JPH05110187A - Array type semiconductor laser and manufacture of the same - Google Patents

Array type semiconductor laser and manufacture of the same

Info

Publication number
JPH05110187A
JPH05110187A JP3265880A JP26588091A JPH05110187A JP H05110187 A JPH05110187 A JP H05110187A JP 3265880 A JP3265880 A JP 3265880A JP 26588091 A JP26588091 A JP 26588091A JP H05110187 A JPH05110187 A JP H05110187A
Authority
JP
Japan
Prior art keywords
layer
waveguide layer
semiconductor laser
type semiconductor
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3265880A
Other languages
Japanese (ja)
Inventor
Masahiro Kito
雅弘 鬼頭
Masato Ishino
正人 石野
Yasushi Matsui
康 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3265880A priority Critical patent/JPH05110187A/en
Publication of JPH05110187A publication Critical patent/JPH05110187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Abstract

PURPOSE:To integrate distributed feedback type semiconductor lasers having the same characteristics except the oscillation wavelength are integrated on the same substrate. CONSTITUTION:MESAs in different heights and widths are sequentially arranged in the form of a stripe on a InP substrate 1. A light waveguide layer 2 is epitaxially grown by the liquid phase growth method so that the surface becomes flat. A diffraction grating 11 is then formed on the surface of waveguide layer 2. A waveguide layer 3, an active layer 4, an untimelt-back layer 5 and a p-type clad layer 6 are epitaxially grown on the waveguide layer 2. With such constitution, since the height of diffraction grating 11 is uniform for each laser 18, 19, 20 and the effective refractive index is different, distributed feedback type semiconductor lasers having the equalized laser characteristics other than the oscillation wavelength can be integrated on the same substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発振波長の異なる分布帰
還型半導体レーザ部を複数個有するアレイ型半導体レー
ザ素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an array type semiconductor laser device having a plurality of distributed feedback type semiconductor laser parts having different oscillation wavelengths.

【0002】[0002]

【従来の技術】分布帰還型半導体レーザの発振波長λ
は、式(1)に示すブラッグ条件で与えられる。
2. Description of the Related Art Oscillation wavelength λ of distributed feedback semiconductor laser
Is given by the Bragg condition shown in equation (1).

【0003】 λ=2・Neff・Λ/M ・・・・・(1) ここでNeffは光導波路内部の実効屈折率、Λは回折格
子周期、Mは次数(M=1、2、3、・・・)である。
このため、波長の異なる分布帰還型半導体レーザを同一
の基板上に作製するためには単位分布帰還型半導体レー
ザの光導波路の実効屈折率を他の単位分布帰還型半導体
レーザの光導波路の実効屈折率と異なるようにする方法
が行なわれてきた。これは単位分布帰還型半導体レーザ
において回折格子と活性層の距離が他の単位分布帰還型
半導体レーザにおける回折格子と活性層の距離と異なる
ようにすることにより実現されている(例えば特開平2-
71573)。以下図面を用いてそれを説明する。
Λ = 2 · N eff · Λ / M (1) where N eff is the effective refractive index inside the optical waveguide, Λ is the diffraction grating period, and M is the order (M = 1, 2, 3, ...).
Therefore, in order to fabricate distributed feedback semiconductor lasers of different wavelengths on the same substrate, the effective refractive index of the optical waveguide of a unit distributed feedback semiconductor laser is set to the effective refractive index of the optical waveguide of another unit distributed feedback semiconductor laser. Ways have been done to make it different from rates. This is realized by making the distance between the diffraction grating and the active layer in the unit distributed feedback type semiconductor laser different from the distance between the diffraction grating and the active layer in other unit distributed feedback type semiconductor lasers (see, for example, Japanese Patent Laid-Open No. Hei 2-
71573). This will be described below with reference to the drawings.

【0004】図6、図7は従来例のアレイ型半導体レー
ザを説明する図である。図6は斜視図であり、28は基
板、29はバッファ層、30は下部クラッド層、31は
活性層、32は導波路層、33は回折格子、34は上部
クラッド層、35はコンタクト層、36は絶縁層、37
はn型電極、38はp型電極、39、40は断面構成図
の切口、41、42は単位分布帰還型半導体レーザであ
る。
FIGS. 6 and 7 are views for explaining a conventional array type semiconductor laser. 6 is a perspective view, 28 is a substrate, 29 is a buffer layer, 30 is a lower cladding layer, 31 is an active layer, 32 is a waveguide layer, 33 is a diffraction grating, 34 is an upper cladding layer, 35 is a contact layer, 36 is an insulating layer, 37
Is an n-type electrode, 38 is a p-type electrode, 39 and 40 are cuts in a sectional configuration view, and 41 and 42 are unit distributed feedback semiconductor lasers.

【0005】図7(a)は39での分布帰還型半導体レー
ザの断面図、図7(b)は40での分布帰還型半導体レー
ザの断面図である。図7(a),(b)の違いは導波路層32
の厚さである。
FIG. 7 (a) is a sectional view of the distributed feedback semiconductor laser at 39, and FIG. 7 (b) is a sectional view of the distributed feedback semiconductor laser at 40. The difference between FIGS. 7A and 7B is that the waveguide layer 32
Is the thickness of.

