JPH0262090A - Manufacture of optical semiconductor device - Google Patents

Manufacture of optical semiconductor device

Info

Publication number
JPH0262090A
JPH0262090A JP21397788A JP21397788A JPH0262090A JP H0262090 A JPH0262090 A JP H0262090A JP 21397788 A JP21397788 A JP 21397788A JP 21397788 A JP21397788 A JP 21397788A JP H0262090 A JPH0262090 A JP H0262090A
Authority
JP
Japan
Prior art keywords
substrate
film
different
crystal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21397788A
Other languages
Japanese (ja)
Inventor
Akiyuki Serizawa
芹澤 晧之
Yasushi Matsui
松井 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21397788A priority Critical patent/JPH0262090A/en
Publication of JPH0262090A publication Critical patent/JPH0262090A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2077Methods of obtaining the confinement using lateral bandgap control during growth, e.g. selective growth, mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an optical device having a new structure and by a new method of manufacture by controlling a growing speed or a film thickness by changing the rate between an area of an exposed portion of a substrate crystal and an area covered with a film difficult to grow. CONSTITUTION:Exposed grooves 3, 4 in a GaAs substrate layer each have a width of mum order, satisfying a relation the width B > the width A. A GaAs, AlGaAs superlattice layer is grown on the substrate by an organic metal vapor phase growing method for example. Because of the relation B>A, the superlattice layer is grown to be thicker at the portion of the groove 3 than at the portion of the groove 4. Further, a growing period of the superlattice is shorter along the groove 4 compared with the groove 3, i.e., longer as it goes narrower. Hereby, superlattice layers having different optical characteristics are simultaneously formed. Thus, layers having different refractive indexes and band gaps, etc., are well controllably and simultaneously formed along the different width grooves 3, 4. Hereby, an optical device having a new structure is yielded by a new method of manufacture.

Description

【発明の詳細な説明】 1、発明の名称 光半導体装置の製造方法 2、特許請求の範囲 (1)結晶基板上に、化合物半導体結晶が成長しにくい
膜を形成し、前記膜の一部を除去して前記結晶面を複数
個所露出させ、気相成長法にて前記複数の露出結晶面上
にそれぞれ複数層の化合物半導体結晶層を同時に形成し
、前記複数の露出箇所の基板露出部の面積と前記結晶し
にくい膜の面積にて前記複数露出箇所に成長する前記半
導体結晶層の成長速度を制御し、前記複数露出箇所に、
膜厚が異なシ光学特性の異なる前記半導体結晶層を形成
することを特徴とする光半導体装置の製造方法。
Detailed Description of the Invention 1. Name of the invention Method for manufacturing an optical semiconductor device 2. Claims (1) A film in which compound semiconductor crystals are difficult to grow is formed on a crystal substrate, and a part of the film is removing the crystal planes to expose a plurality of locations, simultaneously forming a plurality of compound semiconductor crystal layers on each of the plurality of exposed crystal planes using a vapor phase growth method, and determining the area of the exposed portion of the substrate at the plurality of exposed locations. and the area of the film that is difficult to crystallize, controlling the growth rate of the semiconductor crystal layer growing at the plurality of exposed locations,
A method for manufacturing an optical semiconductor device, comprising forming the semiconductor crystal layers having different thicknesses and different optical properties.

(2)複数箇所が異なる幅を有するストライプ状の露出
部よシなり、前記複数箇所に膜厚の異なる活性領域を形
成し、前記基板上に波長の異なる複数の半導体レーザを
形成することを特徴とする特許請求の範囲第1項記載の
光半導体装置の 3、産業上の利用分野 本発明は同一基体上に一度の°結晶成長で膜厚の異なる
複数の領域を形成するもので半導体レーザ。
(2) A plurality of striped exposed portions having different widths are formed, active regions having different film thicknesses are formed at the plurality of locations, and a plurality of semiconductor lasers having different wavelengths are formed on the substrate. 3. Industrial Field of Application The present invention relates to a semiconductor laser in which a plurality of regions having different film thicknesses are formed on the same substrate by one crystal growth.

発光ダイオード、光導波路などの光半導体装置の作製法
に関する。
This invention relates to a method for manufacturing optical semiconductor devices such as light emitting diodes and optical waveguides.

従来の技術 同一基板上に一度の結晶成長で膜厚の異なる層を形成す
る方法としては半導体レーザなどの化合物半導体デバイ
スを作製するとき用いる液相成長法がある。第6図に代
表的な半導体レーザの構造を示す。レーザの製法上で説
明する。61は基板InP、62はInPバッフ7層、
53は工nG4A!iP活性領域、64はp−InPク
ラッド層であり、基板上に順次液相成長法にて成長され
る。このような成長基板に、凹部ストライプ6Q、81
を形成し、次にp−InPs5. n−Indexs 
、 p−InP67の各層を成長させて埋込み型の半導
体レーザが溝底される。この時Inを溶媒として用いる
この液相成長法においては凹部6Q、al、凸部58゜
59の部所及び形状によシ、成長スピードが異なり、I
nP層5層上7さにも起因するがほぼ表面が平坦化され
た構造となる。
2. Description of the Related Art As a method for forming layers with different thicknesses on the same substrate by one crystal growth, there is a liquid phase growth method used when manufacturing compound semiconductor devices such as semiconductor lasers. FIG. 6 shows the structure of a typical semiconductor laser. The laser manufacturing method will be explained first. 61 is an InP substrate, 62 is an InP buffer 7 layers,
53 is engineering nG4A! The iP active region 64 is a p-InP cladding layer, which is successively grown on the substrate by liquid phase growth. Concave stripes 6Q, 81 are formed on such a growth substrate.
and then p-InPs5. n-Indexes
, p-InP67 layers are grown to form a buried semiconductor laser at the bottom of the trench. At this time, in this liquid phase growth method using In as a solvent, the growth speed differs depending on the location and shape of the concave portions 6Q, al, and convex portions 58, 59, and I
This is due to the fact that there are five nP layers, but the surface is almost flat.

