JPS63299195A - Manufacture of superconducting printed substrate - Google Patents
Manufacture of superconducting printed substrateInfo
- Publication number
- JPS63299195A JPS63299195A JP62133087A JP13308787A JPS63299195A JP S63299195 A JPS63299195 A JP S63299195A JP 62133087 A JP62133087 A JP 62133087A JP 13308787 A JP13308787 A JP 13308787A JP S63299195 A JPS63299195 A JP S63299195A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- plate
- substrate
- sprayed layer
- metal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000919 ceramic Substances 0.000 claims abstract description 63
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 11
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 claims abstract description 11
- BTGZYWWSOPEHMM-UHFFFAOYSA-N [O].[Cu].[Y].[Ba] Chemical compound [O].[Cu].[Y].[Ba] BTGZYWWSOPEHMM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 25
- 239000004033 plastic Substances 0.000 claims description 19
- 229920003023 plastic Polymers 0.000 claims description 19
- 238000005507 spraying Methods 0.000 claims description 7
- WFYNGMJGMVXYPX-UHFFFAOYSA-N [Cu]=O.[Sr].[Y] Chemical compound [Cu]=O.[Sr].[Y] WFYNGMJGMVXYPX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 14
- 239000004744 fabric Substances 0.000 abstract description 9
- 239000011521 glass Substances 0.000 abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- 239000003822 epoxy resin Substances 0.000 abstract description 8
- 230000000873 masking effect Effects 0.000 abstract description 8
- 229920000647 polyepoxide Polymers 0.000 abstract description 8
- 238000000465 moulding Methods 0.000 abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 239000010949 copper Substances 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 2
- 238000010285 flame spraying Methods 0.000 abstract 1
- 238000007751 thermal spraying Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- CNEWPRQQHICZBP-UHFFFAOYSA-N [O].[Cu].[Ba].[La] Chemical compound [O].[Cu].[Ba].[La] CNEWPRQQHICZBP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- GBAOZECSOKXKEL-UHFFFAOYSA-N copper yttrium Chemical compound [Cu].[Y] GBAOZECSOKXKEL-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- -1 steatite Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/20—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はセラミックス系超電導物質により回路を形成す
る新規なプリント基板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a novel printed circuit board in which a circuit is formed using a ceramic superconducting material.
プリント基板は紙基材フェノール樹脂積層板、ガラス布
基材エポキシ樹脂積層板、ガラス布基材ポリイミド樹脂
積層板などのプラスチック基板、アルミナ、ぺIJ 9
ア、炭化けい素、窒化アルミニウム、ステアタイト、ガ
ラスセラミックスなどのセラミックス基板、あるいはア
ルミニウム、鉄などの金属板の表面に絶縁層を設けたメ
タルベース、メタルコア基板が主に用いられている。こ
れらの基板上に形成される導体層としては銅、ニッケル
、パラジウム、モリブデン、タングステン、金、銀など
の金属あるいは合金が用いられている。Printed circuit boards include plastic substrates such as paper-based phenolic resin laminates, glass cloth-based epoxy resin laminates, glass cloth-based polyimide resin laminates, alumina, and PEIJ 9.
Mainly used are ceramic substrates such as silicon carbide, aluminum nitride, steatite, and glass ceramics, or metal bases and metal core substrates in which an insulating layer is provided on the surface of a metal plate such as aluminum or iron. Metals or alloys such as copper, nickel, palladium, molybdenum, tungsten, gold, and silver are used for the conductor layers formed on these substrates.
ところが、最近では電子機器の高性能化の進歩が著しく
、特に部品の高密度実装を可能にするために、部品から
発生する熱をいかに放散するか、あるいは導体回路のも
つ抵抗による発熱をいかに低く押さえるかが大きな問題
となっている。また、コンピュータなどでは信号伝送の
より高速化の要求が強く、特に導体回路のもつ電気抵抗
による信号遅延の占める割合が大きい。However, in recent years, there has been significant progress in improving the performance of electronic devices, and in particular, in order to enable high-density mounting of components, it is important to consider how to dissipate the heat generated by components, or how to reduce the heat generated by the resistance of conductor circuits. The big question is how to hold it down. Furthermore, there is a strong demand for faster signal transmission in computers and the like, and in particular, signal delays due to electrical resistance of conductive circuits account for a large proportion.
