JPH04176180A - Semiconductor laser element chip - Google Patents

Semiconductor laser element chip

Info

Publication number
JPH04176180A
JPH04176180A JP2303222A JP30322290A JPH04176180A JP H04176180 A JPH04176180 A JP H04176180A JP 2303222 A JP2303222 A JP 2303222A JP 30322290 A JP30322290 A JP 30322290A JP H04176180 A JPH04176180 A JP H04176180A
Authority
JP
Japan
Prior art keywords
chip
film
semiconductor laser
al2o3
dielectric multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2303222A
Other languages
Japanese (ja)
Inventor
Shoji Kitamura
祥司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2303222A priority Critical patent/JPH04176180A/en
Publication of JPH04176180A publication Critical patent/JPH04176180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0231Stems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a semiconductor laser element chip to be set stable in characteristics and high in reliability by a method wherein a film of Al2O3 or SiO2 is laminated as a final layer of an alternately laminated dielectric multilayer film, and the film of Al2O3 or SiO2 is coated with epoxy resin. CONSTITUTION:A GaAs/AlGaAs double-heterostructure is formed on a GaAs substrate, a photoprocess and an electrode forming process are carried out, the wafer concerned is cleaved into a bar 4, the opposed cleaved planes of the bar 4 are coated with a dielectric multilayer film 2. The dielectric multilayer film 2 is deposited through a vacuum evaporation method in such a manner that films of Al2O3, TiO2, Al2O3, and TiO2 lambda/4 in thickness are alternately laminated in this order, and then a film of Al2O3 is deposited thereon as thick as lambda/2. In succession, The bar 4 is split into a large number of chips, the chip 1 is die-bonded to a lead frame 5 making its substrate face upward, and the substrate is wire-bonded. Finally, the chip 1 and its vicinity are molded with an epoxy resin 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ元出射面に誘電体多層膜を形成する半導
体レーザ素子のチップに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor laser chip having a dielectric multilayer film formed on a laser source emission surface.

〔従来の技術〕[Conventional technology]

半導体レーザ素子のチップは1反対面にあって元共振器
を形成する一対の臂開面に、反射率の制御を行なってい
る。その状態を第4図tこ示す。第4図はチップ1の周
辺を側面からみた模式断面図であり、チップ1の二つの
労開面に、それぞれ肪奄体多#膜2が被層される。矢印
はレーザ光の出射方向を示す。
The reflectance of the chip of the semiconductor laser element is controlled on a pair of open-arm surfaces that are located on opposite sides and form the original resonator. This state is shown in FIG. FIG. 4 is a schematic cross-sectional view of the periphery of the chip 1 viewed from the side, and the fat pad multilayer film 2 is coated on each of the two open surfaces of the chip 1. The arrow indicates the direction of laser light emission.

チップ1の二つの分開面の反射率は、しきい値電流、倣
分量子効率1強度雑音などの素子特性に大きく影響し、
素子の川越に合わせて制御される。
The reflectance of the two divided planes of chip 1 greatly affects device characteristics such as threshold current, imitative fractional quantum efficiency, and intensity noise.
It is controlled according to the element Kawagoe.

例えは、筒元出力盤レーザ素子では、後面反射率を90
%程度に上げ%光出射面の前面反射率を10%程度に下
げることにより、効率的に11j面からレーザ光を取り
出すことかできる。
For example, in the case of a laser device with a tube head output plate, the rear reflectance is set to 90.
% and lowering the front reflectance of the light exit surface to about 10%, it is possible to efficiently extract laser light from the 11j plane.

誘電体層N膜2の反射率は、低屈折率のAl1203(
屈折率:1.65)や5i02 ()出折率:1.50
)と。
The reflectance of the dielectric layer N film 2 is Al1203 (low refractive index).
Refractive index: 1.65) or 5i02 () Output index: 1.50
)and.

