと
ぎれているため活性層の除去の工程も難しくな
る。しかしながら、本発明の製造方法によれば、
容易に上記の問題を解決できる。活性領域におい
て活性層をその屈折率より小さな結晶中に埋め込
む溝と分布反射領域の光の導波を決める溝を同一
の溝するため、活性領域の光軸と分布反射領域の
光軸を自動的に一致する。よつて分布反射領域と
活性領域の結合は容易となる。
The width of the buried active layer is about 2 μm or less, and it is difficult to form grooves that determine the optical waveguide of the distributed reflection region accordingly.
Furthermore, since the active layer is located inside the crystal, the position of the active layer must first be detected, which complicates the process. Since the active layer is curved and partially broken, the process of removing the active layer is also difficult. However, according to the manufacturing method of the present invention,
The above problem can be easily solved. In the active region, the optical axis of the active region and the optical axis of the distributed reflection region are automatically aligned in order to make the groove that embeds the active layer in a crystal whose refractive index is smaller than that of the active region and the groove that determines the waveguide of light in the distributed reflection region the same groove. matches. Therefore, coupling of the distributed reflection region and the active region becomes easy.

以下、本発明を実施例を用いて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail using examples.

第3図は本発明の半導体レーザを共振器方向の
溝内部で割つたときの断面図であり、第5図は活
性領域及び分布反射領域の製造工程を含めた断面
図である。図中2は第1の導波路層でその共振器
方向に垂直な断面図は第5図cであり、分布反射
領域40での導波路を形成する。また第3図中3
は活性層であり、その共振器方向に垂直な断面図
は第5図bに示してある。活性層3は活性層の屈
折率よりも屈折率が小さな半導体結晶中に完全に
埋め込まれ、分布反射領域40と活性領域30の
境界50で端面を第1の導波層端面に接してい
る。以下製造工程に従つて順次説明する。
FIG. 3 is a sectional view when the semiconductor laser of the present invention is cut inside the groove in the cavity direction, and FIG. 5 is a sectional view including the manufacturing process of the active region and the distributed reflection region. 2 in the figure is the first waveguide layer, and its cross-sectional view perpendicular to the resonator direction is FIG. 5c, which forms a waveguide in the distributed reflection region 40. Also, 3 in Figure 3
is the active layer, whose sectional view perpendicular to the resonator direction is shown in FIG. 5b. The active layer 3 is completely embedded in a semiconductor crystal having a refractive index smaller than that of the active layer, and its end face is in contact with the end face of the first waveguide layer at a boundary 50 between the distributed reflection region 40 and the active region 30. The manufacturing process will be sequentially explained below.

第4図a,b,cは本発明の半導体レーザの製
造工程の一部を表わす。
4a, b, and c show a part of the manufacturing process of the semiconductor laser of the present invention.

第4図aにおいて図中1は半導体結晶でInPを
用いた。10は溝である。溝の幅はほぼ2μmで
でV字形とした。その後第4図bに示すように、
その上に1.3μm組成のInGaAsPの4元結晶を表
面が平坦になるように積層した。さらに、通常の
ホトリソグラフイによりエツチングマスクを形成
し、第4図cに示すように溝10の長手方向の一
部分のInGaAsP層をH2SO4とH2OとH2O2の混液
により除去した。c中の30は活性領域、40は
グレーデイング20が形成されている分布反射領
域である。その上に第1のクラツド層3になるn
型InP、活性層4になる1.5μm組成のInGaAsP4
元結晶、第2のクラツド層5となる活性層4より
屈折率の小さく、バンドギヤツプの大きな(1.3μ
m組成の)InGaAsP層、第3のクラツド層6に
なるInP層、さらにオーミツクコンタクトをとる
ためのキヤツプ層7になるInGaAsP層を積層し
た。第5図a,bは各々活性領域30における第
1のクラツド層3を積層する前とキヤツプ層7を
積層した後の断面図である。
In FIG. 4a, reference numeral 1 indicates a semiconductor crystal made of InP. 10 is a groove. The width of the groove was approximately 2 μm, and it was V-shaped. Then, as shown in Figure 4b,
On top of this, a quaternary crystal of InGaAsP with a composition of 1.3 μm was laminated so that the surface was flat. Furthermore, an etching mask is formed using ordinary photolithography, and a portion of the InGaAsP layer in the longitudinal direction of the trench 10 is removed using a mixed solution of H 2 SO 4 , H 2 O, and H 2 O 2, as shown in FIG. 4c. did. 30 in c is an active region, and 40 is a distributed reflection region in which grading 20 is formed. On top of that is the first cladding layer 3.
InP type, InGaAsP4 with a composition of 1.5 μm to become active layer 4
The original crystal has a smaller refractive index and a larger band gap (1.3μ
An InGaAsP layer (having a composition of m), an InP layer that will become the third cladding layer 6, and an InGaAsP layer that will become the cap layer 7 for making ohmic contact were laminated. 5a and 5b are cross-sectional views of the active region 30 before the first cladding layer 3 is laminated and after the cap layer 7 is laminated, respectively.