したがって導体層の低抵抗化への期待は非常に大きなも
のである。Therefore, there are great expectations for lowering the resistance of the conductor layer.
このような要求に適した材料として超電導物質が考えら
れる。超電導物質とは、ある臨界温度以下になると電気
抵抗がゼロに、なる物質で、最近特にセラミックス系の
超電導物質の開発が目ざましく、従来はランタン−バリ
ウム−銅酸化物、ランタン−2トロンチウム−銅酸化物
などが臨界温度30〜40にで液体ヘリウム(沸点4K
)、液体水素(沸点20K)中で超電導を示すものとし
て知られている。ところが最近、イットリウム−バリウ
ム−銅酸化物あるいはイットリウム−ストロンチウム−
銅酸化物が臨界温度80〜90Kをもつことが知られ、
液体窒素(沸点77K)中で使用することができるため
に非常に注目されている。これらの超電導物質をプリン
ト基板の導体回路として使用すれば現在問題となってい
る導体層の電気抵抗による信号伝送の遅延あるいは抵抗
による発熱を解決することが可能である。Superconducting materials can be considered as materials suitable for such requirements. A superconducting material is a material whose electrical resistance becomes zero below a certain critical temperature, and the development of ceramic-based superconducting materials has been remarkable recently. When oxides etc. reach a critical temperature of 30 to 40, liquid helium (boiling point 4K)
), is known to exhibit superconductivity in liquid hydrogen (boiling point 20K). However, recently, yttrium-barium-copper oxide or yttrium-strontium-
It is known that copper oxide has a critical temperature of 80-90K,
It has attracted much attention because it can be used in liquid nitrogen (boiling point 77K). If these superconducting materials are used as conductor circuits in printed circuit boards, it is possible to solve the current problems of delay in signal transmission due to the electrical resistance of the conductor layer or heat generation due to the resistance.
このような超電導物質を用いて基板上に導体回路を形成
する方法は、一般にはセラミックス基板の焼成前又は焼
成後にセラミックス基板表面に超電導物質粉にバインダ
ーを加えたペーストを回路パターンに印刷し、これを焼
成する方法が考えられる。しかし、このような方法には
種々の問題点がある。第一は基板としてセラミックス基
板を用いろため大型化ができない点である。これはセラ
ミックス基板がもろく焼成時の収縮が大きいためである
。第二は回路の寸法精度の問題である。すなわち、焼成
工程においてセラミックス基板あるいは回路部分は収縮
する。そのために、これを考慮して回路パターンを形成
しなければならない。また、焼成時の温度、時間等の管
理も正確に行わなければならず工程が煩雑である。また
、焼成時の収縮により導体回路にクラック等の発生する
恐れがあり、信頼性も問題となる。Generally, the method of forming a conductive circuit on a substrate using such a superconducting material is to print a circuit pattern on the surface of the ceramic substrate before or after firing the ceramic substrate by adding a binder to the superconducting material powder. One possible method is to fire it. However, such methods have various problems. First, since a ceramic substrate is used as the substrate, it is not possible to increase the size. This is because the ceramic substrate is brittle and shrinks greatly during firing. The second problem is the dimensional accuracy of the circuit. That is, the ceramic substrate or circuit portion shrinks during the firing process. Therefore, a circuit pattern must be formed taking this into consideration. Furthermore, the temperature, time, etc. during firing must be accurately controlled, making the process complicated. Furthermore, there is a risk that cracks may occur in the conductor circuit due to shrinkage during firing, and reliability also becomes a problem.
一方、基板としてセラミックス基板ではなく、プラスチ
ック基板を用いれば基板の大型化が可能である。しかし
、プラスチック基板は耐熱性が乏しいため、セラミック
ス基板のような高温での焼成工程を経ることはできない
。On the other hand, if a plastic substrate is used as the substrate instead of a ceramic substrate, it is possible to increase the size of the substrate. However, since plastic substrates have poor heat resistance, they cannot undergo a firing process at high temperatures like ceramic substrates.
