JPH05327111A - Semiconductor laser and its manufacture - Google Patents

Semiconductor laser and its manufacture

Info

Publication number
JPH05327111A
JPH05327111A JP12699592A JP12699592A JPH05327111A JP H05327111 A JPH05327111 A JP H05327111A JP 12699592 A JP12699592 A JP 12699592A JP 12699592 A JP12699592 A JP 12699592A JP H05327111 A JPH05327111 A JP H05327111A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
laser device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12699592A
Other languages
Japanese (ja)
Inventor
Hajime Shoji
元 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12699592A priority Critical patent/JPH05327111A/en
Publication of JPH05327111A publication Critical patent/JPH05327111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the manufacturing method of a semiconductor laser wherein variable range of wavelength is wide and gain characteristics scarcely have wavelength dependency, regarding the manufacturing method of a semiconductor laser device wherein clad layers and an active layer sandwiched by the clad layers are formed on a semiconductor substrate. CONSTITUTION:Mask layers 4 whose width continuously increases along the laser oscillation direction are formed on both sides of an active layer forming region 3 on a semiconductor substrate 2. When compound semiconductor is deposited from above by a vapor epitaxial method, raw material seed of the compound semiconductor to be deposited on the mask layers 4 diffuses in the lateral direction of the mask layers 4, and is deposited on the active layer forming region 3 sandwiched by the mask layers 4. The wider the mask layer 4 becomes, the larger the amount of the compound semiconductor deposited on the active layer forming region 3 becomes. Hence the compound semiconductor layer can be made thick by increasing the growth speed of the compound semiconductor layer along the laser oscillation direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板上にクラッド
層とクラッド層に挟まれた活性層が形成された半導体レ
ーザ装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device in which a clad layer and an active layer sandwiched by the clad layers are formed on a semiconductor substrate, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、光通信システムの信号光源や計測
システムの基準光源として、単一波長で発振し、スペク
トル線幅が狭く、広い波長可変量の半導体レーザ装置へ
の要望が強くなってきている。このような特性を有する
半導体レーザ装置を実現するために、従来は、半導体レ
ーザ装置の外部に反射鏡を設けて外部共振器構造とする
方法や、分布帰還型(DFB)レーザ、分布反射型(D
BR)レーザとして半導体レーザ装置単体で実現する方
法等があった。
2. Description of the Related Art In recent years, as a signal light source of an optical communication system or a reference light source of a measurement system, a semiconductor laser device which oscillates at a single wavelength, has a narrow spectral line width, and has a wide wavelength tunable amount has been strongly demanded. There is. In order to realize a semiconductor laser device having such characteristics, conventionally, a method of providing a reflection mirror outside the semiconductor laser device to form an external resonator structure, a distributed feedback (DFB) laser, a distributed reflection type ( D
There has been a method of realizing a BR) laser by a semiconductor laser device alone.

【0003】従来の方法のうち、外部共振器構造を用い
た方法の場合、外部共振器を調節することにより半導体
レーザ装置の利得帯域幅(約200〜250nm)に近
い波長可変量が得られ、同時に非常に狭いスペクトル線
幅も実現できるという特徴がある。また、半導体レーザ
装置単体で実現する方法の場合、波長可変量は必ずしも
大きくない(それぞれ100kHz、10nm)もの
の、全体として素子寸法が小さく取扱いが簡単であると
いう特徴がある。
In the conventional method using the external resonator structure, the wavelength tunable amount close to the gain bandwidth (about 200 to 250 nm) of the semiconductor laser device can be obtained by adjusting the external resonator. At the same time, it is possible to realize a very narrow spectral line width. Further, in the case of the method realized by the semiconductor laser device alone, although the wavelength tunable amount is not necessarily large (100 kHz and 10 nm, respectively), the device size is small as a whole and the handling is easy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、外部共
振器構造を用いる方法では、その波長可変幅は半導体レ
ーザ装置の利得帯域に制限され、それ以上に波長可変範
囲を広げることは原理的に不可能である。また、外部共
振器構造を用いた方法では、利得特性が強い波長依存性
を有しているため、波長可変時のしきい値と光出力の変
動が大きくなるという問題があった。
However, in the method using the external resonator structure, the wavelength tunable width is limited to the gain band of the semiconductor laser device, and it is impossible in principle to extend the wavelength tunable range further. Is. Further, in the method using the external resonator structure, since the gain characteristic has a strong wavelength dependence, there is a problem that the threshold and the optical output change greatly when the wavelength is tuned.