発明が解決しようとする課題 一般的に液相成長法においては狭い凹部はど成長スピー
ドが速く、狭い凸部はどそのスピードは遅い。
Problems to be Solved by the Invention Generally, in the liquid phase growth method, the growth speed of narrow concave portions is fast, and the growth speed of narrow convex portions is slow.

このように液相成長法は形状によって膜厚をかえること
は可能だが高精度に制御することは困難である。一方、
蒸着、スパッタ等での膜形成法は膜厚制御は可能だが形
状効果を持たすことはむずかしい。従って、現在化合物
半導体を用いたレーザ、光導・波路、光集積回路などの
デバイス作製は主に液相成長法が使われているが、膜厚
の制御性に乏しく、量子門戸構造の形成に代表されるよ
うに、高性能化、集積化などを行なう上での課題であっ
た。
In this way, the liquid phase growth method allows the film thickness to be changed depending on the shape, but it is difficult to control it with high precision. on the other hand,
Film formation methods such as evaporation and sputtering allow film thickness control, but it is difficult to achieve shape effects. Therefore, liquid phase growth is currently mainly used to fabricate devices such as lasers, optical guides/wavelengths, and optical integrated circuits using compound semiconductors, but it lacks controllability of film thickness and is typically used to form quantum gate structures. As described above, this was an issue in achieving higher performance and integration.

そこで、本発明は薄膜単結晶の膜厚の制御性を高め、半
導体レーザを中心とする化合物半導体光デバイス作製法
を改良し、高性能化や光集積化に適用しようとするもの
である。
Therefore, the present invention aims to improve the controllability of the thickness of thin single crystal films, improve the method for manufacturing compound semiconductor optical devices, mainly semiconductor lasers, and apply them to higher performance and optical integration.

課題を解決するための手段 本発明の光半導体装置の製造方法は、結晶基板上に、化
合物半導体結晶が成長しにくい膜を形成し、前記膜の一
部を除去して前記結晶面を複数個所露出させ、気相成長
法にて前記複数の露出結晶面上にそれぞれ複数層の化合
物半導体結晶層を同時に形成し、前記複数の露出箇所の
基板露出部の面積と前記結晶しにくい膜の面積にて前記
複数露出箇所に成長する半導体結晶層の成長速度を制御
し、前記複数露出箇所に、膜厚が異なシ光学特性の異な
る前記半導体結晶層を形成するものである。
Means for Solving the Problems The method for manufacturing an optical semiconductor device of the present invention includes forming a film on a crystal substrate in which compound semiconductor crystals are difficult to grow, and removing a part of the film to change the crystal planes at a plurality of locations. and simultaneously forming a plurality of compound semiconductor crystal layers on each of the plurality of exposed crystal planes using a vapor phase growth method, so that the area of the exposed portion of the substrate at the plurality of exposed locations and the area of the film that is difficult to crystallize are The growth rate of the semiconductor crystal layer growing at the plurality of exposed locations is controlled, and the semiconductor crystal layers having different film thicknesses and different optical characteristics are formed at the plurality of exposed locations.

また、複数箇所が異なる幅を有するストライプ状の露出
部よりなり、前記複数箇所に膜厚の異なる活性領域を形
成し、前記基板上に波長の異なる複数の半導体レーザを
形成する。さらにまた複数箇所が、異なる幅を有するス
トライプ状の露出部が直列状に接続されたものであり、
前記露出部に量子サイズ効果を有する単層あるいは多層
構造の超格子膜よりなる半導体レーザの活性領域を、気
相成長法にて形成する方法も提供するもので、半導体レ
ーザを含む複数の薄膜光部品のモノリシック集積化回路
の作成も行う。
In addition, active regions are formed in stripes having different widths at a plurality of locations, active regions having different thicknesses are formed at the plurality of locations, and a plurality of semiconductor lasers having different wavelengths are formed on the substrate. Furthermore, a plurality of striped exposed portions having different widths are connected in series,
The present invention also provides a method for forming an active region of a semiconductor laser, which is made of a single-layer or multilayer superlattice film having a quantum size effect in the exposed portion, by a vapor phase growth method. We also create monolithic integrated circuits of components.