本発明はこれらの欠点を改良し、プラスチック基板に超
電導物質による導体回路を形成する方法を提供するもの
である。The present invention improves these drawbacks and provides a method for forming a conductor circuit using a superconducting material on a plastic substrate.
すなわち本発明は、セラミックス系超電導物質粉を金属
板に溶射して回路パターンを形成し、さらにその上に電
気絶縁性のセラミックスを溶射する。次に電気絶縁性の
セラミックス溶射層と接するようにプリプレグを載置し
て熱圧成形後、金属板を除去することを特徴とするもの
である。That is, in the present invention, a circuit pattern is formed by thermally spraying ceramic superconducting material powder onto a metal plate, and then electrically insulating ceramic is further thermally sprayed onto the circuit pattern. Next, a prepreg is placed so as to be in contact with the electrically insulating ceramic sprayed layer, and after hot press forming, the metal plate is removed.
セラミックス系超電導物質粉としてはLiTi1O,、
Ba (Pb@Bi) O,、PbMOs8m、LaB
5.、ランタン−バリウム−銅酸化物、イットリウム−
バリウム−銅酸化物、イットリウム−ストロンチウム−
銅酸化物などが使用できるが、中でも現在のところイッ
トリウム−ストロンチウム−銅酸化物またはイットリウ
ム−バリウム−銅酸化物が臨界温度が高く(80〜90
K)、寒剤として安価な液体窒素を使用できるために好
適である。As the ceramic superconducting material powder, LiTi1O,
Ba (Pb@Bi) O,, PbMOs8m, LaB
5. , lanthanum-barium-copper oxide, yttrium-
Barium - copper oxide, yttrium - strontium -
Copper oxide, etc. can be used, but currently yttrium-strontium-copper oxide or yttrium-barium-copper oxide has a high critical temperature (80 to 90
K) is suitable because inexpensive liquid nitrogen can be used as a cryogen.
セラミックス系超電導物質粉を溶射する金属板ハ銅、鉄
、ニッケル、アルミニウム、ステンレスなどの金属ある
いは合金が用いられ、その厚さは箱状の薄いものからブ
ロック状の厚板まで任意に用いることができる。The metal plate to which ceramic superconducting material powder is sprayed is made of copper, iron, nickel, aluminum, stainless steel, or other metals or alloys, and the thickness can be arbitrarily selected from a thin box-like plate to a thick block-shaped plate. can.
また、セラミックス系超電導物質粉を溶射して回路パタ
ーンを形成するには被溶射体である金属板の回路パター
ンを形成する部分以外の部分にマスキングを施す必要が
ある。このマスキ。Furthermore, in order to form a circuit pattern by thermally spraying ceramic superconducting material powder, it is necessary to mask the parts of the metal plate that is the object to be thermally sprayed, other than the part where the circuit pattern is to be formed. This mask.
ングはアルミニウム、銅、鉄、ステンレスなどの金属板
に回路パターンと同形状の穴を設けたマスキング板を被
溶射体である金属板の表面に当接してその上から溶射す
る方法、あるいは一般にプリント基板の銅箔エツチング
に使用されるドライフィルムレジスト、フォトレジスト
マスクを被溶射体である金属板上に形成してその上から
溶射を行い、溶射後溶剤によりレジストを除去する方法
によることができる。A method of thermal spraying is carried out by placing a masking plate with holes in the same shape as the circuit pattern on a metal plate such as aluminum, copper, iron, or stainless steel, and then spraying from above. A method can be used in which a dry film resist or photoresist mask used for copper foil etching of a substrate is formed on a metal plate to be thermally sprayed, thermal spraying is performed thereon, and the resist is removed using a solvent after thermal spraying.
