JP2917950B2 - Tunable semiconductor laser and method of manufacturing the same - Google Patents

Tunable semiconductor laser and method of manufacturing the same

Info

Publication number
JP2917950B2
JP2917950B2 JP8341585A JP34158596A JP2917950B2 JP 2917950 B2 JP2917950 B2 JP 2917950B2 JP 8341585 A JP8341585 A JP 8341585A JP 34158596 A JP34158596 A JP 34158596A JP 2917950 B2 JP2917950 B2 JP 2917950B2
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelength
active layer
passive waveguide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8341585A
Other languages
Japanese (ja)
Other versions
JPH10190122A (en
Inventor
裕幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8341585A priority Critical patent/JP2917950B2/en
Publication of JPH10190122A publication Critical patent/JPH10190122A/en
Application granted granted Critical
Publication of JP2917950B2 publication Critical patent/JP2917950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光情報処
理、光計測等に用いられる波長可変半導体レーザ及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength tunable semiconductor laser used for optical communication, optical information processing, optical measurement, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年のインターネットやマルチメディア
サービスの普及によるディジタル情報の増加により、伝
送システムに要求される容量は増加の一途を辿ってい
る。このような高速の信号では、通常の交換機で処理を
行うにも電気回路の限界に近づきつつあり、光の状態で
交換を行う方式について精力的に検討が行われている。
2. Description of the Related Art With the increase of digital information due to the spread of the Internet and multimedia services in recent years, the capacity required for transmission systems has been steadily increasing. Such a high-speed signal is approaching the limit of an electric circuit even if it is processed by a normal switching device, and a method of exchanging in a light state is being studied energetically.

【0003】光の状態で交換を行う方式は大きく別けて
2つある。一つは光スイッチを用いる方式であり、もう
一つは波長フィルタを用いて光の波長を変えることで出
力ポートを変える方式である。後者は、電気的な処理を
一切用いないので、高速に処理することが期待できる。
このような波長交換には、高速で波長スイッチが可能
で、且つ広範囲にわたる波長可変動作が可能な波長可変
光源が求められている。波長可変半導体レーザは、小さ
な制御電流で発振波長を制御できることから、このよう
な波長交換システムでのキーデバイスとして期待され、
3電極構造DBR−LD(Distributed Bragg Reflecto
r-Laser Diode)やSSG−DBR−LD(Super Struc
ture Grating-Distributed Bragg Reflector-Laser Dio
de)等、これまで多くの構造が提案されてきた。
[0003] There are two main types of systems for exchanging light. One is a method using an optical switch, and the other is a method for changing an output port by changing the wavelength of light using a wavelength filter. The latter does not use any electrical processing, so that high-speed processing can be expected.
For such wavelength exchange, a wavelength tunable light source capable of performing wavelength switching at high speed and capable of performing a wavelength tunable operation over a wide range is required. Since a wavelength tunable semiconductor laser can control the oscillation wavelength with a small control current, it is expected as a key device in such a wavelength switching system,
DBR-LD (Distributed Bragg Reflecto)
r-Laser Diode) and SSG-DBR-LD (Super Struc
ture Grating-Distributed Bragg Reflector-Laser Dio
Many structures have been proposed so far, such as de).

【0004】3電極構造DBR−LDは、共振器方向に
分割された活性領域、位相制御領域およびDBR領域を
有し、回折格子はDBR領域のみに形成されている(S.
Murata et al.,Electronics letters,23,403(1987))。
DBR領域に電流を注入することで、プラズマ効果によ
りここでの屈折率を変化させ発振波長の粗調を行う。ま
た、発振波長の微調は、回折格子が形成されていない位
相制御領域に電流を注入して行う。同構造では、DBR
領域、位相制御領域への電流の注入をそれぞれ独立に制
御することで、モード跳びの無い波長可変動作が可能と
なり、720GHz(5.8nm)の準連続波長可変動
作の報告もなされている。
A three-electrode DBR-LD has an active region, a phase control region, and a DBR region divided in the resonator direction, and a diffraction grating is formed only in the DBR region (S.
Murata et al., Electronics letters, 23, 403 (1987)).
By injecting a current into the DBR region, the refractive index here is changed by the plasma effect, and the oscillation wavelength is roughly adjusted. Fine tuning of the oscillation wavelength is performed by injecting a current into a phase control region where no diffraction grating is formed. In the same structure, DBR
By independently controlling the injection of current into the region and the phase control region, a wavelength tunable operation without mode jump is possible, and a quasi-continuous wavelength tunable operation at 720 GHz (5.8 nm) has been reported.

【0005】波長可変幅の拡大には、ピッチが周期的に
変化している超周期構造回折格子を導入したSSG−D
BR−LDが有望である(Y.Tohmori et al.,IEEE Phot
onics Technology Letters,5(2),126(1993))。これは
活性層領域の両脇の受動導波路部分に超周期構造回折格
子が形成されており、この受動導波路部分に流す電流を
変化させることで波長可変動作を実現するものである。
これまで、単体の波長可変半導体レーザとしては最大の
100nmを超える波長可変動作を実現している。
[0005] To expand the wavelength variable width, an SSG-D using a super-periodic structure diffraction grating whose pitch changes periodically is introduced.
BR-LD is promising (Y. Tohmori et al., IEEE Phot
onics Technology Letters, 5 (2), 126 (1993)). In this method, a super-periodic structure diffraction grating is formed in a passive waveguide portion on both sides of an active layer region, and a wavelength tunable operation is realized by changing a current flowing through the passive waveguide portion.
Up to now, a wavelength tunable operation exceeding a maximum of 100 nm has been realized as a single wavelength tunable semiconductor laser.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、3電極
構造DBR−LDでは、位相制御領域、ブラッグ領域に
流す電流を巧みに制御することにより準連続の波長可変
動作を実現できるが、その波長可変幅は高々10nm程
度に留まる。このような波長可変幅では使用できる波長
のチャンネル数が少なく、多くのチャンネルを必要とす
る大規模な波長交換システムや波長クロスコネクトシス
テム等では、複数の光源を用意する必要が生じる。
However, in the three-electrode DBR-LD, a quasi-continuous tunable operation can be realized by skillfully controlling the current flowing through the phase control region and the Bragg region. Remains at most about 10 nm. With such a wavelength variable width, the number of wavelength channels that can be used is small, and in a large-scale wavelength switching system or wavelength cross-connect system that requires many channels, it is necessary to prepare a plurality of light sources.