活性層4は、溝10内部に液相成長条件を選ぶ
事により完全に埋め込まれる。第5図c,dは分
布反射領域40における第1のクラツド層3を積
層する前とキヤツプ層7を積層した後の断面であ
る。分布反射領域40の表面はcに示すように平
坦であるため順次平坦に積層されるだけである。
dに示されたウエフアをInGaAsP層に対しては
H2SO4とH2O2とH2Oの混液、InP層に対しては
HClとH2Oの混液を用いて第1の導波路層2の表
面までエツチングし分布反射領域はcに示した断
面構造にもどした。この際第1のクラツド層3を
HClとH2Oの混液でエツチングする際HClとH2O
の混液はInGaAsPをほとんどエツチングしない
ため自動的に第1の導波路層表面でエツチングは
停止し、平坦な導波路層3の表面が出る。したが
つてその上には、グレーテイングを容易に作製で
きた。分布反射領域40では光は第5図cの溝1
0内部の第1の導波路層2の内部でほとんど導波
し、さらに活性領域30では、同じ溝10の中に
活性層4が位置するため光は活性層4へ十分結合
する。さらに第2クラツド層5の組成及び層厚を
最適化し、第2図中の境界50における両領域の
電磁界分布を一致させればさらに結合は大きくな
る。最後にP側、n側にそれぞれ電極を形成し半
導体レーザとした。ここでは、溝の形状をV字型
としたがV字型である必要はない。
The active layer 4 is completely buried inside the trench 10 by selecting liquid phase growth conditions. FIGS. 5c and 5d are cross sections of the distributed reflection region 40 before the first cladding layer 3 is laminated and after the cap layer 7 is laminated. Since the surface of the distributed reflection region 40 is flat as shown in c, it is simply layered one after another in a flat manner.
For the InGaAsP layer, the wafer shown in d is
A mixture of H 2 SO 4 , H 2 O 2 and H 2 O, for the InP layer
The surface of the first waveguide layer 2 was etched using a mixed solution of HCl and H 2 O, and the distributed reflection region was returned to the cross-sectional structure shown in c. At this time, the first cladding layer 3 is
When etching with a mixture of HCl and H 2 O
Since the mixed solution hardly etches InGaAsP, etching automatically stops at the surface of the first waveguide layer, leaving a flat surface of the waveguide layer 3. Therefore, a grating could be easily fabricated thereon. In the distributed reflection region 40, the light passes through the groove 1 of FIG. 5c.
Most of the light is guided inside the first waveguide layer 2 inside the groove 10, and furthermore, in the active region 30, since the active layer 4 is located in the same groove 10, the light is sufficiently coupled to the active layer 4. Furthermore, if the composition and layer thickness of the second cladding layer 5 are optimized and the electromagnetic field distributions of both regions at the boundary 50 in FIG. 2 are matched, the coupling will be further increased. Finally, electrodes were formed on the P side and the n side to form a semiconductor laser. Here, the shape of the groove is V-shaped, but it does not need to be V-shaped.