作用 本発明は有機金属気相成長法やハライド系気相成長法な
どの気相よシの結晶成長法が基板単結晶上の上に形成さ
れた5102膜などの結晶成長しにくい部分と基板結晶
露出部の面積や幅の割合によって結晶成長速度に大きな
差異があることを見い出し、またたとえば0.1μm以
下の薄い結晶膜においては特に制御性良く成長が可能で
あるので、本結晶成長法と量子効果が現われる超格子構
造とを組み合せて新たな光デバイス作製法を見い出した
もので、半導体レーザ、光導波路付レーザ、外部共振器
レーザ、多波長レーザなどを作製できる。
Function The present invention allows vapor phase crystal growth methods such as organometallic vapor phase epitaxy and halide vapor phase epitaxy to be applied to areas where crystal growth is difficult, such as a 5102 film formed on a single crystal substrate, and to substrate crystals. We found that there is a large difference in the crystal growth rate depending on the area and width ratio of the exposed part, and we also found that, for example, thin crystal films of 0.1 μm or less can be grown with particularly good control. A new method for manufacturing optical devices has been discovered by combining the superlattice structure, which exhibits this effect, and can be used to create semiconductor lasers, lasers with optical waveguides, external cavity lasers, multi-wavelength lasers, etc.

すなわち、本発明における結晶成長法は基板結晶の一部
を結晶成長しにくい膜でおおうと、気相中の結晶成長成
分元素の濃度が増加し、基板単結晶露出部に優先的に結
晶化し成長スピードを速めるものであり、基板結晶の露
出部面積と、成長しにくい膜でおおわれている面積の割
合をかえることで成長スピードすなわち膜厚を制御する
ものである。さらに、超薄膜である量゛子すイズ効果を
もつ超格子形成に適用することによって、実効的な屈折
率または実効的なバンドギャップを変化させて新たな構
造および製法の光デバイスを得ることができる。
In other words, in the crystal growth method of the present invention, when a part of the substrate crystal is covered with a film that is difficult to grow, the concentration of the crystal growth component elements in the gas phase increases, and the crystal growth occurs preferentially in the exposed portion of the substrate single crystal. The growth speed, that is, the film thickness, is controlled by changing the ratio of the exposed area of the substrate crystal to the area covered with a film that is difficult to grow. Furthermore, by applying it to the formation of a superlattice that is an ultra-thin film with a quantum mercury effect, it is possible to change the effective refractive index or effective band gap and obtain optical devices with new structures and manufacturing methods. can.

実施例 本発明の第1の実施例を第1図に示す。斜視図と拡大し
た断面構造を示す。図において、1は基板単結晶GaA
s、2はその上に結晶成長が起りにくい8102層であ
り、幅Cは同一である。基板GaAS層の露出した溝3
,4は各々μmオーダの幅をもち、B)Aなる関係をも
っている。このような基体上に、たとえば有機金属気相
成長法(MO−C”/D法) C(CHs)xAj! 
、 (CH3)5Ga 、ムSH4)にて、GaAs 
、 A7IGaAsの超格子層を成長させる。溝3゜4
に超格子層は約数十人から数百人の膜厚のGaAg30
.32,34,36,40,42,44゜46とム7!
GaAs31,33,36,41.43゜45を交互に
成長させたものである。B)Aの関係からこのように成
長させた超格子層は溝40部分よりも溝3の部分の方が
厚く成長し、なおかつ超格子部分の成長周期は溝4の方
が短く、溝3の方のが長くすなわち幅が狭いほど長くな
っており、異なる光学特性を有する超格子層が同時に形
成される。なお結晶層は5i022上にはほとんど成長
しない。こうして、幅の異なる溝に、屈折率、バンドギ
ャップ等の異なる層を制御性良く同時に形成することが
可能となる。
Embodiment A first embodiment of the present invention is shown in FIG. A perspective view and an enlarged cross-sectional structure are shown. In the figure, 1 is a substrate single crystal GaA
s,2 is an 8102 layer on which crystal growth is difficult to occur, and the width C is the same. Exposed groove 3 in substrate GaAS layer
, 4 each have a width on the order of μm, and have the relationship B)A. On such a substrate, for example, metal organic chemical vapor phase epitaxy (MO-C''/D method) C(CHs)xAj!
, (CH3)5Ga, MuSH4), GaAs
, grow a superlattice layer of A7IGaAs. Groove 3゜4
The superlattice layer is a GaAg30 film with a thickness of about tens to hundreds of layers.
.. 32, 34, 36, 40, 42, 44°46 and mu7!
GaAs 31, 33, 36, 41.43°45 are grown alternately. B) From the relationship in A, the superlattice layer grown in this way grows thicker in the groove 3 part than in the groove 40 part, and the growth period of the superlattice part is shorter in the groove 4, and in the groove 3 part. The longer the lattice layer is, that is, the narrower the width, the longer the lattice layer is, so that superlattice layers having different optical properties are simultaneously formed. Note that the crystal layer hardly grows on 5i022. In this way, it becomes possible to simultaneously form layers with different refractive indexes, band gaps, etc. in grooves with different widths with good controllability.

第2図に第2の実施例を示す。基板GaAs 1上に5
102膜2A 、2Bが形成され、溝3.4が形成され
ている。第1の実施例と異なシ、溝3,4の幅dは同じ
であるが、溝を形成している5i02膜2A 、2Bの
幅e、fが異なっている。このような基体上に第1の実
施例と同様にMO−1”/D法にてGaAsとムJGa
As の超格子を成長させると8102幅の広い溝3の
方に厚く成長し、8102幅の狭い溝4の方のが薄く成
長する。さらに、超格子層の周期はストライプの溝状の
幅は同じでも8102幅の広い溝の方のが長い成長周期
となる。
FIG. 2 shows a second embodiment. 5 on substrate GaAs 1
102 films 2A and 2B are formed, and grooves 3.4 are formed. The difference from the first embodiment is that the widths d of the grooves 3 and 4 are the same, but the widths e and f of the 5i02 films 2A and 2B forming the grooves are different. GaAs and MuJGa were deposited on such a substrate using the MO-1''/D method in the same manner as in the first embodiment.
When the As superlattice is grown, it grows thicker in the groove 3 where the width is 8102 wide, and it grows thinner in the groove 4 where the width is narrower 8102. Furthermore, even if the width of the striped grooves is the same, the period of the superlattice layer is longer in the grooves with a wider width.