【0007】また、SSG−DBR−LDでは、広範囲
な波長可変動作が可能なものの、不連続な波長可変動作
となってしまう。このため、使用できるチャンネルが限
定されるばかりか、不連続な波長可変動作のために希望
の発振波長に合わせるには複雑な制御が必要となる。
Further, in the SSG-DBR-LD, although the wavelength tunable operation can be performed in a wide range, the wavelength tunable operation is discontinuous. Therefore, not only the usable channels are limited, but also complicated control is required to adjust to a desired oscillation wavelength due to discontinuous wavelength tuning operation.

【0008】そこで本発明の目的は、これら従来技術の
欠点を克服し、広範囲にわたる準連続波長可変動作を実
現する半導体レーザ、及びその製造方法を提供すること
である。
It is an object of the present invention to provide a semiconductor laser which overcomes these disadvantages of the prior art and realizes a quasi-continuous wavelength tunable operation over a wide range, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の目的
を達成するために種々の検討を重ねた結果、本発明を完
成した。
Means for Solving the Problems The present inventor has made various studies in order to achieve the above object, and as a result, completed the present invention.

【0010】第1の発明は、活性層と受動導波路層が同
一基板上に形成され、受動導波路層の一部に回折格子が
形成され、この回析格子の周期が活性層に近い側で短
く、また活性層から離れるに従って長くなり、少なくと
も回折格子が形成された領域には単一の電極で電流が注
入される構造を有することを特徴とする波長可変半導体
レーザに関する。
In the first invention, an active layer and a passive waveguide layer are formed on the same substrate, a diffraction grating is formed in a part of the passive waveguide layer, and the period of the diffraction grating is closer to the active layer. And shorter as the distance from the active layer increases, at least
In the area where the diffraction grating is formed, current is injected with a single electrode.
The present invention relates to a wavelength tunable semiconductor laser having a structure to be inserted .

【0011】第2の発明は、第1の発明の波長可変半導
体レーザの製造方法であって、回析格子を電子ビーム露
光とエッチングにより形成することを特徴とする波長可
変半導体レーザの製造方法に関する。
A second invention relates to a method of manufacturing a wavelength tunable semiconductor laser according to the first invention, wherein a diffraction grating is formed by electron beam exposure and etching. .

【0012】第3の発明は、活性層と受動導波路層が同
一基板上に形成され、受動導波路層の一部に回折格子が
形成され、この回析格子が形成された受動導波路層の膜
厚が活性層に近い側で薄く、また活性層から離れるに従
って厚くなり、少なくとも回折格子が形成された領域に
は単一の電極で電流が注入される構造を有することを特
徴とする波長可変半導体レーザに関する。
A third aspect of the present invention is a passive waveguide layer in which an active layer and a passive waveguide layer are formed on the same substrate, a diffraction grating is formed in a part of the passive waveguide layer, and the diffraction grating is formed. Is thinner on the side closer to the active layer, and becomes thicker as the distance from the active layer increases, at least in the region where the diffraction grating is formed.
The invention relates to a wavelength tunable semiconductor laser having a structure in which current is injected by a single electrode .

【0013】第4の発明は、第3の発明の波長可変半導
体レーザの製造方法であって、均一周期の回析格子を形
成し、活性層と受動導波路層を、基板上の酸化膜が対向
する間隙部分に選択MOVPE成長を行うことで一括形
成し、さらに、回折格子が形成された受動導波路では、
活性層に近い部分で前記対向する酸化膜の幅を狭くし、
受動導波路の全層厚を薄くして、また活性層から離れる
に従って前記対向する酸化膜の幅を広くし、受動導波路
の全層厚を厚くすることで、実効的に周期を変化させる
ことを特徴とする波長可変半導体レーザの製造方法に関
する。
A fourth invention is a method of manufacturing a wavelength tunable semiconductor laser according to the third invention, wherein a diffraction grating having a uniform period is formed, an active layer and a passive waveguide layer are formed, and an oxide film on a substrate is formed. By performing selective MOVPE growth on the opposing gap, the passive waveguide is formed collectively and further provided with a diffraction grating.
Narrowing the width of the opposing oxide film in a portion near the active layer,
The period can be effectively changed by reducing the total thickness of the passive waveguide, increasing the width of the opposing oxide film as the distance from the active layer increases, and increasing the total thickness of the passive waveguide. The present invention relates to a method for manufacturing a wavelength tunable semiconductor laser characterized by the following.