以上のように本発明の埋め込み構造分布反射型
半導体レーザは通常の埋め込み構造半導体レーザ
と同程度に容易に製造でき、かつグレーテイング
作製表面が平坦でグレーテイング作製歩留りが高
い埋め込み構造分布反射型半導体レーザである。
As described above, the buried structure distributed reflection semiconductor laser of the present invention can be manufactured as easily as a normal buried structure semiconductor laser, and the buried structure distributed reflection semiconductor laser has a flat grating production surface and a high grating production yield. It's a laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の埋め込み構造分布反射型半導体
レーザの構造及び製造工程の図であり、図中、1
01は基板、102は活性層、103はクラツド
層、104は導波路層、105は分布反射領域の
クラツド層、106は第1の埋め込み層、107
は第2の埋め込み層、110は活性領域、120
は分布反射領域である。第2図は代表的な溝の中
に活性層を成長する型の活性層の形状を示す図で
あり201は活性層である。第3図は本発明の埋
め込み構造分布反射型半導体レーザの共振器方向
の断面図であり、第4図、第5図は作製工程の一
部を示す概略図である。図中1は半導体結晶、2
は第1の導波路層、3は第2のスラツド層、4は
活性層、5は第2のクラツド層、6は第3のクラ
ツド層、7はキヤツプ層、10は溝、20はグレ
ーテイング、30は活性領域、40は分布反射領
域、50は活性領域と分布反射領域の境界、10
0は活性層、200は分布反射領域の導波路層、
300は半導体結晶。
Figure 1 shows the structure and manufacturing process of a conventional buried structure distributed reflection type semiconductor laser.
01 is a substrate, 102 is an active layer, 103 is a cladding layer, 104 is a waveguide layer, 105 is a cladding layer of a distributed reflection region, 106 is a first buried layer, 107
is a second buried layer, 110 is an active region, 120
is the distributed reflection region. FIG. 2 is a diagram showing the shape of a typical type of active layer in which the active layer is grown in a groove, and 201 is the active layer. FIG. 3 is a sectional view in the cavity direction of the buried structure distributed reflection type semiconductor laser of the present invention, and FIGS. 4 and 5 are schematic diagrams showing a part of the manufacturing process. In the figure, 1 is a semiconductor crystal, 2
is the first waveguide layer, 3 is the second slat layer, 4 is the active layer, 5 is the second clad layer, 6 is the third clad layer, 7 is the cap layer, 10 is the groove, and 20 is the grating. , 30 is an active region, 40 is a distributed reflection region, 50 is a boundary between the active region and the distributed reflection region, 10
0 is the active layer, 200 is the waveguide layer of the distributed reflection region,
300 is a semiconductor crystal.

Claims (1)