【0005】また、半導体レーザ装置単体を用いる方法
では、活性層を形成する半導体の利得帯域特性が限定さ
れ,かつ分布帰還構造や分布反射構造の波長選択性が狭
いという問題があった。本発明の目的は、波長可変量が
広く、利得特性の波長依存性がほとんど無い半導体レー
ザ装置及びその製造方法を提供することにある。
Further, the method using a single semiconductor laser device has the problems that the gain band characteristic of the semiconductor forming the active layer is limited and the wavelength selectivity of the distributed feedback structure or distributed reflection structure is narrow. An object of the present invention is to provide a semiconductor laser device having a wide wavelength tunable amount and almost no wavelength dependence of gain characteristics, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の原理を図1及び
図2を用いて説明する。第1のクラッド層が形成された
半導体基板2上に、図1(a)に示すように、酸化シリ
コン又は窒化シリコンからなり、活性層形成予定領域3
が開口し、活性層形成予定領域3の両側にx方向(レー
ザ発振方向)に沿って連続的に幅が広くなるようなマス
ク層4を形成する。
The principle of the present invention will be described with reference to FIGS. On the semiconductor substrate 2 on which the first cladding layer is formed, as shown in FIG. 1A, an active layer formation-scheduled region 3 made of silicon oxide or silicon nitride is formed.
Are formed, and mask layers 4 are formed on both sides of the active layer formation-scheduled region 3 so that the width thereof is continuously increased along the x direction (laser oscillation direction).

【0007】このような形状のマスク層4が形成された
半導体基板2上に、気相エピタキシャル法により上方か
ら化合物半導体を堆積させると、開口した活性層形成予
定領域3上に化合物半導体が選択成長すると共に、マス
ク層4上に堆積しようとした化合物半導体、特にIII 族
元素の原料種がマスク層4の横方向に拡散して、マスク
層4に挟まれた活性層形成予定領域3に堆積する。マス
ク層4の幅が広いほど活性層形成予定領域3に堆積する
化合物半導体が多くなるため、図1(b)に示すよう
に、x方向(レーザ発振方向)に沿って化合物半導体層
の成長速度が大きくなり、化合物半導体層の膜厚が厚く
なる。
When a compound semiconductor is deposited from above by a vapor phase epitaxial method on the semiconductor substrate 2 on which the mask layer 4 having such a shape is formed, the compound semiconductor is selectively grown on the active layer formation planned region 3 having an opening. At the same time, the compound semiconductor to be deposited on the mask layer 4, in particular, the raw material species of the group III element diffuses in the lateral direction of the mask layer 4 and is deposited on the active layer formation scheduled region 3 sandwiched between the mask layers 4. .. As the width of the mask layer 4 is wider, more compound semiconductor is deposited in the active layer formation-scheduled region 3. Therefore, as shown in FIG. 1B, the growth rate of the compound semiconductor layer along the x direction (laser oscillation direction). And the compound semiconductor layer becomes thicker.

【0008】活性層を、バンドギャップが異なる井戸層
と障壁層とが交互に積層した多重量子井戸構造とした場
合、井戸層と障壁層の厚さはマスク層4の幅の変化に応
じてx方向(レーザ発振方向)に沿って図1(b)に示
すように連続的に変化する。マスク層4の幅が広くなる
と、井戸層と障壁層の厚さが厚くなる。井戸層と障壁層
の厚さが厚くなると、多重量子井戸構造の活性層の量子
準位は下がり、バンドギャップが狭くなってバンドギャ
ップエネルギが低下し、バンドギャップ波長が長くな
る。すなわち、図2(a)に示すように、マスク層4の
幅が広くなるにつれて最終的に活性層のバンドギャップ
波長が長くなる。
When the active layer has a multiple quantum well structure in which well layers and barrier layers having different band gaps are alternately laminated, the thickness of the well layer and the barrier layer is x depending on the change of the width of the mask layer 4. It continuously changes along the direction (laser oscillation direction) as shown in FIG. As the width of the mask layer 4 becomes wider, the well layer and the barrier layer become thicker. When the thickness of the well layer and the barrier layer is increased, the quantum level of the active layer of the multiple quantum well structure is lowered, the band gap is narrowed, the band gap energy is lowered, and the band gap wavelength is lengthened. That is, as shown in FIG. 2A, as the width of the mask layer 4 becomes wider, the bandgap wavelength of the active layer finally becomes longer.