【0014】[0014]

【発明の実施の形態】3電極構造DBR−LDでは、受
動導波路領域に形成された回折格子によって、特定の波
長のみ反射率を高めることにより、単一軸モード発振を
実現し、さらにこの領域に電流注入を行うことにより、
屈折率を変化させることで波長可変動作を行う。本発明
では、3電極構造DBR−LDに導入される回折格子の
周期を光の進行方向で変化させることで、波長可変範囲
の拡大を実現するものである。具体的には、DBR領域
の端面に近い側で回折格子の周期が長く、また遠い側で
周期が短くなるように回折格子を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a three-electrode DBR-LD, a single-axis mode oscillation is realized by increasing the reflectance only at a specific wavelength by a diffraction grating formed in a passive waveguide region. By performing current injection,
The wavelength tunable operation is performed by changing the refractive index. In the present invention, the wavelength tunable range is expanded by changing the period of the diffraction grating introduced into the three-electrode DBR-LD in the traveling direction of light. Specifically, the diffraction grating is formed such that the period of the diffraction grating is longer on the side closer to the end face of the DBR region and shorter on the side farther from the end surface of the DBR region.

【0015】図8は、本発明で用いられる回折格子を有
する導波路の反射特性を示すものである。この特殊な回
折格子を有する導波路では、電流注入を行わない場合、
活性層から出た光は導波路の奥のDBR領域端面付近ま
で伝播し、DBR領域端面付近の主として長い周期で決
まる長波長域で最大の反射率が得られる。一方、図9に
示すように、導波路に電流注入を行った場合では、吸収
損失の増加により光はDBR領域端面付近まで伝播でき
ず、位相制御領域に近い部分の主として短い周期により
決定される短波長域で最大の反射率が得られる。
FIG. 8 shows the reflection characteristics of a waveguide having a diffraction grating used in the present invention. In a waveguide having this special diffraction grating, when current injection is not performed,
Light emitted from the active layer propagates to the vicinity of the end face of the DBR region deep in the waveguide, and the maximum reflectance is obtained near the end face of the DBR area in a long wavelength region mainly determined by a long cycle. On the other hand, as shown in FIG. 9, when current is injected into the waveguide, light cannot propagate to the vicinity of the end face of the DBR region due to an increase in absorption loss and is determined mainly by a short period of a portion near the phase control region. The highest reflectance is obtained in a short wavelength range.

【0016】新たに提案する回折格子を従来の3電極D
BR−LDに導入すれば、電流注入による屈折率変化で
得られる波長変化と、上述の等価的な回折格子周期の変
化による波長変化とが同じ方向なので、双方の効果の相
乗効果により、波長可変範囲の大幅な拡大が実現でき
る。
The newly proposed diffraction grating is replaced with a conventional three-electrode D
When introduced into a BR-LD, the wavelength change obtained by the refractive index change due to current injection and the wavelength change due to the above-described equivalent diffraction grating period change are in the same direction. Significant expansion of the range can be realized.

【0017】光の進行方向に周期が変化した回折格子の
形成は、電子ビーム(EB)露光機などを用いる高度な
微細加工技術を用いることにより行うことができる。
The formation of a diffraction grating having a period changed in the light traveling direction can be performed by using an advanced fine processing technique using an electron beam (EB) exposure machine or the like.

【0018】このような高度な微細加工技術を用いる必
要のない他の実施の形態として、光の進行方向で導波路
の厚さを変化させることにより、等価的に回折格子の周
期が変化し、通常の干渉露光法で作られる均一周期の回
折格子を用いても前記の光源と同等の特性を有する波長
可変光源を作製することができる。
In another embodiment which does not require the use of such advanced fine processing technology, by changing the thickness of the waveguide in the light traveling direction, the period of the diffraction grating is equivalently changed, A tunable light source having the same characteristics as the above light source can be manufactured even by using a diffraction grating having a uniform period formed by a normal interference exposure method.

【0019】光の進行方向に向かって導波路の膜厚を変
化させるには、T.Sasaki他が、ジャーナル・オ
ブ・クリスタルグロース、第132巻、第435−44
3頁(1993)にて報告した、ストライプ状絶縁膜の
間隙部分に選択的に導波路を結晶成長する有機金属気相
成長(MOVPE)が有効である。この選択成長技術の
最大の特徴は、間隙部両脇の絶縁膜の幅によって導波路
の厚さを変化できることにある。さらに、導波路に多重
量子井戸構造(MQW)を導入すれば、絶縁膜の幅の変
更のみで、導波路のバンドギャップ波長を変化させるこ
とができ、活性層と受動導波路層の一括形成も可能とな
る。このように、選択MOVPE成長技術を巧みに用い
れば、従来の干渉露光法にて作製する均一周期の回折格
子を採用した場合においても前記光源と同等の波長可変
動作を実現することができる。
To change the film thickness of the waveguide in the light traveling direction, it is necessary to use T.T. Sasaki et al., Journal of Crystal Growth, Volume 132, 435-44
Metal-organic vapor phase epitaxy (MOVPE), which is described on page 3 (1993) and selectively grows a waveguide in a gap portion of a stripe-shaped insulating film, is effective. The greatest feature of this selective growth technique is that the thickness of the waveguide can be changed by the width of the insulating film on both sides of the gap. Furthermore, if a multiple quantum well structure (MQW) is introduced into the waveguide, the bandgap wavelength of the waveguide can be changed only by changing the width of the insulating film, and the active layer and the passive waveguide layer can be formed simultaneously. It becomes possible. As described above, if the selective MOVPE growth technique is skillfully used, a wavelength tunable operation equivalent to that of the light source can be realized even when a diffraction grating having a uniform period manufactured by a conventional interference exposure method is employed.