さらに本発明においてはセラミックス系超電導物質を溶
射した金属板のセラミックス系超電導物質溶射層側に電
気絶縁性のセラミックスを溶射する。これは、次の工程
で形成するプラスチック層と超電導物質回路層との熱膨
張差を緩和し、密着性を向上して熱衝撃による回路への
クラック等の発生を防止するためである。電気絶縁性の
セラミックスとしてはセラミックス基板として最も多く
用いられ、実績のあるアルミナの他にジルコニア、シリ
カ、ムライト、スピネル、コージェツイト等が用いられ
る。電気絶縁性セラミックスの溶射層の形成は、金属板
の超電導物質溶射層側の全面でも必要な部分のみでもさ
しつかえない。Further, in the present invention, an electrically insulating ceramic is sprayed on the ceramic superconducting material sprayed layer side of the metal plate onto which the ceramic superconducting material has been sprayed. This is to reduce the difference in thermal expansion between the plastic layer and the superconducting material circuit layer to be formed in the next step, improve adhesion, and prevent cracks in the circuit due to thermal shock. As electrically insulating ceramics, zirconia, silica, mullite, spinel, cordetite, etc. are used in addition to the proven alumina, which is most often used as a ceramic substrate. The electrically insulating ceramic sprayed layer may be formed on the entire surface of the metal plate on the side of the superconducting material sprayed layer or only on a necessary portion.
なお、溶射したセラミックス系超電導物質層はプリプレ
グとの成形に先立ち、加熱、徐冷処理は施すとよりいっ
そう超電導効果を増大することができる。また、セラミ
ックス系超電導物質及び電気絶縁性セラミックスの溶射
はガス溶射法、プラズマ溶射法、爆発溶射法、水プラズ
マ溶射法、減圧プラズマ溶射法などの一般のセラミック
ス溶射に使われている溶射法が適用できる。Note that the superconducting effect can be further increased by subjecting the sprayed ceramic superconducting material layer to heating and slow cooling treatment prior to molding with the prepreg. In addition, the thermal spraying methods used for general ceramic thermal spraying, such as gas thermal spraying, plasma thermal spraying, explosive thermal spraying, water plasma thermal spraying, and low-pressure plasma thermal spraying, are applied to thermal spraying of ceramic superconducting materials and electrically insulating ceramics. can.
電気絶縁性セラミックス溶射層に接するように載置して
熱圧成形するプリプレグは、エポキシ樹脂、ポリイミド
樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエス
テル樹脂、ビニルエステル樹脂などの熱硬化性樹脂を紙
、ガラス繊維、ケプラー繊維、クォーツ繊維などの繊維
基材に含浸しBステージ化したものが用いられる。Prepreg, which is placed in contact with an electrically insulating ceramic sprayed layer and then hot-press molded, is made of paper, thermosetting resin such as epoxy resin, polyimide resin, phenol resin, melamine resin, unsaturated polyester resin, or vinyl ester resin. A B-stage material obtained by impregnating a fiber base material such as glass fiber, Kepler fiber, or quartz fiber is used.
プリプレグの熱圧成形後に金属板から、表面にセラミッ
クス系超電導物質からなる回路及び電気絶縁性セラミッ
クス層を有するプラスチック基板を引きはがすのは両者
の密着性の差から容易に行うことができる。すなわち、
金属板とセラミックス系超電導物質溶射層及び電気絶縁
性セラミックス溶射層との密着性は溶射前の被溶射体で
ある金属板のプラスト処理を行わないか、または極く軽
く行う、あるいは離型剤を塗布しておく等により小さく
することができる。After hot-pressing the prepreg, the plastic substrate, which has a circuit made of a ceramic superconducting material and an electrically insulating ceramic layer on its surface, can be easily peeled off from the metal plate due to the difference in adhesion between the two. That is,
The adhesion between the metal plate and the ceramic superconducting material sprayed layer and the electrically insulating ceramic sprayed layer can be determined by not performing a blast treatment on the metal plate that is the object to be sprayed before thermal spraying, or by performing it very lightly, or by applying a mold release agent. It can be made smaller by coating it in advance.