【0009】したがって、図1(a)に示すように、x
方向(レーザ発振方向)に沿って連続的に幅が広くなる
ようなマスク層4を用いて活性層を形成すると、発振波
長の異なる領域がx方向(レーザ発振方向)に沿って並
んだ構造となる。したがって、活性層の利得特性は、図
2(b)に示すように、発振波長の異なる領域の利得特
性(点線)が重なりあったものとなり、利得帯域幅が広
い半導体レーザ装置が実現できる。
Therefore, as shown in FIG. 1 (a), x
When the active layer is formed by using the mask layer 4 whose width is continuously wide along the direction (laser oscillation direction), regions having different oscillation wavelengths are arranged along the x direction (laser oscillation direction). Become. Therefore, as shown in FIG. 2B, the gain characteristics of the active layer are obtained by overlapping the gain characteristics (dotted lines) in the regions having different oscillation wavelengths, and a semiconductor laser device having a wide gain bandwidth can be realized.

【0010】上述した本発明の原理から明らかなよう
に、本発明の目的は、半導体基板と、前記半導体基板上
に形成された第1のクラッド層と、前記第1のクラッド
層上に形成された活性層と、前記活性層上に形成された
第2のクラッド層とを有する半導体レーザ装置におい
て、前記活性層の禁制帯幅が、一端面側から他端面側に
向かって連続的に変化していることを特徴とする半導体
レーザ装置によって達成される。
As is apparent from the above-mentioned principle of the present invention, an object of the present invention is to form a semiconductor substrate, a first clad layer formed on the semiconductor substrate, and a first clad layer formed on the first clad layer. In a semiconductor laser device having an active layer and a second cladding layer formed on the active layer, the forbidden band width of the active layer continuously changes from one end face side to the other end face side. It is achieved by the semiconductor laser device.

【0011】また、本発明の目的は、半導体基板上に第
1のクラッド層を形成し、前記第1のクラッド層上に、
活性層形成予定領域が開口し、前記活性層形成予定領域
周囲に形成され、レーザ発振方向に沿って幅が連続的に
変化するマスク層を形成し、気相エピタキシャル法によ
り、上方から化合物半導体を堆積させて、前記第1のク
ラッド層上の前記活性層形成予定領域に、前記マスク層
の幅の変化に応じて厚さが変化する井戸層と障壁層と交
互に積層して多重量子井戸構造の活性層を形成し、前記
活性層上に第2のクラッド層を形成することを特徴とす
る半導体レーザ装置の製造方法によって達成される。
Another object of the present invention is to form a first cladding layer on a semiconductor substrate, and to form a first cladding layer on the first cladding layer.
A mask layer is formed around the active layer formation scheduled region, the active layer formation scheduled region being open, and a mask layer having a width that continuously changes along the laser oscillation direction is formed. A multiple quantum well structure is formed by alternately stacking well layers and barrier layers that are deposited and alternately change in thickness in accordance with a change in the width of the mask layer in the active layer formation region on the first clad layer. Is formed, and a second cladding layer is formed on the active layer.

【0012】[0012]

【作用】本発明によれば、活性層の禁制帯幅を一端面側
から他端面側に向かって連続的に変化するようにしたの
で、活性層の利得特性は、発振波長の異なる領域の利得
特性が重なりあったものとなり、利得帯域幅が広い半導
体レーザ装置が実現できる。
According to the present invention, the forbidden band width of the active layer is made to continuously change from the one end surface side to the other end surface side. Since the characteristics overlap, a semiconductor laser device having a wide gain bandwidth can be realized.

【0013】[0013]