【特許請求の範囲】 1 溝が形成された半導体結晶上の前記溝の長手
方向に部分的に前記溝を平坦に埋める前記半導体
結晶より屈折率の大きな第1の導波路層を有し、
前記第1の導波路層によつて埋め込まれていない
部分の前記溝の少なくとも内部から上部にかけ
て、第1のクラツド層、前記第1の導波路層の端
面に端面が接する活性層、前記活性層より屈折率
の小さな第2のクラツド層、第2のクラツド層よ
り屈折率が等しいかあるいは小さい第3のクロツ
ド層を含んだ多層構造を備え、かつ、前記第1の
導波路層あるいは前記第1の導波路層上に積層さ
れた少なくとも1つの半導体層上に凹凸の周期構
造を有する事を特徴とする埋め込み構造分布反射
型半導体レーザ。 2 溝を形成した半導体結晶上全面に、前記溝を
含め表面が平坦になるように、前記半導体結晶よ
り屈折率が大きい第1の導波路層を積層し、前記
第1の導波路層のみ選択的に除去するエツチング
液を用いて前記溝の長手方向の少なくとも1部分
の前記第1の導波路層を除去して前記第1の溝を
再現し、その後に、少なくとも第1のクラツド
層、活性層、第2のクラツド層、第3のクラツド
層を順次に積層する工程を含むことを特徴とする
半導体レーザの製造方法。
[Scope of Claims] 1. A first waveguide layer having a refractive index higher than that of the semiconductor crystal that partially fills the groove flatly in the longitudinal direction of the groove on a semiconductor crystal in which a groove is formed,
A first cladding layer, an active layer whose end surface is in contact with an end surface of the first waveguide layer, and the active layer from at least the inside to the top of the groove in the portion not buried by the first waveguide layer. It has a multilayer structure including a second cladding layer having a smaller refractive index, a third cladding layer having a refractive index equal to or smaller than the second cladding layer, and the first waveguide layer or the first cladding layer What is claimed is: 1. A buried structure distributed reflection type semiconductor laser having a periodic structure of concave and convex portions on at least one semiconductor layer laminated on a waveguide layer. 2. A first waveguide layer having a higher refractive index than the semiconductor crystal is laminated on the entire surface of the semiconductor crystal in which the groove is formed so that the surface including the groove is flat, and only the first waveguide layer is selected. reproducing the first waveguide layer by removing at least a longitudinal portion of the first waveguide layer using an etching solution that removes at least one of the active waveguide layers; 1. A method of manufacturing a semiconductor laser, comprising the steps of sequentially laminating a second cladding layer, a second cladding layer, and a third cladding layer.
JP10699583A 1983-06-15 1983-06-15 Buried construction distribution reflection type semiconductor laser and its manufacture Granted JPS59232478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10699583A JPS59232478A (en) 1983-06-15 1983-06-15 Buried construction distribution reflection type semiconductor laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10699583A JPS59232478A (en) 1983-06-15 1983-06-15 Buried construction distribution reflection type semiconductor laser and its manufacture

Publications (2)

Publication Number Publication Date
JPS59232478A JPS59232478A (en) 1984-12-27
JPH0430198B2 true JPH0430198B2 (en) 1992-05-21

Family

ID=14447803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10699583A Granted JPS59232478A (en) 1983-06-15 1983-06-15 Buried construction distribution reflection type semiconductor laser and its manufacture

Country Status (1)

Country Link
JP (1) JPS59232478A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295684A (en) * 1985-06-25 1986-12-26 Matsushita Electric Ind Co Ltd Semiconductor laser
CN106785829B (en) * 2017-01-10 2019-09-27 中国科学院长春光学精密机械与物理研究所 A kind of distributed feedback laser and preparation method thereof, distributed feedback laser array

Also Published As

Publication number Publication date
JPS59232478A (en) 1984-12-27

Similar Documents

Publication Publication Date Title
US6291256B1 (en) Method of manufacturing non-regrowth distributed feedback ridge semiconductor
JP2008113041A (en) Waveguide
GB2287124A (en) Semiconductor laser and method of fabrication
US20020154848A1 (en) Integrated optical circuit device and method for producing the same
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPH0430198B2 (en)
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JP2700312B2 (en) Distributed feedback semiconductor laser device
JPS6114787A (en) Distributed feedback type semiconductor laser
JP2002223032A (en) Optical element and method for manufacturing it
JPH08162706A (en) Manufacture of integrated semiconductor optical element
JP4100792B2 (en) Semiconductor laser device with spot size converter and manufacturing method thereof
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
JP2953449B2 (en) Optical semiconductor device and method of manufacturing the same
JP2001111169A (en) Semiconductor laser element
JPH1168221A (en) Semiconductor laser
JPH11223739A (en) Integrated optical circuit element and manufacture of the same
JPH0526359B2 (en)
JPH0485503A (en) Manufacture of semiconductor optical input and output circuit
JPH04356001A (en) Production of diffraction grating
JP2002270946A (en) Method for manufacturing semiconductor optical integrated device
JPH11145557A (en) Semiconductor optical element and its manufacture
JPS60165782A (en) Semiconductor laser
JPH07297492A (en) Manufacture of diffraction grating
JPS62139378A (en) Manufacture of semiconductor laser