これに対してセラミックス系超電導物質層と電気絶縁性
セラミック溶射層の密着性は被溶射体となるセラミック
ス系超電導物質層の表面は溶射により形成されたもので
あるため粗面となっており、そこに電気絶縁性セラミッ
クスを溶射すると大きなアンカー効果が得られて良好で
ある。また、同様に電気絶縁性セラミックス溶射層とプ
ラスチック層との密着性も電気絶縁性セラミックス溶射
層の表面が粗面であり、接着面積が大きいこと、熱圧成
形時にプリプレグの樹脂が流動、固化することによって
接着剤として作用することから良好である。したがって
熱圧成形後に金属板を引きはがすとセラミックス系超電
導物質溶射層及び電気絶縁性セラミックス溶射層は容易
にプラスチック層側へ転写するのである。なお、金属板
が箱状であるなど薄い場合には、引きはがす方法の他に
プリント基板の銅箔エツチングなどに用いられているエ
ツチング液で除去する方法も有効モある。On the other hand, the adhesion between the ceramic superconducting material layer and the electrically insulating ceramic sprayed layer is affected by the fact that the surface of the ceramic superconducting material layer, which is the object to be sprayed, is rough because it is formed by thermal spraying. When electrically insulating ceramics are thermally sprayed, a large anchoring effect can be obtained. Similarly, the adhesion between the electrically insulating ceramic sprayed layer and the plastic layer is also affected by the fact that the surface of the electrically insulating ceramic sprayed layer is rough and the adhesion area is large, and the resin of the prepreg flows and solidifies during hot press molding. This is good because it acts as an adhesive. Therefore, when the metal plate is peeled off after hot-press molding, the ceramic superconducting material sprayed layer and the electrically insulating ceramic sprayed layer are easily transferred to the plastic layer side. If the metal plate is box-shaped or otherwise thin, an effective method is to remove it with an etching solution used for etching copper foil on printed circuit boards, in addition to the method of peeling it off.
また、電気絶縁性のセラミックス溶射層はプラスチック
基板の片側だけに形成しても良いが熱膨張差によってそ
りが発生する場合には、同様の方法によりプラスチック
基板の両面に形成すると防止することができる。Additionally, the electrically insulating ceramic sprayed layer can be formed on only one side of the plastic substrate, but if warping occurs due to the difference in thermal expansion, it can be prevented by forming it on both sides of the plastic substrate using the same method. .
本発明のごとく、セラミックス系超電導物質による回路
をプラスチック基板に形成するに当たり、金属板にセラ
ミックス系超電導物質粉を溶射して回路パターンを形成
し、その上に電気絶縁性のセラミックスを溶射してプリ
プレグと熱圧成形後、金属板を除去する方法によれば回
路と基板の密着性にすぐれた基板を容易に得ることがで
きる。In forming a circuit using ceramic superconducting material on a plastic substrate as in the present invention, ceramic superconducting material powder is sprayed onto a metal plate to form a circuit pattern, and electrically insulating ceramic is sprayed on top of the circuit pattern to form a prepreg. By the method of removing the metal plate after hot-pressing, it is possible to easily obtain a board with excellent adhesion between the circuit and the board.
プラスチック基板にセラミックス系超電導物質による回
路を形成しようとする場合、ペースト塗布法では焼成工
程の高温にプラスチックが耐えられないため不可能であ
る。またOVD法、PVD法では使用し得るセラミック
ス系超電導物質の種類に制限があり、また装置の大きさ
から回路形成可能な基板の大きさには制限がある。When attempting to form a circuit using a ceramic superconducting material on a plastic substrate, it is impossible to use a paste coating method because the plastic cannot withstand the high temperatures of the firing process. Further, in the OVD method and the PVD method, there are restrictions on the types of ceramic superconducting materials that can be used, and there are also restrictions on the size of the substrate on which circuits can be formed due to the size of the device.
また、成膜速度が遅いために生産性が悪い。In addition, productivity is poor because the film formation rate is slow.