【0020】[0020]

【実施例】以下、本発明を実施例によりさらに説明する
が、本発明はこれらに限定するものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 図1は、本発明の第1の実施例である波長可変半導体レ
ーザの断面構造図を示す。本構造では、活性層1と受動
導波路層2を同一基板上に有する。活性層1と受動導波
路層2は独立に電流注入できるように電極分割する。さ
らに受動導波路層2は、回折格子7が形成されたDBR
領域と、回折格子が形成されていない位相制御領域上の
電極を分割する。
Embodiment 1 FIG. 1 shows a sectional structure view of a wavelength tunable semiconductor laser according to a first embodiment of the present invention. In this structure, the active layer 1 and the passive waveguide layer 2 are provided on the same substrate. The active layer 1 and the passive waveguide layer 2 are divided into electrodes so that current can be independently injected. Further, the passive waveguide layer 2 has a DBR on which the diffraction grating 7 is formed.
The region and the electrode on the phase control region where the diffraction grating is not formed are divided.

【0022】DBR領域に形成された回折格子7は、図
2に示すように、位相制御領域に近い部分では周期が2
40nmと短く、またDBR領域の端面付近では243
nmと長くなっている。
As shown in FIG. 2, the diffraction grating 7 formed in the DBR region has a period of 2 in a portion near the phase control region.
40 nm and 243 near the end face of the DBR region.
nm.

【0023】次に、素子の製造工程について説明する。
工程図を図6及び図7に示す。まず、図6(a)に示す
ように、n−InP基板3上に部分的に回折格子7を形
成した。回折格子は図2に示す周期の変化を有する。こ
の回折格子7の形成では、最初にn−InP基板にEB
用レジストを塗布し、プリベークの後、EB露光による
直接描画、現像、ウェットエッチングにより行った。
Next, the steps of manufacturing the device will be described.
The process diagrams are shown in FIGS. First, as shown in FIG. 6A, the diffraction grating 7 was partially formed on the n-InP substrate 3. The diffraction grating has the change in period shown in FIG. In the formation of the diffraction grating 7, EB is first placed on the n-InP substrate.
After applying a resist and pre-baking, it was performed by direct drawing by EB exposure, development, and wet etching.

【0024】続いて、熱CVD法により前面に酸化膜を
100nm堆積させ、図3に示すフォトマスクを用いて
フォトリソグラフィ工程により、図6(b)に示す酸化
膜8のパターンを形成した。
Subsequently, an oxide film was deposited to a thickness of 100 nm on the front surface by a thermal CVD method, and a pattern of the oxide film 8 shown in FIG. 6B was formed by a photolithography process using a photomask shown in FIG.

【0025】図7(a)は、図6(b)に示した酸化膜
8のパターンを用いて選択MOVPE成長により、活性
層1、受動導波路層2及びクラッド層4を成長した結果
を示している。活性層1は、幅50μmの酸化膜が対向
している幅1.5μmの間隙部分に、また位相制御領域
とDBR領域からなる受動導波路層2は、幅4μmの酸
化膜が対向している幅1.5μmの間隙部分に、両層を
一括形成した。
FIG. 7A shows the result of growing the active layer 1, the passive waveguide layer 2 and the cladding layer 4 by selective MOVPE growth using the pattern of the oxide film 8 shown in FIG. 6B. ing. The active layer 1 has a gap of 1.5 μm in width facing an oxide film of 50 μm, and the passive waveguide layer 2 composed of a phase control region and a DBR region has an oxide film of 4 μm in width. Both layers were collectively formed in a gap having a width of 1.5 μm.

【0026】活性層1及び受動導波路層2の層構造は、
波長組成1.2μmのn−InGaAsP層(n=5×
1017cm-3)を0.1μm、InP層を50nm、波
長組成1.2μmのInGaAsPを100nm、波長
組成1.6μmで+1.0%圧縮歪のInGaAsPウ
エル層と波長組成1.2μmのInGaAsPバリア層
からなる量子井戸を5周期、波長組成1.2μmのIn
GaAsPを100nmの厚さに形成した。p−InP
クラッド層4(p=5×1017cm-3)の厚みは0.3
μmである。
The layer structure of the active layer 1 and the passive waveguide layer 2 is as follows.
An n-InGaAsP layer having a wavelength composition of 1.2 μm (n = 5 ×
10 17 cm -3 ) of 0.1 μm, InP layer of 50 nm, InGaAsP of 1.2 μm wavelength composition of 100 nm, InGaAsP well layer of 1.6 μm wavelength composition and + 1.0% compression strain, and InGaAsP of 1.2 μm wavelength composition. Five periods of the quantum well composed of the barrier layer, the wavelength composition of 1.2 μm In
GaAsP was formed to a thickness of 100 nm. p-InP
The thickness of the cladding layer 4 (p = 5 × 10 17 cm −3 ) is 0.3
μm.