第1.第2の実施例に示されているように、結晶面上の
結晶面が露出している面積又はそれをとりまく5102
等の結晶成長しにくい膜の面積の割合によって結晶成長
の速度が違い、同一基板上に成長膜厚の違う領域を同時
に制御性良くつくることができる。本実施例は5i02
を使用したが5ixN工などの窒化膜や他の酸化物誘電
体においても同様な効果を持たせることができる。また
、caAsだけでなく、InP系材料においても同様な
効果を持たすことができる。
1st. As shown in the second embodiment, the area where the crystal plane on the crystal plane is exposed or the area surrounding it 5102
The speed of crystal growth differs depending on the area ratio of the film that is difficult to grow crystals, and it is possible to simultaneously create regions with different growth film thicknesses on the same substrate with good controllability. This example is 5i02
Although nitride films such as 5ixN or other oxide dielectrics can be used, similar effects can be achieved. Furthermore, similar effects can be achieved not only with caAs but also with InP-based materials.

第3図は第3の実施例である。1はGaAS基板、2は
5102である。5i022のカバーの幅および成長ス
トライプ部3の形状を直線的でなく、幅に差をもたせて
(部分的に異ならせて)平面的に段差をもたせたもので
ある。5i02のストライプ幅の異なる部分6は階段状
に変化している。このようなGaAs基体1上に成長さ
れたG2LA!!/ム1GILAS超格子構造は溝3部
と溝4部を比較すると実施例1および2で述べたように
、溝3部は厚く成長し、溝4部は薄い。なおかつ、溝3
の部分の周期長は溝40部分の周期長より長い。従って
、溝3の部分と溝4の部分ではバンド構造が異なシ、溝
3の部分に成長した層の実効的バンドギャップより、溝
40部分に成長した実効的バンドギャップの方が大きく
なる。このバンドギャップの差、即ち、GaAs/ A
/GaAs多重構造の厚さと周期長の制御は同一基板上
においては5i02のストライプ幅、溝の幅および51
02のお−われる面積と溝の面積を考慮することで可能
となる。
FIG. 3 shows a third embodiment. 1 is a GaAS substrate, and 2 is 5102. 5i022, the width of the cover and the shape of the growth stripe portion 3 are not linear, but the widths are different (partially different) to have a step in the plane. The portion 6 of the stripe 5i02 having different widths changes stepwise. G2LA! grown on such a GaAs substrate 1! ! When comparing groove 3 and groove 4 in the /mu1GILAS superlattice structure, as described in Examples 1 and 2, groove 3 grows thicker and groove 4 grows thinner. Furthermore, groove 3
The periodic length of the portion is longer than the periodic length of the groove 40 portion. Therefore, the band structure is different between the groove 3 part and the groove 4 part, and the effective band gap of the layer grown in the groove 40 part is larger than the effective band gap of the layer grown in the groove 3 part. This bandgap difference, that is, GaAs/A
The thickness and periodic length of the /GaAs multiplex structure can be controlled by the stripe width of 5i02, the groove width and the width of 51 on the same substrate.
This is possible by considering the area covered by 02 and the area of the groove.

第4図は、第4の実施例すなわち第3の実施例を利用し
た外部共振器型半導体レーザである。第4図(a)は本
し−ザ溝造例の斜視図であり、第4図(b)は活性領域
6を通る断面図である。GiLAs基板1の上にGIL
A8 /AlGaASの量子井戸構造を含む多層構造エ
ピタキシャル成長を行なう。この時、基板上に、第3図
に示すようなストライプ幅の異る5i02 マスクを用
いてMO−C’/D法にて結晶成長を行なう。5102
 マスクを除去した後再度、n−人6caAs埋込み層
7 、1) −AlGaAg埋込み層8を成長させ、そ
の上にp −GaAs電極層9が形成される。10.1
1はpおよびn層への電極である。活性領域6(6A、
6B’)の幅が変化している所で溝12が形成される。
FIG. 4 shows an external cavity type semiconductor laser using the fourth embodiment, that is, the third embodiment. FIG. 4(a) is a perspective view of this example of the groove structure, and FIG. 4(b) is a sectional view through the active region 6. GIL on GiLAs substrate 1
A multilayer structure including a quantum well structure of A8/AlGaAS is epitaxially grown. At this time, crystal growth is performed on the substrate by the MO-C'/D method using 5i02 masks having different stripe widths as shown in FIG. 5102
After removing the mask, an n-6caAs buried layer 7, 1)-AlGaAg buried layer 8 is grown again, and a p-GaAs electrode layer 9 is formed thereon. 10.1
1 is an electrode to the p and n layers. Active region 6 (6A,
A groove 12 is formed where the width of 6B') changes.