これらに比べて溶射法は成膜速度が大きく生産性がすぐ
れる。ところが密着性については被溶射体がプラスチッ
クの場合、セラミックスとの親和性に乏しいため、十分
なものは得られない。ところが、本発明のようにプラス
チック基板に直接溶射するのではなく、まず、金属板に
溶射し、これをプリプレグと接するように熱圧成形して
一体化後、金属板を除去する方法によれば次に挙げるよ
うな利点がある。Compared to these methods, thermal spraying has a faster film formation rate and superior productivity. However, when the object to be thermally sprayed is plastic, sufficient adhesion cannot be obtained because it has poor affinity with ceramics. However, instead of spraying directly onto the plastic substrate as in the present invention, the method involves first spraying onto a metal plate, then heat-pressing it so that it comes into contact with the prepreg to integrate it, and then removing the metal plate. It has the following advantages:
第1は非常に大きな密着性が得られる点である。これは
溶射層の表面は粗面であり接着面積が大きくアンカー効
果が得やすい。また熱圧成形時にプリプレグの樹脂が熱
と圧力で流動することにより溶射層との接着剤の役割を
果すためである。第2は得られた基板の表面すなわち、
セラミックス系超電導性物質による回路層及び電気絶縁
性セラミックス層の表面は金属板の表面状態を転写した
ものであるため、平滑な面が得られる点である。さらに
第3はセラミックス系超電導物質による回路層とプラス
チック層との間に電気絶縁性のセラミックス層を設ける
ことにより回路とプラスチック層との熱膨張差によるク
ラック、剥離等の欠陥の発生を防止することができる点
である。The first is that extremely high adhesion can be obtained. This is because the surface of the sprayed layer is rough and has a large adhesion area, making it easy to obtain an anchor effect. This is also because the resin of the prepreg flows due to heat and pressure during hot-press molding, thereby acting as an adhesive to the thermally sprayed layer. The second is the surface of the obtained substrate, i.e.
The surface of the circuit layer and the electrically insulating ceramic layer made of a ceramic-based superconducting material is a transfer of the surface condition of a metal plate, so that a smooth surface can be obtained. Thirdly, by providing an electrically insulating ceramic layer between the circuit layer made of ceramic superconducting material and the plastic layer, defects such as cracks and peeling due to the difference in thermal expansion between the circuit and the plastic layer can be prevented. The point is that it can be done.
以上のような利点の他に溶射法を適用すれば基板の大き
さに制限がない。また、基板として従来のガラス布基材
エポキシ樹脂積層板、ガラス布基材ポリイミド樹脂積層
板を使用することができるのでセラミックス基板を用い
る場合のような大きさの制限がない。In addition to the above-mentioned advantages, if the thermal spraying method is applied, there is no limit to the size of the substrate. Furthermore, since a conventional glass cloth-based epoxy resin laminate or glass cloth-based polyimide resin laminate can be used as the substrate, there is no size restriction as in the case of using a ceramic substrate.
本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.
第1図はアルミニウム板1の表面に回路パターン部分を
(り抜いたアルミニウム製のマスキング板2を当接した
ところを示す断面図である。FIG. 1 is a sectional view showing a state where an aluminum masking plate 2 from which a circuit pattern has been cut out is brought into contact with the surface of an aluminum plate 1.
マスキング板2を当接したアルミニウム板1上にイット
リウム−バリウム−銅酸化物の粉末をプラズマ溶射装置
によって溶射して溶射層を形成した。マスキング板2を
除去した後、イットリウム−バリウム−銅酸化物溶射層
3及びアルミニウム板1のイットリウム−バリウム−銅
酸化物溶射層3側にアルミナをプラズマ溶射装置により
溶射してアルミナ溶射層4を形成し第2図に示す構成の
ものを得た。A powder of yttrium-barium-copper oxide was sprayed onto the aluminum plate 1 with the masking plate 2 in contact using a plasma spraying device to form a sprayed layer. After removing the masking plate 2, alumina is sprayed onto the yttrium-barium-copper oxide sprayed layer 3 and the yttrium-barium-copper oxide sprayed layer 3 side of the aluminum plate 1 using a plasma spraying device to form an alumina sprayed layer 4. A structure shown in FIG. 2 was obtained.
次にこれを第3図に示す積層構成でガラス布基材エポキ
シ樹脂プリプレグ5とともに熱圧成形して一体化した。Next, this was heat-press molded and integrated with the glass cloth base epoxy resin prepreg 5 in the laminated structure shown in FIG.
成形終了後、アルミニウム板1を成形品から引きはがし
て除去し、第3図に示す構成のプリント基板を得た。After the molding was completed, the aluminum plate 1 was peeled off and removed from the molded product to obtain a printed circuit board having the configuration shown in FIG.
このようにして得られたプリント基板は、ガラス布基材
エポキシ樹脂積層板6の表面にアルミナ溶射層4を介し
てイットリウム−バリウム−銅酸化物からなる回路3を
有するものである。The thus obtained printed circuit board has a circuit 3 made of yttrium-barium-copper oxide on the surface of a glass cloth base epoxy resin laminate 6 with an alumina sprayed layer 4 interposed therebetween.