【0027】再び、フォトリソグラフィ工程とフッ酸に
よるエッチングにより、活性層と受動導波路層が形成さ
れた導波路両脇の酸化膜をそれぞれ2μm除去した。こ
のウエハを用いて再び選択MOVPE成長を行いp−I
nPクラッド層4(p=1×1018cm-3)、InGa
Asコンタクト層(p=1×1019cm-3)を順次成長
させた。結晶成長後、再び酸化膜をウエハ前面に堆積さ
せ、続いて活性層、受動導波路層が形成されている上部
のみに電流が流れるようにフォトリソグラフィ工程とフ
ッ酸によるエッチングにより酸化膜にコンタクト窓を開
けた。その後、全面にTiを50nm、Auを400n
m蒸着した。活性領域、位相制御領域、DBR領域に独
立して電流が流せるように電極を図7(b)に示すよう
にフォトリソグラフィ工程とウェットエッチングにより
各領域に分離し、電極5を形成した。その後、基板の厚
さが150μm程度になるまで研磨し、さらに裏面に、
Tiを50nm、Auを400nm形成してなる裏面n
電極6を設け、400℃の電極アニールを経て素子を完
成した。
Again, by a photolithography step and etching with hydrofluoric acid, the oxide films on both sides of the waveguide on which the active layer and the passive waveguide layer were formed were each removed by 2 μm. Selective MOVPE growth is again performed using this wafer, and p-I
nP cladding layer 4 (p = 1 × 10 18 cm −3 ), InGa
As contact layers (p = 1 × 10 19 cm −3 ) were sequentially grown. After crystal growth, an oxide film is again deposited on the front surface of the wafer, and then a contact window is formed in the oxide film by a photolithography process and etching with hydrofluoric acid so that current flows only in the upper portion where the active layer and the passive waveguide layer are formed. Was opened. After that, 50 nm of Ti and 400 n of Au are formed on the entire surface.
m was deposited. As shown in FIG. 7B, the electrodes were separated into the respective regions by a photolithography process and wet etching so that current could flow independently in the active region, the phase control region, and the DBR region. After that, it is polished until the thickness of the substrate becomes about 150 μm, and further on the back surface,
Back surface n formed by forming 50 nm of Ti and 400 nm of Au
The electrode 6 was provided, and the device was completed through 400 ° C. electrode annealing.

【0028】この素子を、活性領域500μm、位相制
御領域300μm、DBR領域500μmの合計130
0μmに切り出し、DBR領域側端面には高反射コーテ
ィングを施して特性の評価を行った。
This device was used for a total of 130 μm of an active region of 500 μm, a phase control region of 300 μm, and a DBR region of 500 μm.
It was cut to 0 μm, and a high reflection coating was applied to the end face on the DBR region side to evaluate the characteristics.

【0029】作製した波長可変光源は、活性領域のみに
電流を流した場合に、しきい値電流10mAで波長1.
55μmにおいてレーザ発振した。最高出力は50mW
と良好な値を得た。DBR領域に電流を流して波長可変
動作を行ったところ、30nmの波長可変範囲が得られ
た。
The manufactured wavelength tunable light source has a threshold current of 10 mA and a wavelength of 1.
Laser oscillation occurred at 55 μm. Maximum output is 50mW
And good values were obtained. When a wavelength tunable operation was performed by passing a current through the DBR region, a wavelength tunable range of 30 nm was obtained.

【0030】波長の微調整は位相制御領域に電流注入を
することで行い、DBR領域に流す電流を逐次調整する
ことによって、得られる波長可変範囲全体にわたって準
連続波長可変動作を実現した。
Fine adjustment of the wavelength was performed by injecting current into the phase control region, and by sequentially adjusting the current flowing through the DBR region, a quasi-continuous wavelength variable operation was realized over the entire variable wavelength range obtained.

【0031】実施例2 本実施例では、実施例1とは異なり、均一周期の回折格
子を用いても先に述べた選択MOVPE成長技術を巧み
に使うことで、広範囲にわたる波長可変動作を実現する
波長可変光源について説明する。
Embodiment 2 In this embodiment, unlike the embodiment 1, even if a diffraction grating having a uniform period is used, the wavelength tunable operation over a wide range can be realized by skillfully using the selective MOVPE growth technique described above. The variable wavelength light source will be described.

【0032】図4に本実施例の断面構造図を示す。酸化
膜で挟まれた1.5μm幅の間隙部分に選択的にMOV
PE成長行うことで、光の進行方向で導波路の膜厚を変
化させることが本実施例の特徴である。図4に示すよう
に、本実施例はDBR領域の位相制御領域に近い部分で
受動導波路層2の膜厚が薄く、またDBR領域端面付近
では受動導波路層2が厚くなる構造を有している。この
ような導波路構造では、DBR領域の位相制御領域に近
い部分では実効的な回折格子周期が短くなり、一方DB
R領域端面付近では導波路層が厚いために等価屈折率が
大きく、実効的回折格子周期が長くなり、実施例1の場
合と同じ効果が期待できる。すなわち、電流注入を行わ
ない場合は、活性層から発する光はDBR領域の奥まで
伝播し、実効的周期の長い回折格子により決まる長波の
波長でレーザ発振する。一方、電流注入を行った場合で
は、導波路での吸収が大きいためにDBR領域の奥まで
光は伝播できず、位相制御領域周辺の短い実効周期の回
折格子により決まる短波の波長でレーザ発振する。
FIG. 4 shows a sectional structural view of this embodiment. MOV is selectively applied to a 1.5 μm wide gap between oxide films.
This embodiment is characterized in that the thickness of the waveguide is changed in the light traveling direction by performing PE growth. As shown in FIG. 4, this embodiment has a structure in which the thickness of the passive waveguide layer 2 is small near the phase control region of the DBR region, and is large near the end face of the DBR region. ing. In such a waveguide structure, the effective diffraction grating period is short in a portion of the DBR region close to the phase control region, while the DBR region
Since the waveguide layer is thick near the end face of the R region, the equivalent refractive index is large, the effective diffraction grating period becomes long, and the same effect as in the first embodiment can be expected. That is, when current injection is not performed, light emitted from the active layer propagates deep into the DBR region and oscillates at a long wavelength determined by a diffraction grating having a long effective period. On the other hand, when current injection is performed, light cannot propagate deep into the DBR region due to large absorption in the waveguide, and laser oscillation occurs at a short-wavelength determined by a diffraction grating having a short effective period around the phase control region. .

