JPS61137388A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS61137388A
JPS61137388A JP26026584A JP26026584A JPS61137388A JP S61137388 A JPS61137388 A JP S61137388A JP 26026584 A JP26026584 A JP 26026584A JP 26026584 A JP26026584 A JP 26026584A JP S61137388 A JPS61137388 A JP S61137388A
Authority
JP
Japan
Prior art keywords
wavelength
layer
film
semiconductor
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26026584A
Other languages
Japanese (ja)
Other versions
JPH0147031B2 (en
Inventor
Masaaki Oshima
大島 正晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26026584A priority Critical patent/JPS61137388A/en
Publication of JPS61137388A publication Critical patent/JPS61137388A/en
Publication of JPH0147031B2 publication Critical patent/JPH0147031B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a sole vertical mode by forming a semiconductor multilayer film of n/4 (n is refractive index) wavelength on a semiconductor substrate, and forming a semiconductor laser of double-hetero structure including a P-N junction thereon. CONSTITUTION:A semiconductor multilayer film 2 in which InP layers of nL/4(NL is refractive index) wavelength and N type InGaPsP layers of nH/4(nH is refractive index) wavelength are alternately laminated is formed on an N type InP substrate, an InP layer 3, an N type InGaAsP active layer 4, a P type InP layer 6, a P type InGaAsP layer 6 are further sequentially grown, and ohmic electrodes 7, 8 are formed. Further, the both ends of the layer 4 are etched at approx. 45 deg.C, to form an Si/SiO2 reflecting film 9 (60% reflectivity) is formed. When the electrodes 7, 8 are energized, a laser oscillation is generated by a resonator made of the active layer 4, the film 9 and the film 2 to emit an oscillating light from the film 9. Thus, a single vertical mode is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信の光源として使用される半導
体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor lasers used as light sources in optical fiber communications.

従来の技術 一般に光フアイバ通信の光源として用いられる半導体レ
ーザは単−横モード発振、低しきい値電流、良好な先出
カー電流特性、温度特性、寿命に問題のないこと等が要
求されるが、長距離大容量伝送を達成するためにはさら
に単−縦モード発振であることが必要である。従来単一
縦モード化を試みた半導体レーザでは、分布帰還型の構
造をとるのが一般的である。この構造は、半導体基板上
あるいは、エピタキシャル成長層に周期的な回折格子を
形成し、単一モード発振に至らしめるものである。
Conventional technology Semiconductor lasers used as light sources in optical fiber communications are generally required to have single-transverse mode oscillation, low threshold current, good leading Kerr current characteristics, temperature characteristics, and no problems in life. In order to achieve long-distance, large-capacity transmission, single-longitudinal mode oscillation is required. Semiconductor lasers that have conventionally attempted to achieve a single longitudinal mode generally have a distributed feedback type structure. In this structure, a periodic diffraction grating is formed on a semiconductor substrate or an epitaxially grown layer to achieve single mode oscillation.

発明が解決しようとする問題点 上記したような回折格子は、数千オンゲストσ−ムの周
期で作られ一般に、紫外レーザの干渉光によりホトレジ
・ストを露光して作るが、回折格子の形状、特に深さは
発振しきい値電流等に極めて大きな影響を与え、レーザ
そのものの特性の再現性1歩留り等を左右し、実用に至
っていないのが現状である。
Problems to be Solved by the Invention Diffraction gratings as described above are made with a period of several thousand onguest σ-m and are generally made by exposing a photoresist to interference light from an ultraviolet laser. In particular, the depth has an extremely large effect on the oscillation threshold current, etc., and affects the reproducibility and yield of the characteristics of the laser itself, so that it has not been put into practical use at present.

問題点を解決するための手段 本発明は、上記問題点を解決するために、分布帰還型の
構造をとらずに、次のような方法で単−縦モード化する
ことが可能である。すなわち、成長方向に屈折率の異な
るλ/4(λはレーザの発振波長)程度の厚さの半導体
を交互に成長によって積み重ねる。このような積層の上
に、一般の半導体レーザ、すなわちp −n接合を含む
ダブルへテロ構造を成長させる。このようなウェーハの
活性層端を約45°に溝を作り、これに反射膜を設けて
活性層での注入電流による発光を反射膜によって半導体
積層に導び〈。この積層の半導体層の屈折率の高い方を
”Hl低い方をnLで表わすと、その反射率Rは次式に
よって表わされる。
Means for Solving the Problems In the present invention, in order to solve the above problems, it is possible to create a single longitudinal mode by the following method without using a distributed feedback type structure. That is, semiconductors having a thickness of about λ/4 (λ is the oscillation wavelength of the laser) having different refractive indexes in the growth direction are alternately grown and stacked. A general semiconductor laser, ie, a double heterostructure including a p-n junction, is grown on such a stack. A groove is formed at the edge of the active layer of such a wafer at an angle of about 45°, and a reflective film is provided in the groove, so that light emitted by the current injected into the active layer is guided to the semiconductor stack by the reflective film. If the higher refractive index of the stacked semiconductor layers is expressed as "H1" and the lower one is expressed as nL, then the reflectance R is expressed by the following equation.