高ノU(折率の非晶%S+(屈折率: 3.4 ) T
、’102 (屈折率: 2.2 )を各々発振波長(
λ) (’) 32の膜厚で交互に積層して、h]変に
している。第5図A−1a 203とT+02  から
なる誘弗、体多層暎2の膜厚に対する反射率の関係を示
した籾図であり、ApGa I−x As(x=0.1
7)上にA、β203 、 T 702 (1) II
IIに厚さ偽(λ= 780 nm )つつ槓ノψIし
たものでめ4゜例んは7(ン%桿没の反茅r率を1借こ
とする場合、klJ 20 、+  とTiO2を2層
づつ績んだ後、通常は第5図の1III腺0)A点から
5Ap203そ偽の厚さで槓鳩する。これは膜厚を正し
く制御して積層すれは、70%程度の反射率を維持する
ことは可能でめるから、 A−gzQ3を偽θ傷さで稙
JtV Lなくてもよいが、映浮が所望の値からすれた
場合でも、反射率は少なくとも第5図のB点を維持する
ことができることと、保霞膜としても有効に鋤く力1ら
である。
High U (Amorphous % of refractive index S+ (Refractive index: 3.4) T
, '102 (refractive index: 2.2) and the oscillation wavelength (
λ) (') They are alternately laminated with a film thickness of 32 h]. Fig. 5 A-1a is a diagram showing the relationship between the reflectance and the film thickness of the dielectric multilayer film 2 consisting of 203 and T+02, ApGa I-x As (x=0.1
7) A, β203, T 702 (1) II on top
For example, if we borrow the reciprocal rate of 7 (n%) by 1, then klJ 20 , + and TiO2 are 2. After layer by layer, it is usually rolled from point 1III0) A in Figure 5 to a thickness similar to that of 5Ap203. This is because it is possible to maintain a reflectance of about 70% by properly controlling the film thickness and laminating the film, so it is not necessary to use A-gzQ3 with false θ scratches. Even if the reflectance deviates from the desired value, the reflectance can be maintained at least at point B in FIG. 5, and the plowing force is 1.

〔発明が解決しようとする課題j 第5図からもわかるようtこ、肪亀体多)曽m 7 (
1)メ射率が膜厚ζこ対する変動は大きく、とくに前述
のようζこ、7(1%句近(こ反射率を制御する場合、
最後に積むAJhOa  の制御性の如何によって1反
射率は第5図のA点とB点の範囲で示されるように、4
0%から70%まで変化する回層性がある。それ(こ伴
ない半導体レーザ素子の特性も変動する。誘電体多層膜
2は通常真空蒸着法で形成されるが2以上のような反射
率の変動を抑制するのは容易ではなく、素子特性のばら
つきの大きな要因となっている。
[Problem to be solved by the invention j As can be seen from FIG.
1) The variation of the reflectance with respect to the film thickness ζ is large, especially when controlling the reflectance near 7 (1%), as mentioned above.
Depending on the controllability of AJhOa accumulated at the end, one reflectance can be 4 or 4 as shown in the range of points A and B in Figure 5.
There is a layering property that varies from 0% to 70%. As a result, the characteristics of the semiconductor laser device also fluctuate. The dielectric multilayer film 2 is usually formed by vacuum evaporation, but it is not easy to suppress variations in reflectance of 2 or more, and the characteristics of the device change. This is a major cause of variation.

本発明は上述の点に鑑みてなされたものであり、その目
的は、チップのレーザ光出射面に1反射率の制御性のよ
い多層膜を備えた半導体レーザ素子のチップを提供する
ことにある。
The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a semiconductor laser element chip having a multilayer film with a reflectance of 1 that can be easily controlled on the laser beam emitting surface of the chip. .