【0033】以下に本実施例における素子の作製方法に
ついて述べる。最初に、n−InP基板3上に干渉露光
法を用いて回折格子7を形成した。この回折格子7はD
BR領域の500μmにわたって形成し、活性領域と位
相制御領域の800μmには形成せず、このパターンは
2インチウエハ前面に形成した。
Hereinafter, a method for fabricating the device in this embodiment will be described. First, the diffraction grating 7 was formed on the n-InP substrate 3 using the interference exposure method. This diffraction grating 7 has a D
This pattern was formed on the front surface of the 2-inch wafer, being formed over the BR region of 500 μm and not being formed on the active region and the phase control region of 800 μm.

【0034】次に、回折格子7を形成したn−InP基
板3に、酸化膜を熱CVD法により基板全面に堆積させ
た。これを、図5に示すフォトマスクを用いてフォトリ
ソグラフィ工程とフッ酸のエッチングにより処理し、選
択MOVPE成長用の酸化膜パターンを形成した。
Next, an oxide film was deposited on the entire surface of the n-InP substrate 3 on which the diffraction grating 7 was formed by thermal CVD. This was processed by a photolithography process and hydrofluoric acid etching using a photomask shown in FIG. 5 to form an oxide film pattern for selective MOVPE growth.

【0035】続いて、活性層1と受動導波路層2を、酸
化膜8が対向する幅1.5μmの間隙部分に形成し、活
性層1は酸化膜の幅が50μmの部分に、また受動導波
路層2は酸化膜の幅が4〜30μmの部分に、両層を一
括形成する。
Subsequently, the active layer 1 and the passive waveguide layer 2 are formed in a gap of 1.5 μm in width facing the oxide film 8. In the waveguide layer 2, both layers are collectively formed at a portion where the width of the oxide film is 4 to 30 μm.

【0036】活性層1及び受動導波路層2の層構造は、
波長組成1.2μmのInGaAsP層(n=5×10
17cm-3)を0.1μm、InP層を50nm、波長組
成1.2μmのInGaAsPを100nm、波長組成
1.6μmで+1.0%圧縮歪のInGaAsPウエル
層と波長組成1.2μmのInGaAsPバリア層から
なる量子井戸を5周期、波長組成1.2μmのInGa
AsPを100nmの厚さに形成した。p−InPクラ
ッド層4(p=5×1017cm-3)は0.3μmの厚さ
に形成した。
The layer structure of the active layer 1 and the passive waveguide layer 2 is as follows.
InGaAsP layer having a wavelength composition of 1.2 μm (n = 5 × 10
17 cm −3 ) of 0.1 μm, InP layer of 50 nm, InGaAsP of 1.2 μm wavelength composition of 100 nm, InGaAsP well layer of 1.6 μm wavelength composition and + 1.0% compressive strain, and InGaAsP barrier of 1.2 μm wavelength composition Layer composed of 5 layers of quantum wells and InGa having a wavelength composition of 1.2 μm.
AsP was formed to a thickness of 100 nm. The p-InP cladding layer 4 (p = 5 × 10 17 cm −3 ) was formed to a thickness of 0.3 μm.

【0037】再び、フォトリソグラフィ工程とフッ酸に
よるエッチングにより、活性層と受動導波路層が形成さ
れた導波路両脇の酸化膜をそれぞれ2μm除去した。こ
のウエハを用いて再び選択MOVPE成長を行いp−I
nPクラッド層4(p=1×1018cm-3)を厚さ2μ
m、InGaAsコンタクト層(p=1×1019
-3)を0.3μmそれぞれ選択MOVPE成長した。
Again, the photolithography process and hydrofluoric acid
The active layer and the passive waveguide layer
The oxide films on both sides of the waveguide were removed by 2 μm. This
MOVPE growth is again performed using the wafer of p-I
nP cladding layer 4 (p = 1 × 1018cm-3) Is 2μ thick
m, InGaAs contact layer (p = 1 × 1019c
m -3) Was grown by selective MOVPE of 0.3 μm each.

【0038】その後の製造工程に関しては実施例1と同
様であり、結晶成長後、再び酸化膜をウエハ全面に堆積
させ、続いで活性層、受動導波路層が形成されている上
部のみに電流が流れるようにフォトリソグラフィ工程と
フッ酸によるエッチングにより酸化膜にコンタクト窓を
開けた。その後、全面にTiを50nm、Auを400
nmの厚さに蒸着した。活性領域、位相制御領域、DB
R領域に独立して電流を流すため、図7(b)に示すよ
うにフォトリソグラフィ工程とウエットエッチングによ
り各領域を分離し、P電極5を形成した。その後、基板
厚さが150μm程度になるまで研磨し、さらに裏面
に、Tiを50nm、Auを400nm形成してなる裏
面n電極6を設け、400℃の電極アニールを経て素子
を完成した。
The subsequent manufacturing steps are the same as in Example 1. After the crystal growth, an oxide film is deposited again on the entire surface of the wafer, and then a current is applied only to the upper portion where the active layer and the passive waveguide layer are formed. A contact window was opened in the oxide film by a photolithography process and etching with hydrofluoric acid so as to flow. After that, Ti is 50 nm and Au is 400
Deposited to a thickness of nm. Active area, phase control area, DB
In order to allow a current to flow independently in the R region, each region was separated by a photolithography process and wet etching to form a P electrode 5 as shown in FIG. 7B. Thereafter, the substrate was polished to a thickness of about 150 μm, and a back surface n-electrode 6 formed of 50 nm of Ti and 400 nm of Au was provided on the back surface, and the device was completed through electrode annealing at 400 ° C.