【実施例】本発明の一実施例による半導体レーザ装置を
図3を用いて説明する。図3(a)は半導体レーザ装置
の断面図であり、図3(b)は活性層を一端面側から他
端面側に向かうレーザ発振方向に沿って見た断面図であ
る。図3(a)に示すように、不純物濃度1×1018
-3のn−InP基板5上に厚さ1μmで不純物濃度1
×1017cm-3のn−InPクラッド層6が形成されて
おり、n−InPクラッド層6上には多重量子井戸活性
層8が形成され、多重量子井戸活性層8上には厚さ0.
4μmで不純物濃度5×1017cm-3のp−InPクラ
ッド層9が形成されている。p−InPクラッド層9と
多重量子井戸活性層8はレーザ発振方向に長いストライ
プのメサ形状に加工されている。
EXAMPLE A semiconductor laser device according to an example of the present invention will be described with reference to FIG. 3A is a cross-sectional view of the semiconductor laser device, and FIG. 3B is a cross-sectional view of the active layer as seen along the laser oscillation direction from one end face side to the other end face side. As shown in FIG. 3A, the impurity concentration is 1 × 10 18 c
An impurity concentration of 1 μm with a thickness of 1 μm on the n − InP substrate 5 of m −3
× 10 17 cm n-InP cladding layer 6 of -3 is formed, n-InP on the cladding layer 6 is formed a multiple quantum well active layer 8, 0 thickness on the multiple quantum well active layer 8 .
A p-InP cladding layer 9 having an impurity concentration of 5 × 10 17 cm −3 and a thickness of 4 μm is formed. The p-InP clad layer 9 and the multiple quantum well active layer 8 are processed into a mesa shape having a stripe long in the laser oscillation direction.

【0014】メサ形状のp−InPクラッド層9と多重
量子井戸活性層8は厚さ0.5μmで不純物濃度5×1
17cm-3のp−InP埋込み層7により埋込まれてい
る。p−InP埋込み層7上には厚さ0.5μmで不純
物濃度5×1017cm-3のn−InP電流ブロック層1
0が形成されている。p−InPクラッド層9及びn−
InP電流ブロック層10上には厚さ0.3μmで不純
物濃度5×1017cm -3のp−InP埋込み層11が形
成されている。
Multiple layers with the mesa-shaped p-InP clad layer 9
The quantum well active layer 8 has a thickness of 0.5 μm and an impurity concentration of 5 × 1.
017cm-3Embedded by the p-InP buried layer 7 of
It Impurity with a thickness of 0.5 μm on the p-InP buried layer 7
Material concentration 5 × 1017cm-3N-InP current blocking layer 1
0 is formed. p-InP clad layer 9 and n-
Impurity on InP current blocking layer 10 is 0.3 μm thick
Material concentration 5 × 1017cm -3Of the p-InP buried layer 11 of
Is made.

【0015】さらに、p−InP埋込み層11上には厚
さ1μmで不純物濃度1×1018cm-3のp−InGa
AsPキャップ層12が形成され、p−InGaAsP
キャップ層12上にTi/Pt/Auからなるp側電極
13が形成されている。また、n−InP基板5の底面
にはAu/Geからなるn側電極14が形成されてい
る。
Further, on the p-InP buried layer 11, p-InGa having a thickness of 1 μm and an impurity concentration of 1 × 10 18 cm −3 is formed.
The AsP cap layer 12 is formed, and p-InGaAsP is formed.
A p-side electrode 13 made of Ti / Pt / Au is formed on the cap layer 12. An n-side electrode 14 made of Au / Ge is formed on the bottom surface of the n-InP substrate 5.

【0016】多重量子井戸活性層8は、InGaAs井
戸層8aとInGaAsP障壁層8bが交互に形成さ
れ、5つの量子井戸を有する多重量子井戸構造をしてお
り、図3(b)に示すように、レーザ発振方向に沿って
膜厚が徐々に厚くなるという特徴的構造をしている。す
なわち、InGaAs井戸層8aの厚さは5nm(図3
(b)最左側)から10nm(図3(b)最右側)の範
囲で連続的に変化し、InGaAsP障壁層8bの厚さ
は7nm(図3(b)最左側)から10nm(図3
(b)最右側)の範囲で連続的に変化している。
The multiple quantum well active layer 8 has a multiple quantum well structure having five quantum wells in which InGaAs well layers 8a and InGaAsP barrier layers 8b are alternately formed, and as shown in FIG. 3 (b). , Has a characteristic structure in which the film thickness gradually increases along the laser oscillation direction. That is, the thickness of the InGaAs well layer 8a is 5 nm (see FIG.
The thickness of the InGaAsP barrier layer 8b varies continuously in the range of (b) the leftmost side to 10 nm (the rightmost side of FIG. 3B), and the thickness of the InGaAsP barrier layer 8b is 7 nm (the leftmost side of the FIG. 3B) to 10 nm (FIG. 3B).
(B) The rightmost range is continuously changing.