ここで、nsは半導体基板の屈折率、noはダブルへテ
ロ構造における第一クラッド層の屈折率である。
Here, ns is the refractive index of the semiconductor substrate, and no is the refractive index of the first cladding layer in the double heterostructure.

またkは、層数である。このような半導体多層膜によっ
て極めて高い反射率を所望の波長において得ることが可
能であるとともに、干渉フィルタ効果をもたせることも
可能である。本発明は、”)(lnLを適当に組み合せ
、発振波長に強い選択性をもたせるものである。
Further, k is the number of layers. With such a semiconductor multilayer film, it is possible to obtain an extremely high reflectance at a desired wavelength, and it is also possible to provide an interference filter effect. The present invention provides strong selectivity to the oscillation wavelength by appropriately combining lnL.

作  用 上記ダブルへテロ構造の活性層での発光は、反射膜をと
りつけた450の面で反射され、半導体多層膜に導ひか
れる。この多層膜が、n Hn Ln Hn L”L”
H”l、nLnHnLnHnL(各層はに波長の厚さ)
すなわち、naを%波長の厚さのnLではさんだ時、ま
たはこの逆のとき、発振波長に対して鋭い選択性をもつ
。この選択性とゲイン分布及び共振条件の三つの特性の
相関により極めて安定な単−第1図は本発明の(100
)基板を用いて作られた半導体レーザを(011)方向
にへき関した断面を示すものである。活性層は、厚さ0
.16μm。
Function: The light emitted from the active layer of the above-mentioned double heterostructure is reflected by the surface 450 provided with the reflective film and guided to the semiconductor multilayer film. This multilayer film is n Hn Ln Hn L"L"
H”l, nLnHnLnHnL (the thickness of each layer is equal to the wavelength)
That is, when na is sandwiched between nL having a thickness of % wavelength, or vice versa, there is sharp selectivity to the oscillation wavelength. Due to the correlation between the selectivity, the gain distribution, and the resonance condition, the extremely stable single-layer structure shown in FIG. 1 of the present invention (100
) shows a cross section of a semiconductor laser made using a substrate taken in the (011) direction. The active layer has a thickness of 0
.. 16μm.

幅2.6μmでn−InP中に埋め込まれている。第1
図において、n−InP基板1上に、n−InP/n−
InGaAsP半導体多層膜2を交互に約990人の厚
さで10対層設け、さらに、n−InP3゜n −I 
n G a A s P活性層4 、 p−InP 5
 、 p−InGaAsP6(尚この層はなくてもよい
)が順次成長されている。これにオーミック電極7及び
8をとりつけ、さらに、n−InGaAsP活性層4の
両端を約450にエツチングし、これにS 1 /S 
iO2反射膜9をとりつける。このSi/5iO29の
反射率は、波長1.3μmの光に対して80%になるよ
うに調整されている。このような構造のオーミック電極
7゜8に通電すると、n−InGaAsP活性層4と、
S 1 / S iO2反射膜9、及びInP/InG
aA+sP半導体多層膜2からなる共撮器によってレー
ザ発振をおこし、S 1 /S iO2反射膜より発振
光をとり出すことができる。発振スペクトルは第2図に
示すようにマルチモードである。第1図の構造において
、n−InP/n−InGaAsP 9のn−1nPを
〔厚さ%nL波長(nLはInPの屈折率)〕nLn−
InGaAsPを〔厚さ%nH波長(nHはI nGa
 A s Pの屈折率)〕Hであられすと、上記の場合
は、LHLHLHLHLHLHLHLHLHLHである
が、これをLHLHLHLHLLHLLHLHLHLH
Lとした。すなわち、H層を1/2n波長の厚さのn−
InPで挾んだ構成とした。上記構成においては、波長
1.3μmにピークをもつ反射率の波長依存性をもつ。
It has a width of 2.6 μm and is embedded in n-InP. 1st
In the figure, n-InP/n-
Ten pairs of InGaAsP semiconductor multilayer films 2 are alternately provided with a thickness of about 990 layers, and further, n-InP3゜n-I
nGaAsP active layer 4, p-InP 5
, p-InGaAsP6 (this layer may be omitted) are successively grown. Ohmic electrodes 7 and 8 are attached to this, and both ends of the n-InGaAsP active layer 4 are etched to approximately 450 mm, and S 1 /S
Attach the iO2 reflective film 9. The reflectance of this Si/5iO29 is adjusted to be 80% for light with a wavelength of 1.3 μm. When electricity is applied to the ohmic electrode 7°8 having such a structure, the n-InGaAsP active layer 4 and
S1/SiO2 reflective film 9, and InP/InG
Laser oscillation is caused by the co-imager made of the aA+sP semiconductor multilayer film 2, and the oscillated light can be extracted from the S 1 /S iO2 reflective film. The oscillation spectrum is multimode as shown in FIG. In the structure shown in Fig. 1, n-1nP of n-InP/n-InGaAsP 9 [thickness %nL wavelength (nL is the refractive index of InP]) nLn-
InGaAsP [thickness%nH wavelength (nH is InGaAsP
refractive index of A s P)] In the above case, LHLHLHLHLHLHLHLHLH, but this can be changed to LHLHLHLHLLHLLHLHLHLH.
It was set as L. That is, the H layer has a thickness of 1/2n wavelength.
The structure is sandwiched between InP. In the above configuration, the reflectance has wavelength dependence with a peak at a wavelength of 1.3 μm.

