JPH0262090A - Manufacture of optical semiconductor device - Google Patents

Manufacture of optical semiconductor device

Info

Publication number
JPH0262090A
JPH0262090A JP21397788A JP21397788A JPH0262090A JP H0262090 A JPH0262090 A JP H0262090A JP 21397788 A JP21397788 A JP 21397788A JP 21397788 A JP21397788 A JP 21397788A JP H0262090 A JPH0262090 A JP H0262090A
Authority
JP
Japan
Prior art keywords
groove
width
superlattice
manufacture
portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21397788A
Inventor
Yasushi Matsui
Akiyuki Serizawa
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Priority to JP21397788A priority Critical patent/JPH0262090A/en
Publication of JPH0262090A publication Critical patent/JPH0262090A/en
Application status is Pending legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers]
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2077Methods of obtaining the confinement using lateral bandgap control during growth, e.g. selective growth, mask induced
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2272Buried mesa structure ; Striped active layer grown by a mask induced selective growth
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers]
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Abstract

PURPOSE:To obtain an optical device having a new structure and by a new method of manufacture by controlling a growing speed or a film thickness by changing the rate between an area of an exposed portion of a substrate crystal and an area covered with a film difficult to grow. CONSTITUTION:Exposed grooves 3, 4 in a GaAs substrate layer each have a width of mum order, satisfying a relation the width B > the width A. A GaAs, AlGaAs superlattice layer is grown on the substrate by an organic metal vapor phase growing method for example. Because of the relation B>A, the superlattice layer is grown to be thicker at the portion of the groove 3 than at the portion of the groove 4. Further, a growing period of the superlattice is shorter along the groove 4 compared with the groove 3, i.e., longer as it goes narrower. Hereby, superlattice layers having different optical characteristics are simultaneously formed. Thus, layers having different refractive indexes and band gaps, etc., are well controllably and simultaneously formed along the different width grooves 3, 4. Hereby, an optical device having a new structure is yielded by a new method of manufacture.
JP21397788A 1988-08-29 1988-08-29 Manufacture of optical semiconductor device Pending JPH0262090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397788A JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397788A JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH0262090A true JPH0262090A (en) 1990-03-01

Family

ID=16648201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397788A Pending JPH0262090A (en) 1988-08-29 1988-08-29 Manufacture of optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0262090A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585957A (en) * 1993-03-25 1996-12-17 Nippon Telegraph And Telephone Corporation Method for producing various semiconductor optical devices of differing optical characteristics
US5757833A (en) * 1995-11-06 1998-05-26 The Furukawa Electric Co., Ltd. Semiconductor laser having a transparent light emitting section, and a process of producing the same
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH A plurality of optoelectronic semiconductor chip manufacturing method and an optoelectronic semiconductor chip
JP2007500935A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH A plurality of optoelectronic semiconductor chip manufacturing method and an optoelectronic semiconductor chip
WO2008051503A2 (en) * 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
JP2009503871A (en) * 2005-07-26 2009-01-29 アンバーウェーブ システムズ コーポレイション Solution for incorporation into an integrated circuit of an alternative active area materials
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689358A (en) * 1993-03-25 1997-11-18 Nippon Telegraph And Telephone Corporation Optical functional devices and integrated optical devices having a ridged multi-quantum well structure
US5585957A (en) * 1993-03-25 1996-12-17 Nippon Telegraph And Telephone Corporation Method for producing various semiconductor optical devices of differing optical characteristics
US5757833A (en) * 1995-11-06 1998-05-26 The Furukawa Electric Co., Ltd. Semiconductor laser having a transparent light emitting section, and a process of producing the same
US7896965B2 (en) 2003-07-31 2011-03-01 Osram Opto Semiconductors Gmbh Method for the production of a plurality of optoelectronic semiconductor chips and optoelectronic semiconductor chip
JP2007500934A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH A plurality of optoelectronic semiconductor chip manufacturing method and an optoelectronic semiconductor chip
JP2007500935A (en) * 2003-07-31 2007-01-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH A plurality of optoelectronic semiconductor chip manufacturing method and an optoelectronic semiconductor chip
US8017416B2 (en) 2003-07-31 2011-09-13 Osram Opto Semiconductors Gmbh Method for the production of a plurality of opto-electronic semiconductor chips and opto-electronic semiconductor chip
KR101148632B1 (en) * 2003-07-31 2012-05-23 오스람 옵토 세미컨덕터스 게엠베하 Method for the production of a plurality of opto-electronic semiconductor chips and opto-electronic semiconductor chip
KR101329388B1 (en) * 2005-07-26 2013-11-14 앰버웨이브 시스템즈 코포레이션 Solutions for integrated circuit integration of alternative active area materials
JP2009503871A (en) * 2005-07-26 2009-01-29 アンバーウェーブ システムズ コーポレイション Solution for incorporation into an integrated circuit of an alternative active area materials
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US7977706B2 (en) * 2006-09-27 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US20110210374A1 (en) * 2006-09-27 2011-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-Gate Field-Effect Transistors Formed by Aspect Ratio Trapping
US8309986B2 (en) * 2006-09-27 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008051503A2 (en) * 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
WO2008051503A3 (en) * 2006-10-19 2008-07-31 Amberwave Systems Corp Light-emitter-based devices with lattice-mismatched semiconductor structures
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material

Similar Documents

Publication Publication Date Title
JPS5696834A (en) Compound semiconductor epitaxial wafer and manufacture thereof
EP0953853A3 (en) Stacked material and optical function device
JPS6215875A (en) Semiconductor device and manufacture thereof
JPH02244691A (en) Etching method
JPH0422185A (en) Semiconductor optical element
JPS6012724A (en) Growing method of compound semiconductor
JPS6273687A (en) Semiconductor laser device
EP0260475A3 (en) A process for forming a positive index waveguide
JPH02285631A (en) Method for oriented change of composition or doping of semiconductor for manufacturing, particularly, planar monolithic electronic component
JPH04287312A (en) Device and method for vapor phase epitaxial growth
JPS60254675A (en) Manufacture of semiconductor photo receptor
CA2028899A1 (en) Semiconductor laser elements and method for the production thereof
JPH0335581A (en) Semiconductor laser and manufacture thereof
JPH0348476A (en) Semiconductor light emitting element
JPS5681994A (en) Field effect type semiconductor laser and manufacture thereof
JPH01282197A (en) Method for growing crystal of algainp-base crystal and semiconductor laser
JPH04100291A (en) Manufacture of optical semiconductor device
JPH03155125A (en) Manufacture of semiconductor device
JPH04303982A (en) Manufacture of optical semiconductor element
WO1999063582A3 (en) Method for producing semiconductor elements
Ettenberg et al. The recombination properties of lattice‐mismatched In x Ga1− x P/GaAs heterojunctions
JPS61290790A (en) Manufacture of light-emitting element
JPS6271217A (en) Manufacture of semiconductor thin film
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPS5496386A (en) Manufacture of buried optical semiconductor device