【0006】以上のように構成されたこの従来例のアレ
イ型半導体レーザにおいて、以下その動作を説明する。
The operation of the conventional array type semiconductor laser having the above structure will be described below.

【0007】分布帰還型半導体レーザ41、42は導波
路層32の厚さが異なるためそれぞれの光導波路の実効
屈折率は異なる値となる。分布帰還型半導体レーザ4
1、42の光導波路の実効屈折率をそれぞれNeff1、N
eff2として、回折格子の周期をΛとすると式(1)からわ
かるように分布帰還型半導体レーザ41、42はそれぞ
れ異なる波長λ1、λ2で発振する。
Since the distributed feedback semiconductor lasers 41 and 42 have different thicknesses of the waveguide layer 32, the effective refractive indexes of the respective optical waveguides have different values. Distributed feedback semiconductor laser 4
The effective refractive indices of the optical waveguides 1 and 42 are N eff1 and N eff , respectively.
As eff2 , when the period of the diffraction grating is Λ, the distributed feedback semiconductor lasers 41 and 42 oscillate at different wavelengths λ 1 and λ 2 , respectively, as can be seen from equation (1).

【0008】[0008]

【発明が解決しようとする課題】しかしながら従来の構
造では、回折格子33を分布帰還型レーザ41と42の
間の段差が形成してある導波路層32の表面に形成する
ことになる。回折格子はフォトリソグラフィーにより形
成されるが、段差のある導波路層32の表面にレジスト
をスピンナーで塗布した場合、段差の影響により図8
(a)に示すように段差の上部と下部で塗布されるレジ
ストの厚さが異なることになる。この状態で干渉露光を
行なうと段差の上部と下部とでレジストの露光状態が異
なり、現像、エッチングの後に得られる回折格子の形状
が段差の上部と下部とで異なった形状となる。段差の下
部ではレジスト厚が厚くなるため上部に比べて露光が不
足気味となり、得られる回折格子の高さは図8(b)に
示すように段差の上部に比べて低くなる。導波路内を伝
搬する光と回折格子の結合度合を表わす結合係数は回折
格子の高さに比例するため、段差の上部と下部に形成さ
れた導波路の結合係数はそれぞれ異なる値となる。結合
係数の違いは閾電流値や変調歪などのレーザ特性の違い
となって現れる。すなわち、従来例の方法で分布帰還型
半導体レーザをアレイ化すると波長以外にもそれぞれの
レーザの特性が異なってしまう。
However, in the conventional structure, the diffraction grating 33 is formed on the surface of the waveguide layer 32 where the step between the distributed feedback lasers 41 and 42 is formed. The diffraction grating is formed by photolithography, but when a resist is applied to the surface of the waveguide layer 32 having a step by a spinner, the step is affected by the step.
As shown in (a), the thickness of the resist applied on the upper part and the lower part of the step is different. When interference exposure is performed in this state, the exposure state of the resist differs between the upper part and the lower part of the step, and the shape of the diffraction grating obtained after development and etching becomes different between the upper part and the lower part of the step. Since the resist thickness becomes thicker in the lower part of the step than in the upper part, the height of the obtained diffraction grating becomes lower than that in the upper part of the step as shown in FIG. 8B. Since the coupling coefficient representing the degree of coupling between the light propagating in the waveguide and the diffraction grating is proportional to the height of the diffraction grating, the coupling coefficients of the waveguides formed above and below the step have different values. Differences in coupling coefficient appear as differences in laser characteristics such as threshold current value and modulation distortion. That is, when distributed feedback semiconductor lasers are arrayed by the method of the conventional example, the characteristics of the respective lasers differ in addition to the wavelength.

【0009】本発明はかかる点に鑑み、発振波長以外の
特性が同一の分布帰還型半導体レーザを複数個同一基板
上に有するアレイ型半導体レーザとその製造方法を提供
することを目的とする。
In view of the above points, an object of the present invention is to provide an array type semiconductor laser having a plurality of distributed feedback type semiconductor lasers having the same characteristics other than the oscillation wavelength on the same substrate and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明は第1に単位半導
体レーザ部が分布帰還型半導体レーザで形成されたモノ
シリックなレーザアレイ型半導体レーザ素子であって、
化合物半導体基板と、前記基板上に前記単位半導体レー
ザ部の共振器とを備え、前記共振器が少なくとも活性
層、第1の導波路層及び第2の導波路層を含み、前記第
1の導波路層と前記第2の導波路層は隣接し、前記第2
の導波路層の屈折率が前記基板の屈折率と前記第1の導
波路層の屈折率の間の値を有し、回折格子が前記第1の
導波路層と前記第2の導波路層の間に設けられ、前記単
位半導体レーザ部の第2の導波路層の層厚厚が他の単位
半導体レーザの第2の導波路層の層厚と異なっているこ
とを特徴とするアレイ型半導体レーザである。
The present invention firstly provides a monolithic laser array type semiconductor laser device in which a unit semiconductor laser section is formed of a distributed feedback type semiconductor laser,
A compound semiconductor substrate and a resonator of the unit semiconductor laser section are provided on the substrate, the resonator including at least an active layer, a first waveguide layer and a second waveguide layer, and the first conductive layer. The waveguide layer and the second waveguide layer are adjacent to each other, and
The index of refraction of the waveguide layer has a value between the index of refraction of the substrate and the index of refraction of the first waveguide layer, and the diffraction grating has a refractive index of the first waveguide layer and the second waveguide layer. An array-type semiconductor provided between the first and second semiconductor laser sections, wherein the second waveguide layer of the unit semiconductor laser section has a layer thickness different from a second waveguide layer of another unit semiconductor laser. It is a laser.