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、本発明の半導体レーザ素
子のチップは、誘電体多層膜にに−0203もしくは5
iOzをレーザ発振波長の只の厚さで交互に積層し、最
終層としてA、、e203もしくはS iOzをレーザ
発嵌波長の1/2の厚さに堆積して、さらにこれをエポ
キシ樹脂で被覆したものである。
In order to solve the above problems, the semiconductor laser chip of the present invention has a dielectric multilayer film of -0203 or -0203.
iOz is laminated alternately to a thickness equal to the laser oscillation wavelength, and as the final layer, A, e203 or SiOz is deposited to a thickness of 1/2 the laser emission wavelength, and this is further coated with epoxy resin. This is what I did.

〔作用〕[Effect]

本発明の半導体レーザ索子チップは、上記のように構成
したため、エポキシ樹脂の屈折率に近い最終層のAl1
203もしくはS +02の膜厚変化に伴なう反射率の
変化が小さく、組み立て後の半導体レーザ素子の特性が
安定する。
Since the semiconductor laser probe chip of the present invention is configured as described above, the final layer Al1 has a refractive index close to that of the epoxy resin.
Changes in reflectance due to changes in film thickness of 203 or S+02 are small, and the characteristics of the semiconductor laser device after assembly are stable.

〔笑施例〕[LOL example]

以下1本発明を笑施例に基づき説明する。 The present invention will be explained below based on examples.

ここでは、本発明を発振波長780 nmのGa A、
s/klJ Ga AS系半導体レーザ素子チップに。
Here, the present invention will be described using Ga A with an oscillation wavelength of 780 nm,
s/klJ Ga AS-based semiconductor laser chip.

A、e203とTi0zの誘電体多層膜を被aTる場合
について説明する。第3図fal 、 fbl 、 f
clに本発明のチップζこより半導体レーザ素子を組み
豆でる工程の概要を示す。
A, the case where aT is covered with a dielectric multilayer film of e203 and Ti0z will be explained. Figure 3 fal, fbl, f
cl shows an outline of the process of assembling and manufacturing a semiconductor laser device from the chip ζ of the present invention.

すす、GaA S基板上にMOCVD法(有機金属気相
成長法)により、Ga AS/AI3 GaA Sダブ
ルへテロ構造を形成し、フォトプロセス、電極形成プロ
セスを経た後、このウェハを幅260 PfrL、長さ
10 am程度のバー4に襞間する。次にそのバー4の
互いに反対の而をなす一対の労開面に誘電体多層膜2の
抜機を施す〔3図fal J。誘電体多層膜2の堆積は
真窒蒸着法を用い、 AJhOa  は蒸着温度400
℃、堆積速度5A/秒とし、T iOzは蒸着温度20
0℃、堆積速度0.4 A/秒として、A−4h 03
 、 T iOz 、 AJh O3*TiO2のl1
111mに偽の膜厚で交互に積層した後、AA 20 
aを膜厚外で堆積させるが、これを同じ条件で二つの襞
間面について行なう。次いで、このバー4を320μm
の長さで多数のチップ状に分離して、そのチップを基板
側を上にしてリードフレーム5上tこダイボンデインク
し、基板をワイヤボンディングする〔3図(b)〕。最
後〔こエポキシ樹脂3でチップ周辺をモールドする〔3
図(C)〕。
A GaAS/AI3GaAs double heterostructure was formed on a soot, GaAs substrate by MOCVD (metal organic chemical vapor deposition), and after going through a photo process and an electrode formation process, this wafer was made into a wafer with a width of 260 PfrL, A bar 4 having a length of about 10 am is pleated. Next, the dielectric multilayer film 2 is punched out on a pair of opposing opening surfaces of the bar 4 (see Figure 3, fal J). The dielectric multilayer film 2 is deposited using the true nitrogen deposition method, and AJhOa is the deposition temperature of 400.
℃, deposition rate 5 A/s, and T iOz at a deposition temperature of 20
A-4h 03 at 0°C and deposition rate of 0.4 A/sec.
, T iOz , AJh O3*l1 of TiO2
After alternately laminating 111 m with false film thickness, AA 20
A is deposited outside the film thickness, and this is performed on the two interfold surfaces under the same conditions. Next, this bar 4 has a thickness of 320 μm.
The chips are separated into a large number of chips with the length of , and the chips are die-bonded onto the lead frame 5 with the substrate side up, and the substrates are wire-bonded [FIG. 3(b)]. Finally, mold the area around the chip with epoxy resin 3.
Figure (C)].