活性領域6は第3図に示すような成長時の量子井戸構造
におけるcaAs層とム711GaAS 層の厚さと周
期が異なるため実効的なバンドギャップに差を持たすこ
とが可能となる。この場合領域6人の方が領域6Bに比
べて実効的バンドギャップは小さくしておく。今、!@
10111間に電流を注入すると領域6人で発光する。
In the active region 6, the thickness and period of the caAs layer and the 711GaAS layer in the quantum well structure during growth are different as shown in FIG. 3, so that it is possible to have a difference in effective band gap. In this case, the effective bandgap of the region 6 is made smaller than that of the region 6B. now,! @
When a current is injected between 10 and 11, six areas emit light.

このとき発光する光波長スペクトμの中心は光導波路部
となる領域6Bの実効的バンドギャップより小さくなる
。従って、同一組成で領域6A 、eBの構造をつくっ
たときに比べて、光導波路部となる領域6Bでの吸収は
極端に小さくすることができる。両端部を襞間すること
で共振器を構成することが可能であり、外部共振器構成
の半導体レーザが構成される。従来このような半導体レ
ーザを構成する場合には発光領域と導波領域とは別4の
組成のものを別々に成長させる必要があシ、成長回数が
多くなるばかりか発光活性領域と光導波路部の結合部を
一致させることが非常に困難であり、再現性よく低しき
い値で狭スペクトル線巾のレーザをつくることが困難で
あった。
At this time, the center of the light wavelength spectrum μ that is emitted is smaller than the effective bandgap of the region 6B that becomes the optical waveguide section. Therefore, the absorption in the region 6B, which becomes the optical waveguide portion, can be extremely reduced compared to when the structures of the regions 6A and eB are made with the same composition. A resonator can be constructed by folding both ends, and a semiconductor laser having an external resonator structure is constructed. Conventionally, when constructing such a semiconductor laser, it is necessary to grow the light emitting region and the waveguide region separately, which have four different compositions, which not only increases the number of times of growth but also requires the growth of the light emitting active region and the optical waveguide region. It is extremely difficult to match the coupling portions of the two, making it difficult to create a laser with a low threshold and narrow spectral linewidth with good reproducibility.

本発明の方法の採用により、成長回数が少なく、特性の
よいモノリシックな外部共振器型半導体レーザが実現さ
れる。本実施例は埋込み型半導体レーザで璧開面共゛振
器で説明したが、他のどのようなレーザ構造でも適用可
能であり、また、共振器も回折格子型の分布反射型にも
適用できることは言うまでもない。
By employing the method of the present invention, a monolithic external cavity semiconductor laser with good characteristics and a small number of growth cycles can be realized. Although this example has been explained using an embedded semiconductor laser with a cleaved plane resonator, it can be applied to any other laser structure, and the resonator can also be applied to a diffraction grating type distributed reflection type resonator. Needless to say.

さらに、光回路の集積化において、半導体レーザと光導
波路のモノリシックな結合が必要要素技術となっていく
。半導体レーザと池の光部品(光スィッチ、方向性結合
器、受光素子9分岐器)などの間の導波路結合に本実施
例を適用することは有効である。例えば活性領域6Aの
上部に回折格子を設け、DFB型レーザとし、領域6B
を他党部品の接続としての光導波路とすることができる
Furthermore, in the integration of optical circuits, monolithic coupling of semiconductor lasers and optical waveguides will become a necessary elemental technology. It is effective to apply this embodiment to waveguide coupling between a semiconductor laser and other optical components (optical switch, directional coupler, light-receiving element nine-brancher), etc. For example, a diffraction grating is provided above the active region 6A to form a DFB type laser, and the region 6B
can be used as an optical waveguide to connect other parts.

第6図に第6の実施例を示す。第5図は半導体レーザの
構造の斜視図および第−層エビ成長時の基板平面図とそ
の断面を示す。1はGaAs基板であシ、20.25は
第1の実施例および第2の実施例で示した方法にて作製
された活性領域であり、21.22はAJGaAs埋込
み層、23は5102絶縁膜、24.26は電極、27
は分離溝を示す。
FIG. 6 shows a sixth embodiment. FIG. 5 shows a perspective view of the structure of the semiconductor laser, a plan view of the substrate during growth of the second layer, and a cross section thereof. 1 is a GaAs substrate, 20.25 is an active region manufactured by the method shown in the first example and the second example, 21.22 is an AJGaAs buried layer, and 23 is a 5102 insulating film. , 24.26 is the electrode, 27
indicates a separation groove.

第6図(′b)に示すように、 GILA!!基板1上
に幅の異なる溝3,4を有すル5i02層2を形成1.
、MO−CVD法にてGaAsバッファ層、ム7!GI
LASクラッド層。
As shown in Figure 6('b), GILA! ! 1. Forming a layer 5i02 having grooves 3 and 4 of different widths on the substrate 1.
, GaAs buffer layer by MO-CVD method, Mu7! G.I.
LAS cladding layer.