【0011】第2に化合物半導体基板をエッチングし
て、高さと幅の異なるメサストライプを形成する工程
と、前記基板上に第2の導波路層となる化合物半導体膜
を表面が平坦になるように液相成長法によりエピタキシ
ャル成長する工程と。前記第2の導波路層表面に回折格
子を形成する工程と、前記回折格子の上に第1の導波路
層と活性層をエピタキシャル成長させる工程を含むこと
を特徴とするアレイ型半導体レーザの製造方法である。
Second, a step of etching the compound semiconductor substrate to form mesa stripes having different heights and widths, and a compound semiconductor film to be a second waveguide layer on the substrate so that the surface becomes flat. And a step of epitaxially growing by a liquid phase growth method. A method of manufacturing an array-type semiconductor laser, comprising: a step of forming a diffraction grating on the surface of the second waveguide layer; and a step of epitaxially growing a first waveguide layer and an active layer on the diffraction grating. Is.

【0012】[0012]

【作用】本発明は前記した構成により、第2の導波路層
の層厚を各々の分布帰還型半導体レーザで異なるものと
することにより各々の分布帰還型半導体レーザの光導波
路の実効屈折率を異なるものとし、異なる発振波長の複
数の分布帰還型半導体レーザを得ることができる。また
活性層に隣接する第1の導波路層の層厚が各々の分布帰
還型半導体レーザにおいて同じであり、第1の導波路層
と第2の導波路層の間に回折格子が形成されているた
め、回折格子と活性層の距離を各々の分布帰還型半導体
レーザで同じにすることが可能となる。これは、平坦な
表面である第2の導波路層上に回折格子を形成すること
を可能とし、前述した様な各分布帰還型半導体レーザ間
での特性のばらつきをなくすことができる。第2の導波
路層の層厚を部分的に異なるものとし、かつその表面が
平坦になるようにエピタキシャル成長させる方法として
は、高さと幅の異なるメサをストライプ状に順次並べて
半導体基板上に形成しその上に第2の導波路層をLPE
法でエピタキシャル成長させる方法をとる。LPE法に
よるとメサストライプ上のエピタキシャル層の層厚はメ
サストライプ以外の部分の層厚より薄く、かつメサスト
ライプの幅に大きく依存する。これを利用して、設定し
た異なる層厚に対してメサストライプの高さと幅を適当
に選ぶことにより、部分的に層厚の異なるエピタキシャ
ル層を表面が平坦になるように成長できる。以上により
発振波長以外の特性が同一な分布帰還型半導体レーザを
複数個同一基板上に形成することが可能となる。また、
第1の導波路層、活性層を有機金属気相成長(MOVP
E)法でエピタキシャル成長させると、第2の導波路層
を所定の層厚だけエピタキシャル成長した際に表面が完
全に平坦にならなくても活性層の層厚は各々のメサスト
ライプ上で均一となる。これにより、各々の分布帰還型
半導体レーザでの活性層厚が同一となるため閾電流値が
同一になる。
According to the present invention, the effective refractive index of the optical waveguide of each distributed feedback semiconductor laser is made different by making the layer thickness of the second waveguide layer different in each distributed feedback semiconductor laser by the above-mentioned structure. A plurality of distributed feedback semiconductor lasers having different oscillation wavelengths can be obtained. Further, the layer thickness of the first waveguide layer adjacent to the active layer is the same in each distributed feedback semiconductor laser, and a diffraction grating is formed between the first waveguide layer and the second waveguide layer. Therefore, the distance between the diffraction grating and the active layer can be made the same in each distributed feedback semiconductor laser. This makes it possible to form a diffraction grating on the second waveguide layer, which is a flat surface, and to eliminate the above-mentioned variation in characteristics among the distributed feedback semiconductor lasers. As a method of making the layer thickness of the second waveguide layer partially different and performing epitaxial growth so that the surface thereof becomes flat, mesas having different heights and widths are sequentially arranged in a stripe shape and formed on a semiconductor substrate. On top of that, a second waveguide layer LPE
Method is used for epitaxial growth. According to the LPE method, the layer thickness of the epitaxial layer on the mesa stripe is thinner than the layer thickness of the portion other than the mesa stripe, and largely depends on the width of the mesa stripe. By utilizing this, by appropriately selecting the height and width of the mesa stripe with respect to the set different layer thicknesses, it is possible to grow an epitaxial layer having a partially different layer thickness so as to have a flat surface. As described above, it is possible to form a plurality of distributed feedback semiconductor lasers having the same characteristics other than the oscillation wavelength on the same substrate. Also,
The first waveguide layer and the active layer are formed by metalorganic vapor phase epitaxy (MOVP).
When the epitaxial growth is performed by the method E), the layer thickness of the active layer becomes uniform on each mesa stripe even if the surface is not completely flat when the second waveguide layer is epitaxially grown by a predetermined layer thickness. As a result, the active layer thickness becomes the same in each distributed feedback semiconductor laser, so the threshold current values become the same.

【0013】[0013]

【実施例】図1は本発明の第1の実施例におけるアレイ
型半導体レーザの構成を説明する斜視断面図である。1
はn型のInP基板、2は波長組成1.1μmのn型の
InGaAsP導波路層、3は波長組成1.3μmのn
型のInGaAsP導波路層、4は波長組成1.55μ
mのノンドープのInGaAsP活性層、5は波長組成
1.3μmのp型のInGaAsPアンチメルトバック
層、6はp型のInPクラッド層、7はp型のInP電
流ブロック層、8はn型のInP電流ブロック層、9は
p型のInP埋め込み層、10はp型のInGaAsP
コンタクト層、11はピッチ2360Åの回折格子、1
2はn側電極、13はp側電極、14は分離溝、15、
16、17は断面構成図の切口、18、19、20は分
布帰還型半導体レーザ、21、22、23はメサ、27
は絶縁膜である。図2(a)、(b)、(c)は分布帰還型半導
体レーザ18、19、20をおのおの15、16、17
で切った状態で示した図である。
1 is a perspective sectional view for explaining the structure of an array type semiconductor laser according to a first embodiment of the present invention. 1
Is an n-type InP substrate, 2 is an n-type InGaAsP waveguide layer with a wavelength composition of 1.1 μm, 3 is n with a wavelength composition of 1.3 μm
Type InGaAsP waveguide layer, 4 has a wavelength composition of 1.55μ
m non-doped InGaAsP active layer, 5 p-type InGaAsP anti-melt back layer with wavelength composition of 1.3 μm, 6 p-type InP clad layer, 7 p-type InP current blocking layer, 8 n-type InP Current blocking layer 9, p-type InP buried layer, 10 p-type InGaAsP
Contact layer, 11 is a diffraction grating with a pitch of 2360Å, 1
2 is an n-side electrode, 13 is a p-side electrode, 14 is a separation groove, 15,
Reference numerals 16 and 17 are cuts in the sectional configuration diagram, 18, 19 and 20 are distributed feedback semiconductor lasers, 21, 22 and 23 are mesas, and 27.
Is an insulating film. 2 (a), (b), and (c) show distributed feedback semiconductor lasers 18, 19, and 20, respectively.
It is the figure shown in the state cut by.

【0014】本実施例のアレイ型半導体レーザの構成は
InP基板1上に導波路層2、導波路層3、活性層4、
アンチメルトバック層5、p型クラッド層6が積層され
たレーザ共振器構造が3つ形成されており、各々導波路
層2と導波路層3の間に回折格子11が形成されてい
る。各々のレーザ共振器構造で異なる点は導波路層2の
層厚がそれぞれd1,d2,d3と異なっていることのみ
である。
The structure of the array type semiconductor laser of this embodiment is such that the waveguide layer 2, the waveguide layer 3, the active layer 4, and the
Three laser resonator structures in which an anti-meltback layer 5 and a p-type cladding layer 6 are laminated are formed, and a diffraction grating 11 is formed between each of the waveguide layers 2 and 3. The only difference between the laser resonator structures is that the layer thickness of the waveguide layer 2 is different from d 1 , d 2 , and d 3 , respectively.

【0015】以上のように構成された本実施例のアレイ
型半導体レーザにおいて以下その動作を説明する。
The operation of the array type semiconductor laser of this embodiment having the above-mentioned structure will be described below.

【0016】分布帰還型半導体レーザ18、19、20
の導波路層2の層厚は各々d1,d2,d3と異なるため
各レーザの光導波路の実効屈折率はNeff1、Neff2、N
eff3と異なった値になる。すると前述したブラッグ条件
(式(1))から発振波長λ1、λ2、λ3が決められる。こ
のときd1>d2>d3とするとNeff1>Neff2>Neff 3
となり発振波長の関係はλ1>λ2>λ3となる。図3に
導波路層2の層厚と発振波長の関係を示す。
Distributed feedback type semiconductor lasers 18, 19, 20
Since the thickness of the waveguide layer 2 is different from d 1 , d 2 , and d 3 , the effective refractive index of the optical waveguide of each laser is N eff1 , N eff2 , and N eff .
It will be different from eff3 . Then, the oscillation wavelengths λ 1 , λ 2 , and λ 3 are determined from the Bragg condition (equation (1)) described above. If d 1 > d 2 > d 3 at this time, N eff1 > N eff2 > N eff 3
Therefore, the relation of the oscillation wavelength is λ 1 > λ 2 > λ 3 . FIG. 3 shows the relationship between the layer thickness of the waveguide layer 2 and the oscillation wavelength.

【0017】図3より実施例のアレイ型半導体レーザに
おいて例えば導波路層2のd1、d2、d3をそれぞれ
0.25μm、0.15μm、0.09μm、導波路層
3、活性層4、アンチメルトバック層5の層厚をそれぞ
れ0.1μm、0.15μm、0.1μmとすると分布
帰還型半導体レーザ18、19、20の各々の光導波路
の実効屈折率Neff1、Neff2、Neff3は3.300、
3.297、3.292となり発振波長は1.558μ
m、1.556μm、1.554μmとなる。
In the array type semiconductor laser of the embodiment shown in FIG. 3, for example, d 1 , d 2 and d 3 of the waveguide layer 2 are 0.25 μm, 0.15 μm and 0.09 μm, respectively, the waveguide layer 3 and the active layer 4 are formed. , And the anti-meltback layer 5 has thicknesses of 0.1 μm, 0.15 μm, and 0.1 μm, respectively, the effective refractive indices N eff1 , N eff2 , and N eff of the optical waveguides of the distributed feedback semiconductor lasers 18, 19, and 20. eff3 is 3.300,
It becomes 3.297 and 3.292, and the oscillation wavelength is 1.558μ.
m, 1.556 μm, and 1.554 μm.

【0018】図4、図5は本発明の実施例におけるアレ
イ型半導体レーザの製造方法を示す斜視図である。
4 and 5 are perspective views showing a method of manufacturing an array type semiconductor laser according to an embodiment of the present invention.

【0019】まずn型の(100)面InP基板上に幅
が30μmで高さが0.05μmのメサ24、幅が10
μmで高さが0.15μmのメサ25、幅が6μmで高
さが0.21μmのメサ26をウエットエッチング(H2
SO4:H2O2:H2O=5:1:1)により形成する(図4(a))。こ
の上に0.3μmの波長組成1.1μmn型のInGa
AsP導波路層2をLPE法でエピタキシャル成長させ
る(図4(b))。前述したように各々のメサの上部と
それ以外の部分で成長速度が異なるため導波路層2の表
面は平坦になり、メサ24、25、26上の導波路層2
の層厚はそれぞれ0.25μm、0.15μm、0.0
9μmとなる。次に導波路層2の表面にピッチ2360
Åの回折格子11を形成する(図4(c))。その上に波
長組成1.3μmのn型のInGaAsP導波路層3、
波長組成1.55μmのInGaAsP活性層4、波長
組成1.3μmのp型のInGaAsPアンチメルトバ
ック層導波路層5、p型のInPクラッド層6をそれぞ
れ0.1μm、0.15μm、0.1μm、0.5μm
の厚さでエピタキシャル成長させる(図5(a))。こ
うして得られた多層半導体結晶にメサエッチングを行
う。この際各々のメサ21、22、23の中心をInP
基板上に形成したメサ24、25、26の中心と一致さ
せる。メサ21、22、23の幅は1.3μmとする
(図5(b))。続いて全面にp型のInP電流ブロッ
ク層7、n型のInP電流ブロック層8、p型のInP
埋め込み層9、p型のInGaAsPコンタクト層10
をエピタキシャル成長させる。次に分離溝14をウエッ
トエッチングにより形成し、絶縁膜27を全面に堆積さ
せる。更に絶縁膜27にコンタクト窓を開け、p型のI
nGaAsPコンタクト層10の上にAu/Zuからな
るp型電極13を、n型のInP基板1の下にAu/S
nからなるn型電極12を形成する(図1)。
First, a mesa 24 having a width of 30 μm and a height of 0.05 μm, and a width of 10 are formed on an n-type (100) plane InP substrate.
The mesa 25 having a height of 0.15 μm and a width of 6 μm and the mesa 26 having a height of 0.21 μm are wet-etched (H 2
SO 4 : H 2 O 2 : H 2 O = 5: 1: 1) (Fig. 4 (a)). On top of this, a wavelength composition of 0.3 μm, 1.1 μm InGa
The AsP waveguide layer 2 is epitaxially grown by the LPE method (FIG. 4 (b)). As described above, since the growth rate is different between the upper part of each mesa and the other part, the surface of the waveguide layer 2 becomes flat, and the waveguide layer 2 on the mesas 24, 25, and 26 is flattened.
Layer thicknesses of 0.25 μm, 0.15 μm and 0.0, respectively.
It becomes 9 μm. Next, a pitch 2360 is formed on the surface of the waveguide layer 2.
The diffraction grating 11 of Å is formed (FIG. 4 (c)). On top of that, an n-type InGaAsP waveguide layer 3 having a wavelength composition of 1.3 μm,
The InGaAsP active layer 4 having a wavelength composition of 1.55 μm, the p-type InGaAsP anti-meltback layer waveguide layer 5 having a wavelength composition of 1.3 μm, and the p-type InP clad layer 6 are 0.1 μm, 0.15 μm, and 0.1 μm, respectively. , 0.5 μm
Is epitaxially grown to the thickness shown in Fig. 5 (a). Mesa etching is performed on the thus obtained multilayer semiconductor crystal. At this time, the center of each mesa 21, 22 and 23 is made of InP.
It is aligned with the center of the mesas 24, 25, 26 formed on the substrate. The width of the mesas 21, 22 and 23 is 1.3 μm (FIG. 5 (b)). Then, a p-type InP current blocking layer 7, an n-type InP current blocking layer 8 and a p-type InP are formed on the entire surface.
Buried layer 9, p-type InGaAsP contact layer 10
Are grown epitaxially. Next, the isolation groove 14 is formed by wet etching, and the insulating film 27 is deposited on the entire surface. Further, a contact window is opened in the insulating film 27, and a p-type I
A p-type electrode 13 made of Au / Zu is formed on the nGaAsP contact layer 10, and Au / S is formed under the n-type InP substrate 1.
An n-type electrode 12 made of n is formed (FIG. 1).

【0020】このような方法を用いることにより分布帰
還型半導体レーザ18、19、20の導波路層2のみを
各々異なる層厚にすることが可能となり、各々異なる発
振波長が得られる分布帰還型半導体レーザ18、19、
20を同一基板上に形成したアレイ型半導体レーザを製
造できる。また、表面が平坦な導波路層2の上に回折格
子を形成させるので、全面にわたって高さの均一な回折
格子を形成することが可能となり、分布帰還型半導体レ
ーザ18、19、20は発振波長が異なるのみで他の特
性は同一なものとなる。
By using such a method, only the waveguide layers 2 of the distributed feedback semiconductor lasers 18, 19 and 20 can have different layer thicknesses, and distributed feedback semiconductors that can obtain different oscillation wavelengths can be obtained. Lasers 18, 19,
An array type semiconductor laser having 20 formed on the same substrate can be manufactured. Further, since the diffraction grating is formed on the waveguide layer 2 having a flat surface, it becomes possible to form a diffraction grating having a uniform height over the entire surface, and the distributed feedback semiconductor lasers 18, 19 and 20 have oscillation wavelengths. The other characteristics are the same except for the difference.

【0021】尚、本実施例では活性層4はバルク構造で
あるが、これは量子井戸構造でもよい。またアンチメル
トバック層5は成長方法(例えばMOVPE法)によっ
ては必要ない。また波長は1.55μm帯以外でもよ
い。半導体層を形成する材料はInP及びInGaAs
PだけではなくInGaAs、GaAs、AlGaAs
またはこれ以外の半導体でもよい。また本実施例では埋
め込み構造を示したが、リッジ型構造またはこれ以外の
構造でもよい。
Although the active layer 4 has a bulk structure in this embodiment, it may have a quantum well structure. The anti-melt back layer 5 is not necessary depending on the growing method (for example, MOVPE method). The wavelength may be other than the 1.55 μm band. InP and InGaAs are used to form the semiconductor layer.
InGaAs, GaAs, AlGaAs as well as P
Alternatively, other semiconductors may be used. Although the buried structure is shown in this embodiment, a ridge type structure or another structure may be used.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
発振波長の異なる複数個の分布帰還型レーザを同一半導
体基板上に有するアレイ型半導体レーザが得られる。ま
た、平坦な表面に回折格子を形成するため各々のレーザ
の特性は発振波長以外は同一なものとなる。このように
して、発振波長以外のレーザ特性が同一なアレイ型半導
体レーザが得られ、その実用的効果は大きい。
As described above, according to the present invention,
An array type semiconductor laser having a plurality of distributed feedback type lasers having different oscillation wavelengths on the same semiconductor substrate can be obtained. Further, since the diffraction grating is formed on a flat surface, the characteristics of each laser are the same except the oscillation wavelength. In this way, an array type semiconductor laser having the same laser characteristics other than the oscillation wavelength can be obtained, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるアレイ型半導体レーザ
の斜視断面図
FIG. 1 is a perspective sectional view of an array type semiconductor laser according to an embodiment of the present invention.

【図2】本発明の実施例におけるアレイ型半導体レーザ
の共振器方向の断面構造図
FIG. 2 is a sectional structural view of an array type semiconductor laser in a cavity direction of an embodiment of the present invention.

【図3】導波路層2の層厚と発振波長の関係を示す図FIG. 3 is a diagram showing the relationship between the layer thickness of the waveguide layer 2 and the oscillation wavelength.

【図4】本発明の実施例におけるアレイ型半導体レーザ
の作製方法を説明する斜視図
FIG. 4 is a perspective view illustrating a method for manufacturing an array type semiconductor laser according to an embodiment of the present invention.

【図5】本発明の実施例におけるアレイ型半導体レーザ
の作製方法を説明する斜視図
FIG. 5 is a perspective view illustrating a method for manufacturing an array type semiconductor laser according to an embodiment of the present invention.

【図6】従来例のアレイ型半導体レーザの斜視図FIG. 6 is a perspective view of a conventional array type semiconductor laser.

【図7】従来例のアレイ型半導体レーザの共振器方向の
断面構造図
FIG. 7 is a cross-sectional structural view of a conventional array type semiconductor laser in a cavity direction.

【図8】従来例のアレイ型半導体レーザの問題点を説明
する図
FIG. 8 is a diagram illustrating a problem of a conventional array type semiconductor laser.

【符号の説明】[Explanation of symbols]

1 n型のInP基板 2 波長組成1.1μmn型のInGaAsP導波路層 3 波長組成1.3μmのn型のInGaAsP導波路
層 4 波長組成1.55μmのノンド−プのInGaAs
P活性層 5 波長組成1.3μmのp型のInGaAsPアンチ
メルトバック層 6 p型のInPクラッド層 7 p型のInP電流ブロック層 8 n型のInP電流ブロック層 9 p型のInP埋め込み層 10 p型のInGaAsPコンタクト層 11 ピッチ2360Åの回折格子 12 n側電極 13 p側電極 14 分離溝 15 断面構成図の切口 16 断面構成図の切口 17 断面構成図の切口 18 分布帰還型半導体レーザ 19 分布帰還型半導体レーザ 20 分布帰還型半導体レーザ 21 メサ 22 メサ 23 メサ 24 メサ 25 メサ 26 メサ 27 絶縁膜 28 基板 29 バッファ層 30 下部クラッド層 31 活性層 32 導波路層 33 回折格子 34 上部クラッド層 35 コンタクト層 36 絶縁層 37 n型電極 38 p型電極 39 断面構成図の切口 40 断面構成図の切口 41 分布帰還型半導体レーザ 42 分布帰還型半導体レーザ 43 レジスト 44 レジストが薄い部分 45 レジストが厚い部分 46 回折格子の高さが高い部分 47 回折格子の高さが低い部分
1 n-type InP substrate 2 wavelength composition 1.1 μm n-type InGaAsP waveguide layer 3 n-type InGaAsP waveguide layer 1.3 μm wavelength composition 4 non-doped InGaAs with wavelength composition 1.55 μm
P active layer 5 p-type InGaAsP anti-meltback layer with wavelength composition of 1.3 μm 6 p-type InP clad layer 7 p-type InP current block layer 8 n-type InP current block layer 9 p-type InP buried layer 10 p Type InGaAsP contact layer 11 Pitch 2360 Å diffraction grating 12 n-side electrode 13 p-side electrode 14 separation groove 15 cut of cross-sectional configuration diagram 16 cut of cross-sectional configuration diagram 17 cut of cross-sectional configuration diagram 18 distributed feedback semiconductor laser 19 distributed feedback type Semiconductor laser 20 Distributed feedback semiconductor laser 21 Mesa 22 Mesa 23 Mesa 24 Mesa 25 Mesa 26 Mesa 27 Insulating film 28 Substrate 29 Buffer layer 30 Lower clad layer 31 Active layer 32 Waveguide layer 33 Diffraction grating 34 Upper clad layer 35 Contact layer 36 Insulating layer 37 n-type electrode 38 p-type electrode 39 cross section Cut 40 of composition diagram Cut of cross-sectional configuration diagram 41 Distributed feedback semiconductor laser 42 Distributed feedback semiconductor laser 43 Resist 44 Thin resist portion 45 Thick resist portion 46 High diffraction grating portion 47 High diffraction grating height Lower part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単位半導体レーザ部が分布帰還型半導体レ
ーザで形成されたモノシリックなレーザアレイ型半導体
レーザ素子において、化合物半導体基板と、前記基板上
に前記単位半導体レーザ部の共振器とを備え、前記共振
器は少なくとも活性層、第1の導波路層及び第2の導波
路層を含み、前記第1の導波路層と前記第2の導波路層
は隣接し、前記第2の導波路層の屈折率が前記基板の屈
折率と前記第1の導波路層の屈折率の間の値を有し、回
折格子が前記第1の導波路層と前記第2の導波路層の間
に設けられ、前記単位半導体レーザ部の第2の導波路層
の層厚が他の単位半導体レーザの第2の導波路層の層厚
と異なっていることを特徴とするアレイ型半導体レー
ザ。
1. A monolithic laser array type semiconductor laser device in which a unit semiconductor laser section is formed of a distributed feedback type semiconductor laser, comprising a compound semiconductor substrate and a resonator of the unit semiconductor laser section on the substrate. The resonator includes at least an active layer, a first waveguide layer and a second waveguide layer, the first waveguide layer and the second waveguide layer are adjacent to each other, and the second waveguide layer Has a value between the refractive index of the substrate and the refractive index of the first waveguide layer, and a diffraction grating is provided between the first waveguide layer and the second waveguide layer. An array type semiconductor laser, wherein the layer thickness of the second waveguide layer of the unit semiconductor laser section is different from the layer thickness of the second waveguide layer of another unit semiconductor laser.
【請求項2】化合物半導体基板をエッチングして、高さ
と幅の異なる複数のメサストライプを形成する工程と、
前記基板上に第2の導波路層となる化合物半導体膜を表
面が平坦になるように液相成長法によりエピタキシャル
成長する工程と。前記第2の導波路層表面に回折格子を
形成する工程と、前記回折格子の上に第1の導波路層と
活性層をエピタキシャル成長させる工程を含むことを特
徴とするアレイ型半導体レーザの製造方法。
2. A step of etching a compound semiconductor substrate to form a plurality of mesa stripes having different heights and widths,
A step of epitaxially growing a compound semiconductor film to be a second waveguide layer on the substrate by a liquid phase epitaxy method so that the surface becomes flat. A method of manufacturing an array-type semiconductor laser, comprising: a step of forming a diffraction grating on the surface of the second waveguide layer; and a step of epitaxially growing a first waveguide layer and an active layer on the diffraction grating. ..
JP3265880A 1991-10-15 1991-10-15 Array type semiconductor laser and manufacture of the same Pending JPH05110187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265880A JPH05110187A (en) 1991-10-15 1991-10-15 Array type semiconductor laser and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265880A JPH05110187A (en) 1991-10-15 1991-10-15 Array type semiconductor laser and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH05110187A true JPH05110187A (en) 1993-04-30

Family

ID=17423383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265880A Pending JPH05110187A (en) 1991-10-15 1991-10-15 Array type semiconductor laser and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH05110187A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715092A (en) * 1993-06-25 1995-01-17 Nec Corp Semiconductor laser array and fabrication there
EP0732785A1 (en) * 1995-03-17 1996-09-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of fabricating semiconductor laser device
US5638393A (en) * 1994-12-07 1997-06-10 Xerox Corporation Nonmonolithic multiple laser source arrays
US5982799A (en) * 1994-09-14 1999-11-09 Xerox Corporation Multiple-wavelength laser diode array using quantum well band filling
EP1130706A2 (en) * 2000-02-25 2001-09-05 Nec Corporation Optical semiconductor device and method for manufacturing the same
EP1130714A2 (en) * 1999-12-28 2001-09-05 Nec Corporation Laser elements having different wavelenghts formed from one semiconductor substrate
JP2002181705A (en) * 2000-12-14 2002-06-26 Japan Science & Technology Corp Spectroscopic measuring instrument
JP2007129028A (en) * 2005-11-02 2007-05-24 Furukawa Electric Co Ltd:The Semiconductor laser
EP2088651A1 (en) * 2008-02-11 2009-08-12 TRUMPF Laser GmbH + Co. KG Diode laser array for creating diode laser output with optimised beam parameter products for fibre coupling

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715092A (en) * 1993-06-25 1995-01-17 Nec Corp Semiconductor laser array and fabrication there
US5982799A (en) * 1994-09-14 1999-11-09 Xerox Corporation Multiple-wavelength laser diode array using quantum well band filling
US5638393A (en) * 1994-12-07 1997-06-10 Xerox Corporation Nonmonolithic multiple laser source arrays
EP0732785A1 (en) * 1995-03-17 1996-09-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of fabricating semiconductor laser device
EP1130714A3 (en) * 1999-12-28 2004-03-03 NEC Compound Semiconductor Devices, Ltd. Laser elements having different wavelenghts formed from one semiconductor substrate
EP1130714A2 (en) * 1999-12-28 2001-09-05 Nec Corporation Laser elements having different wavelenghts formed from one semiconductor substrate
US6828589B2 (en) 2000-02-25 2004-12-07 Nec Compound Conductor Devices, Ltd. Optical semiconductor device and method for manufacturing the same
EP1130706A3 (en) * 2000-02-25 2002-10-16 Nec Corporation Optical semiconductor device and method for manufacturing the same
EP1130706A2 (en) * 2000-02-25 2001-09-05 Nec Corporation Optical semiconductor device and method for manufacturing the same
JP2002181705A (en) * 2000-12-14 2002-06-26 Japan Science & Technology Corp Spectroscopic measuring instrument
JP2007129028A (en) * 2005-11-02 2007-05-24 Furukawa Electric Co Ltd:The Semiconductor laser
EP2088651A1 (en) * 2008-02-11 2009-08-12 TRUMPF Laser GmbH + Co. KG Diode laser array for creating diode laser output with optimised beam parameter products for fibre coupling
WO2009100845A1 (en) * 2008-02-11 2009-08-20 Trumpf Laser Gmbh & Co. Kg Diode laser structure to generate diode laser radiation with optimized fiber coupling radiation parameter product
US8175130B2 (en) 2008-02-11 2012-05-08 Trumpf Laser Gmbh + Co. Kg Diode laser structure for generating diode laser radiation

Similar Documents

Publication Publication Date Title
US5539763A (en) Semiconductor lasers and methods for fabricating semiconductor lasers
US8891578B2 (en) Optical semiconductor device having diffraction grating disposed on both sides of waveguide and its manufacture method
US5701325A (en) Compound semiconductor device and fabrication method of producing the compound semiconductor device
JP2746326B2 (en) Semiconductor optical device
JP2937751B2 (en) Method for manufacturing optical semiconductor device
US4775980A (en) Distributed-feedback semiconductor laser device
JPH11220212A (en) Optical element and its drive method, and semiconductor laser element
JPH05110187A (en) Array type semiconductor laser and manufacture of the same
JPH04397B2 (en)
JPWO2005074047A1 (en) Optical semiconductor device and manufacturing method thereof
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
US6084901A (en) Semiconductor laser device
US7061963B2 (en) Semiconductor laser device
JPH0337874B2 (en)
JPH0716079B2 (en) Semiconductor laser device
JPS6328520B2 (en)
JPH05251812A (en) Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof
JPH05327111A (en) Semiconductor laser and its manufacture
JP2907234B2 (en) Semiconductor wavelength tunable device
JPH04364084A (en) Multiple wavelength laser
JP4885766B2 (en) Semiconductor waveguide device, semiconductor laser, and manufacturing method thereof
JPH0147031B2 (en)
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same