ここで誘誘電体多層膜2こはA沼203の代わりにS 
iOzを用いてもよく、非晶[SiとTi0zを偽の膜
厚で交互に積層した後、最終層としてA、8203韮た
は5iOzを膜厚外で堆積させてもよい。
Here, the dielectric multilayer film 2 is S instead of the A swamp 203.
iOz may be used, or after amorphous [Si and TiOz are alternately laminated with a false film thickness, A, 8203 niOz, or 5iOz may be deposited as a final layer with a non-film thickness.

また、半導体レーザ素子はこのように樹脂モールドのパ
ッケージ構造をとらずに、チップ1のレーザ光出射面に
積層した誘電体多層膜2の端面が、エポキシ樹脂3で覆
われた構造であってもよい。
Furthermore, the semiconductor laser element does not have the resin molded package structure as described above, but may have a structure in which the end face of the dielectric multilayer film 2 laminated on the laser light emitting surface of the chip 1 is covered with the epoxy resin 3. good.

かくして得られた半導体レーザ索子のチップ1の周辺を
側面からみた模式断面図を第1図(こ示す。
FIG. 1 is a schematic cross-sectional view of the periphery of the chip 1 of the semiconductor laser cable obtained in this way, seen from the side.

441図が第4図と異なる所は、 AJhO3とTi0
2Q)誘電体多層膜2に、さらζこエポキシ樹脂I脂3
が堆積さイtていることである。
The difference between Figure 441 and Figure 4 is that AJhO3 and Ti0
2Q) Add ζ epoxy resin I resin 3 to the dielectric multilayer film 2.
is being deposited.

第2図はこのときの誘電体多層1摸2の膜J厚と反射率
の関係を示した勝因である。第2図を第5図と比較すイ
′Lはわかるように、@亀体多胤h:a 2の最終層と
なるA13203またはS i02の屈折率が樹脂の屈
折率(1,5)にほぼ等しいため、樹脂を十分厚く被覆
した場会%A−e203や5i(hの映岸変化による反
射率の変化もまた小さくなる。
FIG. 2 shows the relationship between the thickness of the film J and the reflectance of the dielectric multilayers 1 and 2 in this case. Compare Figure 2 with Figure 5. As you can see, the refractive index of A13203 or Si02, which is the final layer of @Kametaitataneh:a2, is the refractive index of the resin (1,5). Since they are almost equal, if the resin is coated sufficiently thickly, the change in reflectance due to the change in reflectance of %A-e203 or 5i(h) will also be small.

この半導体レーザ索子と従来素子とを50個測定した特
性比較を第1衣にホす。
The first comparison is a comparison of the characteristics of this semiconductor laser element and a conventional element by measuring 50 of them.

第 1 表 第1衣かられかるように、本発明によるチップを用いた
素子は、従来素子に比べて平均値はほぼ同じであるが、
標準偏差値が非常(こ小さい。これは反射率のばらつき
が小さいことを反映している。
As shown in Table 1, the average value of the device using the chip according to the present invention is almost the same as that of the conventional device;
The standard deviation value is very small, reflecting the small variation in reflectance.

〔発明の効果〕〔Effect of the invention〕

半導体レーザ索子のチップには、そのレーザ光出射面に
誘電体多層映を設け、通常その上に2@の厚さの誘電体
験を1層形成して反射率を定めていたが、このままでは
反射率の制御が難しく、半導体レーザ素子の特性が不安
定であったのに対して、本発明では実施例で述べた如く
、A−e 20 a  とTiO2を24の膜厚で交互
に2層積層した恢、A−0203’/2膜厚を績み、さ
らにこれらと屈折率がほぼ等しいエポキシ樹脂で被覆し
たため、半導体レーザ素子に組み立て後も反射率の変動
が極めて小さくなり、素子特性を女定させ信頼性を同上
させることができた。
The chip of the semiconductor laser probe has a dielectric multilayer film on its laser light emitting surface, and normally one layer of dielectric material with a thickness of 2@ is formed on top of it to determine the reflectance. While it was difficult to control the reflectance and the characteristics of the semiconductor laser device were unstable, in the present invention, as described in the embodiment, two layers of A-e 20 a and TiO 2 are alternately formed with a film thickness of 24 mm. The laminated structure has a thickness of A-0203'/2, and is further coated with an epoxy resin whose refractive index is almost the same as that of the A-0203'/2 film, so even after assembly into a semiconductor laser device, fluctuations in reflectance are extremely small, and the device characteristics are improved. It was possible to improve the reliability by setting the same as above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザ素子チップの周辺の模式
断面図、第2図は本発明に用いる誘電体多層膜の全膜厚
と反射率の関係を示す線図、第3図1al〜fclは本
発明のチップを用いた半導体レーザ索子の組み立て工程
図、第4図は従来の半纏体レーザ菓子チップの周辺の模
式断面図、第5図は従来のチップの誘電体多層暎の金膜
JEJと反射率の関係を示す線図である。
FIG. 1 is a schematic cross-sectional view of the periphery of the semiconductor laser element chip of the present invention, FIG. 2 is a diagram showing the relationship between the total film thickness and reflectance of the dielectric multilayer film used in the present invention, and FIG. 4 is a schematic cross-sectional view of the periphery of a conventional semi-integrated laser confectionery chip, and FIG. 5 is a diagram of the gold film of the dielectric multilayer of the conventional chip. FIG. 2 is a diagram showing the relationship between JEJ and reflectance.

Claims (1)

【特許請求の範囲】 1)レーザ光出射面に積層形成した誘電体多層膜、その
最終層にAl_2O_3もしくはSiO_2からなる誘
電体層膜、この誘電体層膜を被覆する樹脂とを有するこ
とを特徴とする半導体レーザ素子のチップ。 2)請求項1記載の半導体レーザ素子のチップにおいて
、前記誘電体多層膜に、Al_2O_3もしくはSiO
_2をレーザ発振波長の1/4の厚さで交互に積層し、
最終層としてAl_2O_3もしくはSiO_2をレー
ザ発振波長の1/2の厚さに堆積した後、エポキシ樹脂
で被覆したことを特徴とする半導体レーザ素子のチップ
。 3)請求項1記載の半導体レーザ素子のチップにおいて
、前記誘電体多層膜に非晶質SiとTiO_2とをレー
ザ発振波長の1/4の厚さで交互に積層し、最終層とし
てAl_2O_3もしくはSiO_2をレーザ発振波長
の1/2の厚さに堆積した後、エポキシ樹脂で被覆した
ことを特徴とする半導体レーザ素子のチップ。
[Claims] 1) A dielectric multilayer film laminated on a laser beam emitting surface, a dielectric layer film made of Al_2O_3 or SiO_2 as the final layer, and a resin covering this dielectric layer film. A semiconductor laser device chip. 2) In the semiconductor laser device chip according to claim 1, the dielectric multilayer film includes Al_2O_3 or SiO
_2 are alternately laminated with a thickness of 1/4 of the laser oscillation wavelength,
1. A chip of a semiconductor laser device, characterized in that Al_2O_3 or SiO_2 is deposited as a final layer to a thickness of 1/2 of the laser oscillation wavelength, and then coated with an epoxy resin. 3) In the semiconductor laser device chip according to claim 1, amorphous Si and TiO_2 are alternately laminated on the dielectric multilayer film with a thickness of 1/4 of the laser oscillation wavelength, and the final layer is Al_2O_3 or SiO_2. A chip of a semiconductor laser device, characterized in that the chip is deposited to a thickness of 1/2 of the laser oscillation wavelength and then coated with an epoxy resin.
JP2303222A 1990-11-08 1990-11-08 Semiconductor laser element chip Pending JPH04176180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303222A JPH04176180A (en) 1990-11-08 1990-11-08 Semiconductor laser element chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303222A JPH04176180A (en) 1990-11-08 1990-11-08 Semiconductor laser element chip

Publications (1)

Publication Number Publication Date
JPH04176180A true JPH04176180A (en) 1992-06-23

Family

ID=17918350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303222A Pending JPH04176180A (en) 1990-11-08 1990-11-08 Semiconductor laser element chip

Country Status (1)

Country Link
JP (1) JPH04176180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19964228B4 (en) * 1998-09-08 2008-11-13 Fujitsu Ltd., Kawasaki Process for producing a reflection film and production of optical devices using a reflection film
WO2015124531A3 (en) * 2014-02-24 2015-10-15 Osram Opto Semiconductors Gmbh Laser diode chip having coated laser facet
CN112830771A (en) * 2021-01-19 2021-05-25 中国科学院福建物质结构研究所 Alumina-titanium oxide double-layer composite ceramic and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19964228B4 (en) * 1998-09-08 2008-11-13 Fujitsu Ltd., Kawasaki Process for producing a reflection film and production of optical devices using a reflection film
WO2015124531A3 (en) * 2014-02-24 2015-10-15 Osram Opto Semiconductors Gmbh Laser diode chip having coated laser facet
CN106063058A (en) * 2014-02-24 2016-10-26 欧司朗光电半导体有限公司 Laser diode chip having coated laser facet
US11695251B2 (en) 2014-02-24 2023-07-04 Osram Oled Gmbh Laser diode chip having coated laser facet
CN112830771A (en) * 2021-01-19 2021-05-25 中国科学院福建物质结构研究所 Alumina-titanium oxide double-layer composite ceramic and preparation method and application thereof
CN112830771B (en) * 2021-01-19 2022-06-10 中国科学院福建物质结构研究所 Alumina-titanium oxide double-layer composite ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3856300B2 (en) Semiconductor laser element
JP2618875B2 (en) Waveguide
JPH0529702A (en) Semiconductor laser and manufacture thereof
JP2001119096A (en) Semiconductor laser
JPH0349281A (en) Semiconductor laser element
JPH0451581A (en) Semiconductor laser device
JP3635880B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPH04176180A (en) Semiconductor laser element chip
JPS6097684A (en) Surface luminous laser and manufacture thereof
US20060258026A1 (en) Multi-wavelength semiconductor laser device and its manufacturing method
KR100527108B1 (en) Method for fabricating semiconductor optical device
JP3080312B2 (en) Manufacturing method of semiconductor laser
JPH05291698A (en) Surface-emitting optical semiconductor device and manufacture thereof
JP2001196685A (en) Semiconductor light element device
JPH05327111A (en) Semiconductor laser and its manufacture
JPH09129979A (en) Semiconductor laser device
JP2023552298A (en) Semiconductor laser and semiconductor laser manufacturing method
JPH0864904A (en) Semiconductor laser type light amplifier device
JP3192687B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0417384A (en) Distributed feedback type semiconductor laser
JPS58161389A (en) Photo-semiconductor device
JP2001244572A (en) Method of manufacturing semiconductor laser light emitting device
JP2000114660A (en) Ridge waveguide type semiconductor laser device
JP2001284734A (en) Method for covering step part of semiconductor device and semiconductor device using it
JPS60187082A (en) Semiconductor laser element and manufacture thereof