GaAs/ A]GaAs超格子層、p型AlGaA3
クラッド層を順次形成してストライプ幅の異なる活性領
域20.25を形成する。領域20.25に形成される
超格子層は溝3,4のストライブ巾、 5i02の面積
の違いによって厚さと周期が異なり実効的バンドギャッ
プが異なってくる。次に成長炉よシとり出して5i02
を除去し、エツチングにて活性領域を整形し、再度MO
−CVD法や液相成長法にてn型、p型のAlG!LA
I埋込み層21.22を形成し、さらに、5102絶縁
層23.電極24゜26、分離溝27を形成し、領域2
0.26を活性領域とする半導体レーザが構成される。
GaAs/A]GaAs superlattice layer, p-type AlGaA3
Active regions 20 and 25 having different stripe widths are formed by sequentially forming cladding layers. The superlattice layer formed in the region 20.25 has a different thickness and period depending on the stripe width of the grooves 3 and 4 and the area of the groove 5i02, and thus has a different effective band gap. Next, take out the growth furnace and 5i02
was removed, the active area was shaped by etching, and the MO was removed again.
-N-type and p-type AlG using CVD method or liquid phase growth method! L.A.
I buried layers 21, 22 are formed, and 5102 insulating layers 23. Electrodes 24°26 and separation grooves 27 are formed, and region 2
A semiconductor laser having an active region of 0.26 mm is constructed.

2つのレーザは活性領域の超格子周期長が異なるために
、各々発振する波長スペクト/L/が異なり、同一基板
上に2波長のレーザが構成される。通常2波長の半導体
レーザを構成する場合は最低限3回の結晶エピタキシャ
ルプロセスを必要とするが本発明の方法では2回のエピ
タキシャル成長で埋込み型レーザを構成することが可能
である。本実施例では2波長であるが3波長、4波長・
・・・・・等複数波長を同一基板上に2回のエピタキシ
ャル成長のみで埋込み型半導体レーザを形成することが
可能である。
Since the two lasers have different superlattice period lengths in their active regions, their respective oscillation wavelength spectra /L/ are different, and two wavelength lasers are constructed on the same substrate. Normally, when constructing a two-wavelength semiconductor laser, at least three crystal epitaxial processes are required, but with the method of the present invention, it is possible to construct a buried laser with two epitaxial growth steps. In this example, there are 2 wavelengths, but 3 wavelengths, 4 wavelengths,
It is possible to form a buried semiconductor laser with multiple wavelengths such as . . . by epitaxial growth only twice on the same substrate.

本発明の実施例としてはGaAs基板上A/GaAsと
GaASの超格子構造をあげたが、InP基板上のIn
GaAsP 、 GaAs基板上のA4Ga1nPなど
IN−V族生導体に適用できることは言うまでもない。
As an example of the present invention, a superlattice structure of A/GaAs and GaAS on a GaAs substrate was given, but
Needless to say, the present invention can be applied to IN-V group raw conductors such as GaAsP and A4Ga1nP on a GaAs substrate.

また、1l−Vl族等の化合物半導体全体にも適用でき
る。
Moreover, it can be applied to all compound semiconductors such as 1l-Vl group.

実施例においてはMO−CVD法にて説明したがGaC
l3 、ムIcl5 、ムsH4を用いたハ0ゲン化物
気相成長法においても同様の選択成長の効果を有してい
る。
In the examples, MO-CVD method was used, but GaC
Halide vapor phase epitaxy using I3, Icl5, and sH4 also has a similar selective growth effect.

発明の効果 以上のように本発明によって、 1、異なるバンドギャップ、異なる屈折率をもつ結晶を
一回の成長で同時に形成できる。
Effects of the Invention As described above, according to the present invention: 1. Crystals having different band gaps and different refractive indexes can be formed at the same time in one growth.

2、複数波長レーザが一回の活性領域の成長で作製可能
である。
2. Multi-wavelength lasers can be fabricated with one active region growth.

3、外部共振器レーザのモノリシック化、高効率化が一
回の活性領域の成長ではかることができる。
3. The external cavity laser can be made monolithic and highly efficient by growing the active region once.

4、半導体レーザと池の光部品との結合が容易にできる
などの特長を発揮することが可能となる。
4. It becomes possible to exhibit features such as the ability to easily combine a semiconductor laser and an optical component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図!a) 、 (t))は本発明の一実施例の方法
におけるエピタキシャル結晶成長基板の斜視図およびそ
の断面拡大図、第2図(a) 、 (b)はエピタキシ
ャル結晶基板断面図、第3図(a)は5i02力バース
トライプ幅の異なる結晶基板の平面図、同(b)は同(
a)のX−x’ 線断面図、同(0)は成長後の要部断
面図、第4図(a) 、 (b)は外部共振器型レーザ
の構造斜視図。 断面図、同(C)はその詳細断面図、第6図(a)は半
導体レーザアレイの斜視図、同(1))は同(a)の成
長前の基板の平面図、同(C)は同(b)のY−Y’線
断面構造図、第6図は従来構造の半導体レーザの断面図
である。 1・・・・・・GaAl基板、2・・・・・・5i02
.3.4・・・・・・溝、30,32,34,36,4
0,42,44゜46−−−−−−GaA!i 、  
3ff 、 33 、35 、41 、43゜46・・
・・・・ムlGaムS0 代理人の氏名 弁理士 粟 野 重 孝 ほか1名30
.32.3咲36,4θr 4144.46・−Qαハ
S3/、 33.36.4/、 4345−Aノ0工A
s第2図 第1図 第 図 第 図 第 図 乙θ ど/
Figure 1! a) and (t)) are a perspective view and an enlarged cross-sectional view of an epitaxial crystal growth substrate in the method of one embodiment of the present invention, FIGS. 2(a) and (b) are cross-sectional views of an epitaxial crystal substrate, and FIG. (a) is a plan view of crystal substrates with different 5i02 bar stripe widths, and (b) is the same (
4(a) is a sectional view taken along the line X-x' of FIG. 4(0), FIG. 4(0) is a sectional view of the main part after growth, and FIGS. 4(a) and 4(b) are structural perspective views of the external cavity laser. 6(C) is a detailed sectional view, FIG. 6(A) is a perspective view of the semiconductor laser array, FIG. 6(1)) is a plan view of the substrate before growth in FIG. 6 is a cross-sectional structural view taken along the line Y-Y' in FIG. 6(b), and FIG. 6 is a cross-sectional view of a semiconductor laser having a conventional structure. 1...GaAl substrate, 2...5i02
.. 3.4... Groove, 30, 32, 34, 36, 4
0,42,44°46---GaA! i,
3ff, 33, 35, 41, 43°46...
...MlGamu S0 Name of agent Patent attorney Shigetaka Awano and 1 other person 30
.. 32.3 Saki 36,4θr 4144.46・-QαHaS3/, 33.36.4/, 4345-Aノ0工A
sFig.2 Fig.1 Fig.Fig.Fig.Otsu θ Do/