したがってキャビティ長できまる共振条件のうち、反射
率のもっとも高い部分での発振が可能となる。第3図は
、このような半導体多層膜をもつ本発明のレーザの発振
スペクトラムであり極めて安定な単−縦モードが得られ
た。
Therefore, oscillation is possible under the highest reflectance among the resonance conditions determined by the cavity length. FIG. 3 shows the oscillation spectrum of the laser of the present invention having such a semiconductor multilayer film, and an extremely stable single-longitudinal mode was obtained.

実施例2 実施例1に述べた構造において1/2nl、波長に相当
する層でH層を挾んだものを2重に挿入した。
Example 2 In the structure described in Example 1, layers corresponding to 1/2 nl of wavelength and an H layer sandwiched therebetween were inserted in duplicate.

すなわち、LHLHLHLH(LLHLL)HLHLH
LHL なる半導体多層膜を挿入した。この場合も単−
縦モードとなる。
That is, LHLHLHLH(LLHLL)HLHLH
A semiconductor multilayer film called LHL was inserted. In this case as well,
It becomes vertical mode.

しかしながら、さらにこのような層を増やしくLLHL
L)3 とした場合には単一モード発振は得られなかっ
た。したがってLLHLLなる層は最大2層まで入れる
ことができる。
However, LLHL that further increases such layers
L)3, single mode oscillation was not obtained. Therefore, up to two layers of LLHLL can be included.

発明の効果 以上述べたように本発明は、半導体多層膜を用いて単−
縦モードを得ることができ、従来の回折格子を用いる方
法に較べ、極めて安定に生産しつるものである。
Effects of the Invention As described above, the present invention provides a single-layer structure using a semiconductor multilayer film.
A longitudinal mode can be obtained, and production is extremely stable compared to conventional methods using diffraction gratings.

尚上記実施例はInP/InGaAsPレーザについて
述べたが、G a A s /G a A I A s
を用いたレーザでも同様の効果が得られる。
In the above embodiment, an InP/InGaAsP laser was described, but GaAs/GaAIAs
A similar effect can be obtained with a laser using

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザの断面図、第
2図及び第3図は同半導体レーザの発掘スペクトラムで
ある。 1・・・・・・n−InP基板、2・・・・・・半導体
多層膜、4−=・n−I nGaAsP活性層、9−−
−−−− S i /S i O□反射膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名vS
 1 図
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention, and FIGS. 2 and 3 are excavated spectra of the same semiconductor laser. 1... n-InP substrate, 2... semiconductor multilayer film, 4-=.n-I nGaAsP active layer, 9--
----- S i /S i O□ reflective film. Name of agent: Patent attorney Toshio Nakao and one other person vS
1 figure