このプリント基板を液体窒素中に入れたところ、イット
リウム−バリウム−銅酸化物で形成した回路は超電導性
を示した。また回路とアルミナ溶射層、アルミナ溶射層
とガラス布基材エポキシ樹脂層との密着性は良好であり
、液体窒素に浸漬後も剥離、クラック等の異常は認めら
れなかうた。When this printed circuit board was placed in liquid nitrogen, the circuit made of yttrium-barium-copper oxide showed superconductivity. Furthermore, the adhesion between the circuit and the alumina sprayed layer, and between the alumina sprayed layer and the glass cloth base epoxy resin layer was good, and no abnormalities such as peeling or cracking were observed even after immersion in liquid nitrogen.
以上、本発明の方法によれば、従来ではセラミックス基
板上にのみ形成が可能であった。超電導物質の回路を一
般に広く用いられているプラスチック基板上に形成する
ことができ、その密着性も良好なものである。As described above, according to the method of the present invention, formation was conventionally possible only on a ceramic substrate. A circuit made of superconducting material can be formed on a generally widely used plastic substrate, and its adhesion is also good.
したがって従来に比べ生産性が良好で安価であり、基板
の大型化も容易である。このようにして得られるプリン
ト基板は信号伝送の損失が少なく、電気抵抗による回路
の発熱が極めて小さいため、高速コンピュータなどの高
速性、高密度化を要求される用途に極めて有用である。Therefore, productivity is better and cheaper than conventional methods, and it is easy to increase the size of the substrate. The printed circuit board obtained in this way has little loss in signal transmission and extremely little heat generated by the circuit due to electrical resistance, so it is extremely useful for applications that require high speed and high density, such as high-speed computers.
第1図は、回路パターン部分を(り抜いたマスキング板
をアルミニウム板上に当接したところを示す断面図、第
2図は、イットリウム−バリウム−銅酸化物を溶射後、
マスキング板を除去し、アルミナを溶射したところを示
す断面図、第3図はプリプレグとの熱圧成形の積層構成
図、第4図は本発明で得られたプリント基板の断面図で
ある。
符号の説明
1・・・アルミニウム板 2・・・マスキング板3・
・・イットリウム−バリウム−銅酸化物溶射層4・・・
アルミナ溶射層
5・・・ガラス布基材エポキシ樹脂プリプレグ第+il
第2図
第4rllJFig. 1 is a cross-sectional view showing the circuit pattern portion (a hollowed-out masking plate is brought into contact with an aluminum plate, and Fig. 2 is a cross-sectional view showing the circuit pattern portion (hollowed out) in contact with the aluminum plate.
FIG. 3 is a cross-sectional view showing a state where the masking plate has been removed and alumina has been thermally sprayed, FIG. 3 is a laminated configuration diagram of thermo-press molding with prepreg, and FIG. 4 is a cross-sectional view of a printed circuit board obtained by the present invention. Explanation of symbols 1... Aluminum plate 2... Masking plate 3.
...Yttrium-barium-copper oxide sprayed layer 4...