Claims (5)

【特許請求の範囲】[Claims] (1)結晶基板上に、化合物半導体結晶が成長しにくい
膜を形成し、前記膜の一部を除去して前記結晶面を複数
個所露出させ、気相成長法にて前記複数の露出結晶面上
にそれぞれ複数層の化合物半導体結晶層を同時に形成し
、前記複数の露出箇所の基板露出部の面積と前記結晶し
にくい膜の面積にて前記複数露出箇所に成長する前記半
導体結晶層の成長速度を制御し、前記複数露出箇所に、
膜厚が異なり光学特性の異なる前記半導体結晶層を形成
することを特徴とする光半導体装置の製造方法。
(1) A film in which compound semiconductor crystals are difficult to grow is formed on a crystal substrate, a part of the film is removed to expose a plurality of crystal planes, and a vapor phase growth method is applied to the plurality of exposed crystal planes. A plurality of compound semiconductor crystal layers are simultaneously formed thereon, and the growth rate of the semiconductor crystal layer is grown at the plurality of exposed parts based on the area of the substrate exposed part of the plurality of exposed parts and the area of the film that is difficult to crystallize. and at the multiple exposure locations,
A method for manufacturing an optical semiconductor device, comprising forming the semiconductor crystal layers having different film thicknesses and different optical properties.
(2)複数箇所が異なる幅を有するストライプ状の露出
部よりなり、前記複数箇所に膜厚の異なる活性領域を形
成し、前記基板上に波長の異なる複数の半導体レーザを
形成することを特徴とする特許請求の範囲第1項記載の
光半導体装置の製造方法。
(2) A plurality of striped exposed portions having different widths are formed, active regions having different film thicknesses are formed at the plurality of locations, and a plurality of semiconductor lasers having different wavelengths are formed on the substrate. A method for manufacturing an optical semiconductor device according to claim 1.
(3)複数箇所が異なる幅を有するストライプ状の露出
部が直列状に接続されたものであり、前記露出部に、量
子サイズ効果を有する単層あるいは多層構造の超格子膜
よりなる半導体レーザの活性領域を、気相成長法にて形
成することを特徴とする特許請求の範囲第1項記載の光
半導体装置の製造方法。
(3) A stripe-shaped exposed portion having a plurality of different widths is connected in series, and a semiconductor laser made of a single-layer or multilayer superlattice film having a quantum size effect is attached to the exposed portion. 2. The method of manufacturing an optical semiconductor device according to claim 1, wherein the active region is formed by a vapor phase growth method.
(4)基板結晶上の化合物半導体の成長しにくい膜がS
iとOの化合物あるいはSiとNの化合物であり、化合
物半導体の気相成長法が有機金属気相成長法あるいはハ
ロゲン化物気相成長法であることを特徴とする特許請求
の範囲第1項記載の光半導体装置の製造方法。
(4) The compound semiconductor film on the substrate crystal that is difficult to grow is S
It is a compound of i and O or a compound of Si and N, and the vapor phase growth method of the compound semiconductor is an organometallic vapor phase epitaxy method or a halide vapor phase epitaxy method, as described in claim 1. A method for manufacturing an optical semiconductor device.
(5)半導体レーザと他の光部品との間の結合光導波路
部を特許請求の範囲第1項記載の方法にて形成し、半導
体レーザを含む複数の薄膜光部品のモノリシック集積化
回路を作製することを特徴とする光半導体装置の製造方
法。
(5) A coupling optical waveguide section between the semiconductor laser and other optical components is formed by the method described in claim 1, and a monolithic integrated circuit of a plurality of thin film optical components including the semiconductor laser is manufactured. A method for manufacturing an optical semiconductor device, characterized by:
JP21397788A 1988-08-29 1988-08-29 Manufacture of optical semiconductor device Pending JPH0262090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397788A JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397788A JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH0262090A true JPH0262090A (en) 1990-03-01