【0017】本実施例の多重量子井戸活性層8では、厚
さの最も薄い図3(b)の最左側では量子準位は上が
り、禁制帯幅が広く0.837eVとなり、バンドギャ
ップ波長が1481nmとなる。一方、厚さの最も厚い
図3(b)の最右側では量子準位は下がり、禁制帯幅が
狭く0.802eVとなり、バンドギャップ波長が15
45nmとなる。
In the multi-quantum well active layer 8 of this embodiment, the quantum level rises on the leftmost side in FIG. Becomes On the other hand, on the rightmost side in FIG. 3B, which is the thickest, the quantum level is lowered, the forbidden band width is narrowed to 0.802 eV, and the band gap wavelength is 15
It becomes 45 nm.

【0018】したがって、本実施例の半導体レーザ装置
の利得帯域はバンドギャップ波長の異なる領域の利得特
性が重なりあって約1350〜1670nmにも亘り、
約320nmもの広い波長範囲に亘る利得特性を実現す
ることができる。外部に反射鏡を設けて外部反射器型構
造にすることにより非常に狭いスペクトル線幅であっ
て、広い波長可変範囲の半導体時レーザ装置を実現する
ことができる。しかも、バンドギャップ波長の異なる領
域の利得特性が重なりあったものであるため、利得特性
の波長依存性もほとんど無い。
Therefore, the gain band of the semiconductor laser device of this embodiment extends to approximately 1350 to 1670 nm due to the overlap of the gain characteristics in the regions having different bandgap wavelengths.
It is possible to realize a gain characteristic over a wide wavelength range of about 320 nm. By providing an external reflecting mirror to form an external reflector type structure, it is possible to realize a semiconductor laser device having a very narrow spectral line width and a wide wavelength tunable range. Moreover, since the gain characteristics of regions having different bandgap wavelengths are overlapped with each other, there is almost no wavelength dependence of the gain characteristics.

【0019】本発明の一実施例による半導体レーザ装置
の製造方法を図4及び図5を用いて説明する。まず、n
−InP基板5上に正孔障壁となるn−InPクラッド
層6を形成する(図5(a))。次に、n−InPクラ
ッド層6上に、熱CVD法又はスパッタリング法により
全面に酸化シリコン層を堆積し、堆積した酸化シリコン
層をパターニングしてマスク層15を形成する。マスク
層15は、図4(b1)、(b2)に示すように、幅が
2μmの活性層形成予定領域16が開口し、活性層形成
予定領域16の両側に長さ300μmに亘って、レーザ
発振方向に沿って4μmから10μmと連続的に幅が変
化する形状をしている。
A method of manufacturing a semiconductor laser device according to an embodiment of the present invention will be described with reference to FIGS. First, n
An n-InP clad layer 6 that serves as a hole barrier is formed on the -InP substrate 5 (FIG. 5A). Next, a silicon oxide layer is deposited on the entire surface of the n-InP cladding layer 6 by a thermal CVD method or a sputtering method, and the deposited silicon oxide layer is patterned to form a mask layer 15. As shown in FIGS. 4 (b1) and 4 (b2), the mask layer 15 has an active layer formation scheduled region 16 having a width of 2 μm opened, and a laser beam having a length of 300 μm is provided on both sides of the active layer formation scheduled region 16. The width is continuously changed from 4 μm to 10 μm along the oscillation direction.

【0020】次に、n−InPクラッド層6上に形成さ
れたマスク層15をマスクとして、MOVPE法により
InGaAs層とInGaAsP層とを形成するための
化合物半導体材料を交互に供給する。マスク層15に開
口した活性層形成予定領域16上にInGaAs井戸層
8aとInGaAsP障壁層8bが選択成長する。この
ときマスク層15上にはInGaAs又はInGaAs
Pは成長しないが、マスク層15上に供給されたIII 族
元素、特にInはマスク層15上を横方向に拡散してマ
スク層15に挟まれた活性層形成予定領域16上に堆積
する。マスク層15の幅が広いほど活性層形成予定領域
16に堆積するInGaAs又はInGaAsPは多く
なり、図5(c2)に示すように、レーザ発振方向に沿
って膜厚が徐々に厚くなるInGaAs井戸層8aとI
nGaAsP障壁層8bが交互に積層される。
Next, using the mask layer 15 formed on the n-InP cladding layer 6 as a mask, the compound semiconductor material for forming the InGaAs layer and the InGaAsP layer is alternately supplied by the MOVPE method. The InGaAs well layer 8a and the InGaAsP barrier layer 8b are selectively grown on the active layer formation planned region 16 opened in the mask layer 15. At this time, InGaAs or InGaAs is formed on the mask layer 15.
Although P does not grow, the group III element, particularly In, supplied on the mask layer 15 is laterally diffused on the mask layer 15 and deposited on the active layer formation planned region 16 sandwiched between the mask layers 15. As the width of the mask layer 15 becomes wider, the amount of InGaAs or InGaAsP deposited in the active layer formation planned region 16 increases, and as shown in FIG. 5C2, the InGaAs well layer in which the film thickness gradually increases along the laser oscillation direction. 8a and I
The nGaAsP barrier layers 8b are alternately stacked.