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、1/4n(nは屈折率)波長の
半導体多層膜を構成し、この上に第1クラッド層、活性
層、第2クラッド層を順次形成し活性層の導波方向の端
面をほぼ45°に加工しこの面に反射膜を形成し半導体
多層膜に活性層の発光を導き、全体を共振器構造とし、
前記半導体多層膜中に1/2n波長の厚さの層を少なく
とも2層挿入したことを特徴とする半導体レーザ。
(1) A semiconductor multilayer film with a wavelength of 1/4n (n is the refractive index) is formed on a semiconductor substrate, and a first cladding layer, an active layer, and a second cladding layer are sequentially formed on this to guide the wave of the active layer. The end face in the direction is processed at approximately 45°, a reflective film is formed on this face, the light emission from the active layer is guided to the semiconductor multilayer film, and the entire structure is made into a resonator structure.
A semiconductor laser characterized in that at least two layers each having a thickness of 1/2n wavelength are inserted into the semiconductor multilayer film.
(2)1/2n波長の厚さの層は、最大4層であること
を特徴とする特許請求の範囲第1項記載の半導体レーザ
(2) The semiconductor laser according to claim 1, wherein the number of layers having a thickness of 1/2n wavelength is four at most.
JP26026584A 1984-12-10 1984-12-10 Semiconductor laser Granted JPS61137388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26026584A JPS61137388A (en) 1984-12-10 1984-12-10 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26026584A JPS61137388A (en) 1984-12-10 1984-12-10 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS61137388A true JPS61137388A (en) 1986-06-25
JPH0147031B2 JPH0147031B2 (en) 1989-10-12

Family

ID=17345647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26026584A Granted JPS61137388A (en) 1984-12-10 1984-12-10 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61137388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124592A (en) * 1986-11-14 1988-05-28 Nec Corp Semiconductor laser device
JPS63229892A (en) * 1987-03-19 1988-09-26 Sanyo Electric Co Ltd Semiconductor laser
DE3728566A1 (en) * 1987-08-27 1989-03-09 Telefunken Electronic Gmbh Optoelectronic semiconductor component
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
US6717231B2 (en) 1999-01-11 2004-04-06 Samsung Electronics Co., Ltd. Trench isolation regions having recess-inhibiting layers therein that protect against overetching
EP1766739A2 (en) * 2004-06-30 2007-03-28 Finisar Corporation Semiconductor laser with side mode suppression

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124592A (en) * 1986-11-14 1988-05-28 Nec Corp Semiconductor laser device
JPH0587157B2 (en) * 1986-11-14 1993-12-15 Nippon Electric Co
JPS63229892A (en) * 1987-03-19 1988-09-26 Sanyo Electric Co Ltd Semiconductor laser
DE3728566A1 (en) * 1987-08-27 1989-03-09 Telefunken Electronic Gmbh Optoelectronic semiconductor component
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
US6717231B2 (en) 1999-01-11 2004-04-06 Samsung Electronics Co., Ltd. Trench isolation regions having recess-inhibiting layers therein that protect against overetching
EP1766739A2 (en) * 2004-06-30 2007-03-28 Finisar Corporation Semiconductor laser with side mode suppression
EP1766739A4 (en) * 2004-06-30 2010-01-27 Finisar Corp Semiconductor laser with side mode suppression
US7711016B2 (en) 2004-06-30 2010-05-04 Finisar Corporation Semiconductor laser with side mode suppression

Also Published As

Publication number Publication date
JPH0147031B2 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
EP0450668A2 (en) Semiconductor laser array having power and high beam quality
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
EP0533485A1 (en) Semiconductor device and method of making it
US4400813A (en) Crenelated-ridge waveguide laser
JP2002084033A (en) Distributed feedback semiconductor laser
JPS61137388A (en) Semiconductor laser
US6696311B2 (en) Increasing the yield of precise wavelength lasers
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JPS61190994A (en) Semiconductor laser element
JPS63228795A (en) Distributed feedback type semiconductor laser
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61113293A (en) Semiconductor laser array device
JPS6373683A (en) Distributed feedback semiconductor laser
US4849985A (en) Distributed feedback semiconductor laser device
JPS60152086A (en) Semiconductor laser device
CA2369680A1 (en) Method of manufacturing semiconductor element, and semiconductor element manufactured with this method
JPH0837342A (en) Distributed feedback semiconductor laser and semiconductor laser array
US6455341B1 (en) Increasing the yield of precise wavelength lasers
JP2947702B2 (en) Tunable laser device and manufacturing method thereof
JPH08274412A (en) Polarization modulation semiconductor laser and its driving method
JPS6188584A (en) Distributed feedback type semiconductor laser having phase shift structure
JPH07202261A (en) Manufacture of semiconductor light emitting element
JPH07105566B2 (en) Semiconductor laser and manufacturing method thereof
JPH10154845A (en) Distributed reflection type semiconductor laser array and its manufacture