Family

ID=16648201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397788A Pending JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0262090A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529602A (en) * 1991-07-22 1993-02-05 Hitachi Ltd Semiconductor optical integrated element and manufacture thereof
JPH05243551A (en) * 1992-02-28 1993-09-21 Hitachi Ltd Semiconductor optical integrated element
US5585957A (en) * 1993-03-25 1996-12-17 Nippon Telegraph And Telephone Corporation Method for producing various semiconductor optical devices of differing optical characteristics
JPH1051079A (en) * 1997-05-23 1998-02-20 Sumitomo Electric Ind Ltd Semiconductor device
US5757833A (en) * 1995-11-06 1998-05-26 The Furukawa Electric Co., Ltd. Semiconductor laser having a transparent light emitting section, and a process of producing the same
JPH10154841A (en) * 1996-09-26 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> Polarization controlled semiconductor laser type optical amplifier element
JPH1187856A (en) * 1997-09-16 1999-03-30 Toshiba Corp Gallium nitride compound semiconductor laser and manufacture thereof
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
JP2007500935A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
WO2008051503A2 (en) * 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
JP2009503871A (en) * 2005-07-26 2009-01-29 アンバーウェーブ システムズ コーポレイション Solutions for the integration of alternative active area materials into integrated circuits
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
JP2018093002A (en) * 2016-11-30 2018-06-14 日本オクラロ株式会社 Array semiconductor optical element, optical transmitter module, optical module and manufacturing methods of the same
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529602A (en) * 1991-07-22 1993-02-05 Hitachi Ltd Semiconductor optical integrated element and manufacture thereof
JPH05243551A (en) * 1992-02-28 1993-09-21 Hitachi Ltd Semiconductor optical integrated element
US5585957A (en) * 1993-03-25 1996-12-17 Nippon Telegraph And Telephone Corporation Method for producing various semiconductor optical devices of differing optical characteristics
US5689358A (en) * 1993-03-25 1997-11-18 Nippon Telegraph And Telephone Corporation Optical functional devices and integrated optical devices having a ridged multi-quantum well structure
US5757833A (en) * 1995-11-06 1998-05-26 The Furukawa Electric Co., Ltd. Semiconductor laser having a transparent light emitting section, and a process of producing the same
JPH10154841A (en) * 1996-09-26 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> Polarization controlled semiconductor laser type optical amplifier element
JPH1051079A (en) * 1997-05-23 1998-02-20 Sumitomo Electric Ind Ltd Semiconductor device
JPH1187856A (en) * 1997-09-16 1999-03-30 Toshiba Corp Gallium nitride compound semiconductor laser and manufacture thereof
KR101148632B1 (en) * 2003-07-31 2012-05-23 오스람 옵토 세미컨덕터스 게엠베하 Method for the production of a plurality of opto-electronic semiconductor chips and opto-electronic semiconductor chip
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
US7896965B2 (en) 2003-07-31 2011-03-01 Osram Opto Semiconductors Gmbh Method for the production of a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chip
JP2007500935A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chips
US8017416B2 (en) 2003-07-31 2011-09-13 Osram Opto Semiconductors Gmbh Method for the production of a plurality of opto-electronic semiconductor chips and opto-electronic semiconductor chip
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP2009503871A (en) * 2005-07-26 2009-01-29 アンバーウェーブ システムズ コーポレイション Solutions for the integration of alternative active area materials into integrated circuits
KR101329388B1 (en) * 2005-07-26 2013-11-14 앰버웨이브 시스템즈 코포레이션 Solutions for integrated circuit integration of alternative active area materials
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US20110210374A1 (en) * 2006-09-27 2011-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-Gate Field-Effect Transistors Formed by Aspect Ratio Trapping
US7977706B2 (en) * 2006-09-27 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US8309986B2 (en) * 2006-09-27 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008051503A2 (en) * 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
WO2008051503A3 (en) * 2006-10-19 2008-07-31 Amberwave Systems Corp Light-emitter-based devices with lattice-mismatched semiconductor structures
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
JP2018093002A (en) * 2016-11-30 2018-06-14 日本オクラロ株式会社 Array semiconductor optical element, optical transmitter module, optical module and manufacturing methods of the same

Similar Documents

Publication Publication Date Title
JPH0262090A (en) Manufacture of optical semiconductor device
US5770466A (en) Semiconductor optical integrated circuits and method for fabricating the same
JPH0653619A (en) Compound semiconductor device and its manufacture
JP2937751B2 (en) Method for manufacturing optical semiconductor device
US7666694B2 (en) Method for manufacturing semiconductor laser device and semiconductor laser device
US6084901A (en) Semiconductor laser device
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
US5374587A (en) Method of manufacturing optical semiconductor element
JP4984514B2 (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
JPH06132610A (en) Semiconductor laser array element and manufacture thereof
JP2002289971A (en) Semiconductor optical element and its manufacturing method
JPH05327111A (en) Semiconductor laser and its manufacture
JPH0936496A (en) Semiconductor light emitting element and fabrication thereof
JPH10190122A (en) Variable wavelength semiconductor laser and its manufacture
JPH0432288A (en) Integrated semiconductor laser device
JPH01186693A (en) Semiconductor device and manufacture thereof
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP2002270946A (en) Method for manufacturing semiconductor optical integrated device
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JP3321800B2 (en) Design method of semiconductor optical integrated device
JPH09246667A (en) Semiconductor laser and manufacture thereof
JPH04309280A (en) Manufacture of distributed feedback semiconductor laser
JPH031588A (en) Manufacture of distributed feedback type semiconductor laser element
JPH07193314A (en) Manufacture of semiconductor multiwavelength laser
JPS6353717B2 (en)