【0039】この素子を、活性領域500μm、位相制
御領域300μm、DBR領域500μmの合計130
0μmに切り出し、DBR領域側端面には高反射コーテ
ィングを施して特性の評価を行った。
This device was used for a total of 130 μm of an active region of 500 μm, a phase control region of 300 μm, and a DBR region of 500 μm.
It was cut to 0 μm, and a high reflection coating was applied to the end face on the DBR region side to evaluate the characteristics.

【0040】本実施例において作製した波長可変光源
は、活性領域のみに電流を流した場合に、しきい値電流
10mAで波長1.55μmにてレーザ発振した。最高
出力は50mWと良好な値を得た。DBR領域に電流を
流して波長可変動作を行ったところ、30nmの波長可
変範囲が得られ、実施例1で示した構造のものと比べて
遜色無い特性が得られた。
The tunable light source manufactured in this example oscillated at a wavelength of 1.55 μm at a threshold current of 10 mA when a current was applied only to the active region. The maximum output was as good as 50 mW. When a current was passed through the DBR region to perform the wavelength tunable operation, a wavelength tunable range of 30 nm was obtained, and characteristics comparable to those of the structure shown in Example 1 were obtained.

【0041】波長の微調整は位相制御領域に電流注入を
することで行い、DBR領域に流す電流を逐次調整する
ことによって、得られる波長可変範囲全体にわたって準
連続波長可変動作を実現した。
Fine adjustment of the wavelength was performed by injecting current into the phase control region, and by sequentially adjusting the current flowing through the DBR region, a quasi-continuous wavelength variable operation was realized over the entire variable wavelength range obtained.

【0042】以上、本発明の実施例では、InP基板上
に作製するInGaAsP系の多重量子井戸構造半導体
レーザ素子について述べたが、半導体材料はこれに限ら
ず、InGaAlAs系、AlGaAs系、InGaA
s/AlGaAs系やその他の材料系においても適用で
きる。
As described above, in the embodiments of the present invention, an InGaAsP-based semiconductor laser device having a multiple quantum well structure manufactured on an InP substrate has been described. However, the semiconductor material is not limited to this.
The present invention is also applicable to s / AlGaAs and other material systems.

【0043】また、ここでは波長1.55μm帯の素子
について述べたが、他の波長帯においても本発明は有効
である。
Although the element having a wavelength band of 1.55 μm has been described here, the present invention is effective in other wavelength bands.

【0044】[0044]

【発明の効果】以上の説明から明らかなように本発明に
よれば、波長可変範囲が準連続であり、且つ波長可変範
囲の大幅な拡大が可能となる。これによって、波長交換
システムや波長クロスコネクトシステム等において、波
長チャンネル数を大幅に増大でき、チャンネル数の多い
大規模なシステムの構築が可能となる。
As is clear from the above description, according to the present invention, the wavelength variable range is quasi-continuous, and the wavelength variable range can be greatly expanded. As a result, in a wavelength switching system, a wavelength cross-connect system, or the like, the number of wavelength channels can be greatly increased, and a large-scale system having a large number of channels can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の波長可変半導体レーザの実施例1の断
面構造図である。
FIG. 1 is a sectional structural view of a wavelength tunable semiconductor laser according to a first embodiment of the present invention.

【図2】実施例1におけるDBR領域に形成された回折
格子の周期の変化を示す図である。
FIG. 2 is a diagram showing a change in the period of a diffraction grating formed in a DBR region in Example 1.

【図3】実施例1において使用した選択MOVPE成長
マスクパターンの平面図である。
FIG. 3 is a plan view of a selective MOVPE growth mask pattern used in Example 1.

【図4】本発明の波長可変半導体レーザの実施例2の断
面構造図である。
FIG. 4 is a sectional structural view of a wavelength tunable semiconductor laser according to a second embodiment of the present invention.

【図5】実施例2において使用した選択MOVPE成長
マスクパターンの平面図である。
FIG. 5 is a plan view of a selective MOVPE growth mask pattern used in Example 2.

【図6】本発明の波長可変半導体レーザの製造の工程図
である。
FIG. 6 is a process chart of manufacturing the wavelength tunable semiconductor laser of the present invention.

【図7】本発明の波長可変半導体レーザの製造の工程図
である。
FIG. 7 is a process chart of manufacturing the wavelength tunable semiconductor laser of the present invention.

【図8】本発明で用いられる回折光子を有する導波路
の、電流を注入しない状態での反射特性図である。
FIG. 8 is a reflection characteristic diagram of a waveguide having a diffracted photon used in the present invention when no current is injected.

【図9】本発明で用いられる回折光子を有する導波路
の、電流を注入した状態での反射特性図である。
FIG. 9 is a reflection characteristic diagram of a waveguide having a diffracted photon used in the present invention in a state where a current is injected.