Alumina sprayed layer 5...Glass cloth base material Epoxy resin prepreg No. +il Fig. 2 Fig. 4rllJ
Claims (1)
路パターンを形成する第1工程、該セラミックス系超電
導物質溶射層側に電気絶縁性のセラミックスを溶射して
セラミックス溶射層を形成する第2工程、該セラミック
ス溶射層と接するようにプリプレグを載置して熱圧成形
、一体化する第3工程、金属板を除去してプラスチック
基板にセラミックス絶縁層、超電導物質回路パターンを
転写する第4工程からなる超電導プリント基板の製造方
法。 2、セラミックス系超電導物質がイットリウム−バリウ
ム−銅酸化物又はイットリウム−ストロンチウム−銅酸
化物からなるものであることを特徴とする特許請求の範
囲第1項記載の超電導プリント基板の製造方法。 3、電気絶縁性のセラミックスがアルミナを主成分とす
るものであることを特徴とする特許請求の範囲第1項記
載の超電導プリント基板の製造方法。[Claims] 1. A first step of spraying ceramic superconducting material powder onto a metal plate to form a circuit pattern; spraying an electrically insulating ceramic on the ceramic superconducting material sprayed layer side to form a ceramic sprayed layer; The second step is to form a prepreg in contact with the ceramic sprayed layer, and the third step is to heat-press and integrate the prepreg.The metal plate is removed and a ceramic insulating layer and a superconducting material circuit pattern are formed on the plastic substrate. A method for manufacturing a superconducting printed circuit board comprising a fourth step of transferring. 2. The method for manufacturing a superconducting printed circuit board according to claim 1, wherein the ceramic superconducting material is made of yttrium-barium-copper oxide or yttrium-strontium-copper oxide. 3. The method for manufacturing a superconducting printed circuit board according to claim 1, wherein the electrically insulating ceramic is mainly composed of alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62133087A JPS63299195A (en) | 1987-05-28 | 1987-05-28 | Manufacture of superconducting printed substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62133087A JPS63299195A (en) | 1987-05-28 | 1987-05-28 | Manufacture of superconducting printed substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63299195A true JPS63299195A (en) | 1988-12-06 |
Family
ID=15096548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62133087A Pending JPS63299195A (en) | 1987-05-28 | 1987-05-28 | Manufacture of superconducting printed substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63299195A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1035164A (en) * | 1996-04-25 | 1998-02-10 | Samsung Aerospace Ind Ltd | Ic card and manufacture thereof |
JP2001284774A (en) * | 2000-03-28 | 2001-10-12 | Kyocera Corp | Film with metal foil and method for manufacturing ceramic wiring board |
JP2009246391A (en) * | 2009-07-27 | 2009-10-22 | Kyocera Corp | Method of manufacturing ceramic wiring board |
-
1987
- 1987-05-28 JP JP62133087A patent/JPS63299195A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1035164A (en) * | 1996-04-25 | 1998-02-10 | Samsung Aerospace Ind Ltd | Ic card and manufacture thereof |
JP2001284774A (en) * | 2000-03-28 | 2001-10-12 | Kyocera Corp | Film with metal foil and method for manufacturing ceramic wiring board |
JP4548895B2 (en) * | 2000-03-28 | 2010-09-22 | 京セラ株式会社 | Manufacturing method of ceramic wiring board |
JP2009246391A (en) * | 2009-07-27 | 2009-10-22 | Kyocera Corp | Method of manufacturing ceramic wiring board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0244696A2 (en) | Method of fabricating a multilayered ceramic substrate having solid non-porous metal conductors | |
JPS63299195A (en) | Manufacture of superconducting printed substrate | |
JPS63299194A (en) | Manufacture of superconducting printed substrate | |
JPH01232796A (en) | Manufacture of metal core insulated board | |
JPS63299193A (en) | Manufacture of superconducting printed substrate | |
JP2619164B2 (en) | Manufacturing method of printed wiring board | |
JPS63299192A (en) | Manufacture of superconducting printed substrate | |
JPH01194384A (en) | Manufacture of copper-clad laminated plate | |
JPS62250689A (en) | Manufacture of insulating substrate | |
JPS62255133A (en) | Manufacture of ceramic coated laminated board | |
JPH01157589A (en) | Manufacture of metal base substrate | |
JPH01209790A (en) | Manufacture of superconducting printed circuit substrate | |
JPH0655477B2 (en) | Method for manufacturing ceramic coat laminate | |
JPS62187035A (en) | Manufacture of ceramic-coated lamianted board | |
JPS6372192A (en) | Manufacture of circuit board | |
JPH01194491A (en) | Manufacture of copper-pressed metallic base substrate | |
JP2652958B2 (en) | Manufacturing method of printed wiring board | |
JPH0434838B2 (en) | ||
JPS63160829A (en) | Manufacture of ceramic-coated laminated board | |
JP2761107B2 (en) | Manufacturing method of metal substrate with insulating layer | |
JPH01295479A (en) | Manufacture of metal base substrate | |
JPH01232032A (en) | Manufacture of ceramic coated thermoplastic laminate | |
JPH02253941A (en) | Preparation of ceramic coated laminated sheet | |
JPH01209789A (en) | Manufacture of superconducting printed circuit substrate | |
JPH02256293A (en) | Manufacture of wiring board |