【0021】本実施例の場合、InGaAs井戸層8a
の厚さは5nm(図5(c2)最左側)から10nm
(図5(c2)最右側)の範囲で連続的に変化し、In
GaAsP障壁層8bの厚さは7nm(図5(c2)最
左側)から10nm(図5(c2)最右側)の範囲で連
続的に変化する多重量子井戸活性層8が形成される。続
いて、多重量子井戸活性層8上に電子障壁としてp−I
nPクラッド層9を選択成長する(図5(c1))。
In this embodiment, the InGaAs well layer 8a
Thickness is from 5 nm (leftmost side in Figure 5 (c2)) to 10 nm
It changes continuously in the range of (the rightmost side in FIG. 5 (c2)).
The GaAsP barrier layer 8b has a thickness of 7 nm (the leftmost side in FIG. 5 (c2)) to 10 nm (the rightmost side in FIG. 5 (c2)). Then, p-I is formed as an electron barrier on the multiple quantum well active layer 8.
The nP clad layer 9 is selectively grown (FIG. 5 (c1)).

【0022】次に、マスク層15を剥離し、メサ形状の
p−InPクラッド層9と多重量子井戸活性層8をp−
InP埋込み層7により埋め込む。続いて、n−InP
クラッド層6とp−InPクラッド層9上に通常の埋め
込みプロセスによってn−InP電流ブロック層10、
p−InP埋込み層11を成長させ、さらに、p−In
P埋込み層11上にp−InGaAsPキャップ層12
を成長させる。
Next, the mask layer 15 is peeled off, and the mesa-shaped p-InP cladding layer 9 and the multiple quantum well active layer 8 are p-typed.
It is embedded by the InP burying layer 7. Then, n-InP
The n-InP current blocking layer 10 is formed on the cladding layer 6 and the p-InP cladding layer 9 by a normal embedding process.
A p-InP buried layer 11 is grown, and further p-In
A p-InGaAsP cap layer 12 is formed on the P buried layer 11.
Grow.

【0023】次に、通常の電極形成プロセスによりp−
InGaAsPキャップ層12上(p側)にはTi/P
t/Auのp側電極13を形成し、n−InP基板5底
面にAu/Geのn側電極14を形成する(図5
(d))。このように本実施例によればマスク層の幅を
変化させるだけで多重量子井戸活性層の厚さをレーザ発
振方向に変化させることができ、波長可変量の広い半導
体レーザ装置を製造することができる。
Next, p-
Ti / P is formed on the InGaAsP cap layer 12 (p side).
The p-side electrode 13 of t / Au is formed, and the n-side electrode 14 of Au / Ge is formed on the bottom surface of the n-InP substrate 5 (FIG. 5).
(D)). As described above, according to the present embodiment, the thickness of the multiple quantum well active layer can be changed in the laser oscillation direction only by changing the width of the mask layer, and a semiconductor laser device with a wide wavelength tunable amount can be manufactured. it can.

【0024】本発明は上記実施例に限らず種々の変形が
可能である。例えば、上記実施例では多重量子井戸構造
の活性層であったが、禁制帯幅がレーザ発振方向に沿っ
て連続的に変化するものであれば他の構造でもよい。ま
た、上記実施例はファブリペロ型半導体レーザ装置であ
ったが、基板上に分布帰還構造を有する分布帰還型半導
体レーザ装置であっても、活性層の両側に分布反射構造
を有する分布反射型半導体レーザ装置であってもよい。
The present invention is not limited to the above embodiment, but various modifications are possible. For example, although the active layer has a multi-quantum well structure in the above embodiment, other structures may be used as long as the forbidden band width continuously changes along the laser oscillation direction. Further, although the above-mentioned embodiment is the Fabry-Perot type semiconductor laser device, even in the distributed feedback type semiconductor laser device having the distributed feedback structure on the substrate, the distributed reflection type semiconductor laser having the distributed reflection structure on both sides of the active layer. It may be a device.

【0025】[0025]

【発明の効果】以上の通り、本発明によれば、活性層の
禁制帯幅をレーザ発振方向に沿って連続的に変化するよ
うにしたので、活性層の利得特性は、発振波長の異なる
領域の利得特性が重なりあったものとなり、利得帯域幅
が広い半導体レーザ装置が実現できる。
As described above, according to the present invention, the forbidden band width of the active layer is continuously changed along the laser oscillation direction, so that the gain characteristics of the active layer are in the regions having different oscillation wavelengths. The gain characteristics are overlapped, and a semiconductor laser device having a wide gain bandwidth can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図(その1)である。FIG. 1 is a principle diagram (1) of the present invention.

【図2】本発明の原理図(その2)である。FIG. 2 is a principle diagram (2) of the present invention.

【図3】本発明の一実施例による半導体レーザ装置の断
面図である。
FIG. 3 is a sectional view of a semiconductor laser device according to an embodiment of the present invention.

【図4】本発明の一実施例による半導体レーザ装置の製
造方法を示す工程図(その1)である。
FIG. 4 is a process chart (1) showing the method for manufacturing the semiconductor laser device according to the embodiment of the present invention.

【図5】本発明の一実施例による半導体レーザ装置の製
造方法を示す工程図(その2)である。
FIG. 5 is a process diagram (2) showing the method for manufacturing the semiconductor laser device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…半導体基板 3…活性層形成予定領域 4…マスク層 5…n−InP基板 6…n−InPクラッド層 7…p−InP埋込み層 8…多重量子井戸活性層 8a…InGaAsP井戸層 8b…InP障壁層 9…p−InPクラッド層 10…n−InP電流ブロック層 11…p−InP埋込み層 12…p−InGaAsPキャップ層 13…p側薄膜 14…n側電極 15…マスク層 16…活性層形成予定領域 2 ... Semiconductor substrate 3 ... Active layer formation planned region 4 ... Mask layer 5 ... n-InP substrate 6 ... n-InP clad layer 7 ... p-InP buried layer 8 ... Multiple quantum well active layer 8a ... InGaAsP well layer 8b ... InP Barrier layer 9 ... p-InP clad layer 10 ... n-InP current blocking layer 11 ... p-InP buried layer 12 ... p-InGaAsP cap layer 13 ... p-side thin film 14 ... n-side electrode 15 ... mask layer 16 ... active layer formation Scheduled area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、前記半導体基板上に形成
された第1のクラッド層と、前記第1のクラッド層上に
形成された活性層と、前記活性層上に形成された第2の
クラッド層とを有する半導体レーザ装置において、 前記活性層の禁制帯幅が、一端面側から他端面側に向か
って連続的に変化していることを特徴とする半導体レー
ザ装置。
1. A semiconductor substrate, a first clad layer formed on the semiconductor substrate, an active layer formed on the first clad layer, and a second clad layer formed on the active layer. A semiconductor laser device having a clad layer, wherein the band gap of the active layer continuously changes from one end face side to the other end face side.
【請求項2】 請求項1記載の半導体レーザ装置におい
て、 前記活性層は、バンドギャップが異なる井戸層と障壁層
とが交互に積層された多重量子井戸構造であり、 前記多重量子井戸構造の前記井戸層と前記障壁層の厚さ
が、一端面側から他端面側に向かって連続的に変化して
いることを特徴とする半導体レーザ装置。
2. The semiconductor laser device according to claim 1, wherein the active layer has a multiple quantum well structure in which well layers and barrier layers having different band gaps are alternately laminated, and the active layer has the multiple quantum well structure. A semiconductor laser device, wherein the thicknesses of the well layer and the barrier layer continuously change from one end face side to the other end face side.
【請求項3】 半導体基板上に第1のクラッド層を形成
し、 前記第1のクラッド層上に、活性層形成予定領域が開口
し、前記活性層形成予定領域周囲に形成され、レーザ発
振方向に沿って幅が連続的に変化するマスク層を形成
し、 気相エピタキシャル法により、上方から化合物半導体を
堆積させて、前記第1のクラッド層上の前記活性層形成
予定領域に、前記マスク層の幅の変化に応じて厚さが変
化する井戸層と障壁層とを交互に積層して多重量子井戸
構造の活性層を形成し、 前記活性層上に第2のクラッド層を形成することを特徴
とする半導体レーザ装置の製造方法。
3. A first clad layer is formed on a semiconductor substrate, an active layer formation planned region is opened on the first clad layer, and is formed around the active layer formation planned region. A mask layer having a width that continuously changes along with, and a compound semiconductor is deposited from above by a vapor phase epitaxial method to form the mask layer in the active layer formation planned region on the first cladding layer. To form an active layer having a multi-quantum well structure by alternately stacking well layers and barrier layers whose thickness changes according to the change in the width, and forming a second cladding layer on the active layer. A method of manufacturing a characteristic semiconductor laser device.
JP12699592A 1992-05-20 1992-05-20 Semiconductor laser and its manufacture Pending JPH05327111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12699592A JPH05327111A (en) 1992-05-20 1992-05-20 Semiconductor laser and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12699592A JPH05327111A (en) 1992-05-20 1992-05-20 Semiconductor laser and its manufacture

Publications (1)

Publication Number Publication Date
JPH05327111A true JPH05327111A (en) 1993-12-10

Family

ID=14949063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12699592A Pending JPH05327111A (en) 1992-05-20 1992-05-20 Semiconductor laser and its manufacture

Country Status (1)

Country Link
JP (1) JPH05327111A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2300516A (en) * 1995-05-01 1996-11-06 Mitsubishi Electric Corp Selective growth mask for a semiconductor laser
US5580818A (en) * 1994-04-28 1996-12-03 Nec Corporation Fabrication process for semiconductor optical device
US5602672A (en) * 1995-09-20 1997-02-11 Mitsubishi Denki Kabushiki Kaisha Light modulator module and method for fabricating light modulator module
US5614436A (en) * 1992-12-22 1997-03-25 Nec Corporation Multiple quantum well distributed feedback semiconductor laser device and method for fabricating the same
US5764842A (en) * 1995-03-23 1998-06-09 Hitachi, Ltd. Semiconductor guided-wave optical device and method of fabricating thereof
US5987046A (en) * 1993-08-31 1999-11-16 Fujitsu Limited Optical semiconductor device and a method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614436A (en) * 1992-12-22 1997-03-25 Nec Corporation Multiple quantum well distributed feedback semiconductor laser device and method for fabricating the same
US5987046A (en) * 1993-08-31 1999-11-16 Fujitsu Limited Optical semiconductor device and a method of manufacturing the same
US6238943B1 (en) 1993-08-31 2001-05-29 Fujitsu Limited Optical semiconductor device and a method of manufacturing the same
US5580818A (en) * 1994-04-28 1996-12-03 Nec Corporation Fabrication process for semiconductor optical device
US5764842A (en) * 1995-03-23 1998-06-09 Hitachi, Ltd. Semiconductor guided-wave optical device and method of fabricating thereof
GB2300516A (en) * 1995-05-01 1996-11-06 Mitsubishi Electric Corp Selective growth mask for a semiconductor laser
GB2300516B (en) * 1995-05-01 1997-04-02 Mitsubishi Electric Corp Selective growth mask,fabricating method of semiconductor optical device,and semiconductor optical device
US5602672A (en) * 1995-09-20 1997-02-11 Mitsubishi Denki Kabushiki Kaisha Light modulator module and method for fabricating light modulator module

Similar Documents

Publication Publication Date Title
US5418183A (en) Method for a reflective digitally tunable laser
US5539763A (en) Semiconductor lasers and methods for fabricating semiconductor lasers
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JPH11220212A (en) Optical element and its drive method, and semiconductor laser element
US7666694B2 (en) Method for manufacturing semiconductor laser device and semiconductor laser device
US6084901A (en) Semiconductor laser device
JPH05327111A (en) Semiconductor laser and its manufacture
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH05110187A (en) Array type semiconductor laser and manufacture of the same
JP2003017809A (en) Semiconductor light-emitting element and manufacturing method therefor
JP4984514B2 (en) Semiconductor light emitting device and method for manufacturing the semiconductor light emitting device
US6989312B2 (en) Method for fabricating semiconductor optical device
JPH1098231A (en) Semiconductor optical integrated element and its manufacture
US5360763A (en) Method for fabricating an optical semiconductor device
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH077232A (en) Optical semiconductor device
JPH0548200A (en) Outside resonator type variable wavelength semiconductor laser
JP3479925B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JP3108789B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPH08330665A (en) Manufacture of optical semiconductor laser
JPH1168224A (en) Semiconductor laser and manufacture thereof
JP2973215B2 (en) Semiconductor laser device
JPH04209583A (en) Cycle gain type semiconductor laser element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001024