【符号の説明】[Explanation of symbols]

1 活性層 2 受動導波路層 3 n−InP基板 4 p−InPクラッド層 5 p電極 6 n電極 7 回折格子 8 酸化膜 Reference Signs List 1 active layer 2 passive waveguide layer 3 n-InP substrate 4 p-InP cladding layer 5 p electrode 6 n electrode 7 diffraction grating 8 oxide film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01S 3/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性層と受動導波路層が同一基板上に形
成され、受動導波路層の一部に回折格子が形成され、こ
の回析格子の周期が活性層に近い側で短く、また活性層
から離れるに従って長くなり、少なくとも回折格子が形
成された領域には単一の電極で電流が注入される構造を
有することを特徴とする波長可変半導体レーザ。
An active layer and a passive waveguide layer are formed on the same substrate, a diffraction grating is formed on a part of the passive waveguide layer, and a period of the diffraction grating is short on a side close to the active layer. The longer the distance from the active layer, the longer the diffraction grating
A structure in which current is injected with a single electrode in the formed region
1. A wavelength tunable semiconductor laser, comprising:
【請求項2】 請求項1記載の波長可変半導体レーザの
製造方法であって、回析格子を電子ビーム露光とエッチ
ングにより形成することを特徴とする波長可変半導体レ
ーザの製造方法。
2. The method for manufacturing a wavelength tunable semiconductor laser according to claim 1, wherein the diffraction grating is formed by electron beam exposure and etching.
【請求項3】 活性層と受動導波路層が同一基板上に形
成され、受動導波路層の一部に回折格子が形成され、こ
の回析格子が形成された受動導波路層の膜厚が活性層に
近い側で薄く、また活性層から離れるに従って厚くな
り、少なくとも回折格子が形成された領域には単一の電
極で電流が注入される構造を有することを特徴とする波
長可変半導体レーザ。
3. An active layer and a passive waveguide layer are formed on the same substrate, a diffraction grating is formed on a part of the passive waveguide layer, and the passive waveguide layer on which the diffraction grating is formed has a film thickness. thinner at close to the active layer side, also becomes thicker with distance from the active layer, a single conductive in a region at least diffraction grating is formed
A wavelength tunable semiconductor laser having a structure in which current is injected at a pole .
【請求項4】 請求項3記載の波長可変半導体レーザの
製造方法であって、均一周期の回析格子を形成し、活性
層と受動導波路層を、基板上の酸化膜が対向する間隙部
分に選択MOVPE成長を行うことで一括形成し、さら
に、回折格子が形成された受動導波路では、活性層に近
い部分で前記対向する酸化膜の幅を狭くし、受動導波路
の全層厚を薄くして、また活性層から離れるに従って前
記対向する酸化膜の幅を広くし、受動導波路の全層厚を
厚くすることで、実効的に周期を変化させることを特徴
とする波長可変半導体レーザの製造方法。
4. The method of manufacturing a wavelength tunable semiconductor laser according to claim 3, wherein a diffraction grating having a uniform period is formed, and the active layer and the passive waveguide layer are formed in a gap portion where an oxide film on the substrate faces. In a passive waveguide on which a diffraction grating is formed, the width of the opposing oxide film is reduced near the active layer, and the total thickness of the passive waveguide is reduced. A wavelength tunable semiconductor laser characterized in that the period is effectively changed by reducing the thickness, increasing the width of the opposing oxide film as the distance from the active layer increases, and increasing the total thickness of the passive waveguide. Manufacturing method.
JP8341585A 1996-12-20 1996-12-20 Tunable semiconductor laser and method of manufacturing the same Expired - Fee Related JP2917950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8341585A JP2917950B2 (en) 1996-12-20 1996-12-20 Tunable semiconductor laser and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8341585A JP2917950B2 (en) 1996-12-20 1996-12-20 Tunable semiconductor laser and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10190122A JPH10190122A (en) 1998-07-21
JP2917950B2 true JP2917950B2 (en) 1999-07-12

Family

ID=18347221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8341585A Expired - Fee Related JP2917950B2 (en) 1996-12-20 1996-12-20 Tunable semiconductor laser and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2917950B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019516A (en) * 2004-07-01 2006-01-19 Fujitsu Ltd Tunable laser and its control method
JP2010251712A (en) * 2009-03-26 2010-11-04 Sony Corp Bi-section semiconductor laser device, method for manufacturing the same, and method for driving the same
US10386581B2 (en) * 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter
JP6757290B2 (en) * 2017-05-09 2020-09-16 日本電信電話株式会社 Light source device
JPWO2021124394A1 (en) * 2019-12-16 2021-06-24

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1990年電子情報通信学会春季全国大会 C−138 p.4−193

Also Published As

Publication number Publication date
JPH10190122A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP4643794B2 (en) Semiconductor light emitting device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2746065B2 (en) Method for manufacturing optical semiconductor device
JP2701569B2 (en) Method for manufacturing optical semiconductor device
JPH06260727A (en) Optical semiconductor device and manufacture thereof
CN113224638A (en) SBG semiconductor laser device for sampling by using electrode
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH1197799A (en) Fabrication of semiconductor device
JP3298619B2 (en) Manufacturing method of semiconductor laser
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH04221872A (en) Semiconductor wavelength varying device
JP3251191B2 (en) Semiconductor optical device used for optical communication
JPH0936496A (en) Semiconductor light emitting element and fabrication thereof
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JP2770897B2 (en) Semiconductor distributed reflector and semiconductor laser using the same
JPH08330665A (en) Manufacture of optical semiconductor laser
JP2780687B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JPS61220389A (en) Integrated type semiconductor laser
JP2004128372A (en) Distribution feedback semiconductor laser device
JP2914249B2 (en) Optical semiconductor device and method of manufacturing the same
JPH01186693A (en) Semiconductor device and manufacture thereof
JP2725449B2 (en) Method for manufacturing optical semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees