JPS63160829A - Manufacture of ceramic-coated laminated board - Google Patents

Manufacture of ceramic-coated laminated board

Info

Publication number
JPS63160829A
JPS63160829A JP31155886A JP31155886A JPS63160829A JP S63160829 A JPS63160829 A JP S63160829A JP 31155886 A JP31155886 A JP 31155886A JP 31155886 A JP31155886 A JP 31155886A JP S63160829 A JPS63160829 A JP S63160829A
Authority
JP
Japan
Prior art keywords
ceramic
resin
copper foil
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31155886A
Other languages
Japanese (ja)
Inventor
寛士 長谷川
光弘 井上
岡野 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP31155886A priority Critical patent/JPS63160829A/en
Publication of JPS63160829A publication Critical patent/JPS63160829A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプリント配線板用の積層載の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a laminate for printed wiring boards.

(従来の技術) 従来、プリント基板としてはフェノール樹脂積層板、エ
ポキシ樹脂積層板が多く用いらIしてきた。しかし、最
近、電子機器の鳩性能イビ、/J%型化に伴い、高密度
実装化が望まn、基板材料にも高熱伝導率、高耐熱性、
低熱We張係数、高寸法安定性などの特性が頻く要求さ
fLるようになって@た。
(Prior Art) Conventionally, phenolic resin laminates and epoxy resin laminates have been widely used as printed circuit boards. However, recently, as the performance of electronic devices has increased, high-density packaging is desired, and board materials also have high thermal conductivity, high heat resistance,
Properties such as low thermal tensile modulus and high dimensional stability are increasingly required.

こnに対し、従来のフェノール樹脂、エポキシ樹脂など
の有機質系基@は熱伝導性が悪いために熱放散性に欠け
る、熱膨張係数が大きく1法安定性が悪い、耐勢性に乏
しいなどのためにこのような用途には用いらnない。そ
のため、アルミナなどのセラミック基板、あるいは金楓
板を芯材としてその表面を絶縁層で樋ったメタルペース
、メタルコア基板などが注目されている。また、耐熱性
の点からは従来のフェノール樹脂、エポキシ樹脂系基板
に代わり、ポリイミド極脂あるいはポリエーテルエーテ
ルケトン、ポリfA−フォンなどの耐熱性熱可塑性樹脂
を用いた基板も開発されている。
On the other hand, conventional organic groups such as phenolic resins and epoxy resins lack heat dissipation properties due to poor thermal conductivity, have a large coefficient of thermal expansion, have poor single-method stability, and have poor resistance to stress. Therefore, it is not used for this purpose. For this reason, ceramic substrates such as alumina, or metal paste and metal core substrates that have a core material of a gold maple board and an insulating layer on the surface are attracting attention. In addition, from the viewpoint of heat resistance, substrates using heat-resistant thermoplastic resins such as polyimide super resin, polyether ether ketone, and polyfA-phone have been developed in place of conventional phenol resin and epoxy resin substrates.

(発明が寓決しようとする問題点) しかし、これらの基板についてみると徳々の問題点かあ
る。すなわち、アルミナなどのセラミック基板は有機質
系基板罠比較すると、熱伝導性、耐熱性、熱膨張係数の
点ではすぐれるが、製造工程が複雑であり、焼結時の収
縮が大きめためすfP、精度が出しにくい、ドリル加工
が不可能である等加工性が悪い、もろい、基板の大きさ
に制限があり大型の基板が得られない、高価であるなど
の欠点がある。また、金属板を芯材としたメタルベース
基板、メタルコア基@は1路となる導体部と接している
のは樹脂からなる絶縁層であるために金属芯の高熱伝導
性を十分に活かしきれず、また、表面の耐熱性も十分と
はいえない。また、芯材が導電性の金属依であるために
スルーホールの形成が難しく、スルーホールを形成する
には非常に複雑な製造工程を必要とする。fた、耐熱性
樹脂基板を1耐熱性を工従来品に比べて向上しているも
のの、熱伝碑率は変わらないため、熱放散効果は望めな
い。
(Problems that the invention attempts to solve) However, when looking at these substrates, there are some problems, both moral and virtuous. In other words, ceramic substrates such as alumina are superior in terms of thermal conductivity, heat resistance, and coefficient of thermal expansion when compared to organic substrates, but the manufacturing process is complicated and shrinkage during sintering is large. It has drawbacks such as difficulty in achieving precision, poor workability such as the impossibility of drilling, brittleness, limitations on the size of the substrate and the inability to obtain large substrates, and high cost. In addition, metal base substrates and metal core bases with a metal plate as the core material cannot take full advantage of the high thermal conductivity of the metal core because the insulating layer made of resin is in contact with the conductor part that serves as one path. Moreover, the heat resistance of the surface is not sufficient. Furthermore, since the core material is made of a conductive metal, it is difficult to form through holes, and forming through holes requires a very complicated manufacturing process. Furthermore, although the heat resistance of the heat-resistant resin substrate has been improved compared to conventional products, the heat transfer rate remains the same, so no heat dissipation effect can be expected.

本発明はこれらの欠点を改良し、従来のセラミック基板
と有機質系基板との長所tとり入れ、しかもこれらの短
所を数置した、従来の#**系基板基板様の製造、加工
方法が可能で、しかも熱伝導性、耐熱性にすぐれ、低熱
膨張係数の基板を安働に得る方法を提供するものである
The present invention improves these drawbacks, incorporates the advantages of conventional ceramic substrates and organic substrates, and makes it possible to manufacture and process conventional #** type substrates with several of these disadvantages. Furthermore, the present invention provides a method for safely obtaining a substrate having excellent thermal conductivity, heat resistance, and a low coefficient of thermal expansion.

(問題点を解決する定めの手段〉 本発明は片面に熱硬化性樹脂を塗布、Bステージ化しに
銅箔の熱硬化性樹脂塗布側にセラミック層を形成し、該
銅箔のセラミック層側と接するようにプリプレグを槓ノ
ーシて熱圧成形することを特命とするもので、銅箔と有
機質基板の間に樹脂により封孔されたセラミック溶射層
をもつ基板を得るものである。
(Determined Means for Solving the Problems) The present invention involves applying a thermosetting resin to one side of the copper foil, forming a ceramic layer on the thermosetting resin-coated side of the copper foil to make it into a B stage, and forming a ceramic layer on the ceramic layer side of the copper foil. The special purpose is to heat and press the prepregs so that they are in contact with each other, and to obtain a substrate with a ceramic sprayed layer sealed with resin between the copper foil and the organic substrate.

@箔へのセラミック層の形成11:溶射により行うのは
、他にセラミックコーティング法としてCVD、PVD
、ゾルグル法などがあるが、これらの中で沼刺法が最も
成膜速度が高く高生産性であり、しかもfg射面槓の制
約がな(大面積へのセラミックコーティングが可能であ
るためである。セラミックの溶射はガス1fj9I4法
、プラズマ溶射法、減圧プラズマ溶射法、水プラズマ溶
射法などが通用できる。
@Formation of ceramic layer on foil 11: Besides thermal spraying, there are other ceramic coating methods such as CVD and PVD.
Among these methods, the Numazari method has the highest film formation rate and high productivity, and it does not have the limitations of the fg projecting surface (because it is possible to apply ceramic coating to a large area). Yes, the gas 1fj9I4 method, plasma spraying method, reduced pressure plasma spraying method, water plasma spraying method, etc. can be used for ceramic thermal spraying.

なお、銅箔へのセラミック溶射に先立ち、銅箔の片面、
すなわちセラミックを溶射する面に熱硬化性棚脂を、布
、Bステージ化するのは、セラミック溶射層中に存在す
る気孔を封入するためである。セラミック溶射層は焼結
体と異なり、一般に5へ15 vo1%の気孔が存在す
る。
In addition, prior to ceramic spraying on copper foil, one side of the copper foil,
That is, the reason why thermosetting shelf fat is applied to the surface to be thermally sprayed with ceramic to form a cloth or B stage is to seal in the pores present in the ceramic thermally sprayed layer. Unlike a sintered body, a ceramic sprayed layer generally has pores of 5 to 15 vol.

そのためにこの気孔を封孔せずにその!筐プリグレグと
ともに熱圧成形するとプリプレグ成形時のプリプレグ中
の樹脂の流動のみでは、セラばツク溶射層中の全ての気
孔を封孔することを工難かしい。したがりてこの気孔の
存在のLめに吸水率が大きく、吸湿時の絶縁抵抗、′t
s′Rt%性、jllはんだ耐熱性などの特性低下が大
きい。そのためにセラミック溶射層中の気孔は完全に封
孔する必要がある。この封孔処理は本発明に示すごとく
、@箔のセラミック溶射面側にあらかじめ熱硬化性樹脂
を塗布、Bステージ化しておくことによって容易に達せ
られる。つまり、このように熱硬化性樹脂を、布した側
にセラミックを溶射した銅箔をプリプレグとともに熱圧
成形すると、銅箔に塗布してBステージ化しに樹脂は、
熱圧底形時の熱によって容易に浴融し、圧力によって流
動、セラミック溶射層の気孔に含浸する。さらに加圧下
においてこの熱硬化性樹脂は高流動性であるから余分な
樹脂はパリとして系外にはみ出し、銅箔とセラミック浴
刑層間に余分な樹脂分はなくなり、銅箔とセラミック溶
射層の密着状態が得られる。セラミック浴刺層の気孔に
含浸した熱硬化性樹脂はその後、プリプレグの樹脂とと
もに硬化し、積層板が得られる。なお、このようにセラ
ミック溶射層の気孔上樹脂で封孔することにより、銅箔
とセラミック溶射層との密着性も封孔しない場合に比べ
て大きく同上する。セラミック溶射の金属への密着性は
ブラスト処理等の前処理の影響もあるが、金属のat類
によって異なり、鋼あるいは鋼せ金への@着強度は最も
低いといわれている。
Therefore, without sealing these pores! When hot-pressing molded together with the casing prepreg, it is difficult to seal all the pores in the ceramic sprayed layer using only the flow of resin in the prepreg during prepreg molding. Therefore, the water absorption rate is large when the pores are present, and the insulation resistance when moisture is absorbed, ′t
Characteristics such as s'Rt% and Jll soldering heat resistance are greatly deteriorated. Therefore, it is necessary to completely seal the pores in the ceramic sprayed layer. As shown in the present invention, this sealing treatment can be easily achieved by applying a thermosetting resin to the ceramic sprayed surface side of the @ foil in advance to make it into a B stage. In other words, when thermosetting resin is coated on copper foil with ceramic sprayed on the cloth side and thermo-press molded together with prepreg, the resin will be applied to the copper foil and made into a B stage.
It easily melts in the bath due to the heat during hot pressure forming, flows under pressure, and impregnates into the pores of the ceramic sprayed layer. Furthermore, since this thermosetting resin has high fluidity under pressure, the excess resin protrudes out of the system as particles, eliminating the excess resin between the copper foil and the ceramic coating layer, resulting in a close bond between the copper foil and the ceramic coating layer. The state is obtained. The thermosetting resin impregnated into the pores of the ceramic bath layer is then cured together with the prepreg resin to obtain a laminate. In addition, by sealing the pores of the ceramic sprayed layer with the resin in this way, the adhesion between the copper foil and the ceramic sprayed layer is also greatly improved compared to the case where the pores are not sealed. The adhesion of ceramic thermal spraying to metals is affected by pretreatment such as blasting, but it varies depending on the type of metal, and it is said that the adhesion strength to steel or steel shears is the lowest.

したがってセラミック層をヱ樹月旨1cよって封孔しな
い場合はm陥のセラミック層との密着性は十分な値が得
られない。ところが樹脂により封孔すると樹脂が銅箔の
表面に存在するようになるため、密着性が大きく向上す
るのである。
Therefore, if the ceramic layer is not sealed using the pore sealing method 1c, a sufficient value of adhesion with the ceramic layer cannot be obtained. However, when the pores are sealed with a resin, the resin is present on the surface of the copper foil, and the adhesion is greatly improved.

封孔のために*箔に塗布する熱硬化性樹脂はエポキシ樹
脂、フェノール樹脂、ボリイずド樹脂、メラミン樹脂、
不飽和ポリエステル樹脂、ビニルエステル樹脂などが用
いられ、積層に用いるプリプレグと最も大きな接着力を
得るためにはプリプレグの樹脂と同aI類の樹脂を用い
るのが好ましい。銅箔への塗布方法はを工は塗り、スプ
レー法、ドクターブレード法、a−ルコーター法などが
通用でき、塗布した樹脂七Bステージ化するのは取扱い
性のためである。なお、ホットメルト方式で常温で固体
の未硬化の熱硬化性樹脂を塗布する場合はBステージ化
に必ずしも必要としない。さらに完全に硬化しに状態!
でもっていくと熱圧成形時に流動しな(なってしまうた
め、避けなければならない。
*Thermosetting resins applied to the foil for sealing include epoxy resins, phenolic resins, solidified resins, melamine resins,
Unsaturated polyester resins, vinyl ester resins, etc. are used, and in order to obtain the greatest adhesive strength with the prepreg used for lamination, it is preferable to use a resin of the same class aI as the prepreg resin. Coating methods to the copper foil include coating, spraying, doctor blade, and ale coater methods, and the applied resin is staged for ease of handling. Note that when applying an uncured thermosetting resin that is solid at room temperature using a hot melt method, it is not necessarily necessary for B-stage formation. Even more completely cured!
However, this must be avoided as it will not flow during hot press molding.

本発明において銅箔に出射するセラミックとしては、セ
ラミック基板として最も広く用いられているアにミナが
好適であるが、その他にスピネル、ムライト、ベリリア
、炭化ケイ素、ジルコニア、窒化アルミニウムなどの電
気絶縁性のセ−)ミックが用いられる。
In the present invention, as the ceramic to be emitted to the copper foil, alumina, which is most widely used as a ceramic substrate, is suitable, but other electrically insulating materials such as spinel, mullite, beryllia, silicon carbide, zirconia, and aluminum nitride are also suitable. The semi-)mic is used.

グリプレグの樹脂は電気特性、成形加工性の点からエポ
キシ樹脂、ポリイミド樹脂が好適であるが、その他にフ
ェノール樹脂、不飽和ポリエステル樹脂、メラミン樹脂
、ビニルエステル樹脂などの熱硬化性樹脂あるいはボy
fh7tン、ポリエーテル;−チルケトン、ポリエステ
ルサルフをン、ポリエーテルイミドなどの熱硬化性樹脂
を用いることができる。また、#J!維としては一般に
用いられるガラス繊維の他にケプラー榴維、紙、SiC
繊維、シリカ接絶などを用いることができる。
Epoxy resins and polyimide resins are suitable for Gripreg resin in terms of electrical properties and moldability, but thermosetting resins such as phenol resins, unsaturated polyester resins, melamine resins, and vinyl ester resins, as well as polyester resins, are also suitable.
Thermosetting resins such as fh7t, polyether; -thiylketone, polyester sulfur, and polyetherimide can be used. Also, #J! In addition to commonly used glass fibers, fibers include Kepler shrapnel, paper, and SiC fibers.
Fibers, silica junctions, etc. can be used.

(作用) 本発明の方法により得られる積層板は有機質基板の表面
にセラミック層を有するために熱放散性、耐熱性、表面
硬度などにすぐれ島膨5!を糸数も/J%さい。さらに
セラミック層の気孔は@脂によって封孔されているので
吸水率も従来の有機質基板より低く、吸温時の電気特性
、機械的特性も良好であり、銅箔とセラミック層間の密
層性も十分である。
(Function) Since the laminate obtained by the method of the present invention has a ceramic layer on the surface of the organic substrate, it has excellent heat dissipation, heat resistance, surface hardness, etc. The number of threads is also /J%. Furthermore, since the pores of the ceramic layer are sealed with @ fat, the water absorption rate is lower than that of conventional organic substrates, and the electrical and mechanical properties when absorbing heat are also good, and the dense layer between the copper foil and the ceramic layer is also improved. It is enough.

また、回路の形成は、従来の鋼張積層板と同様に銅箔に
レジスト層を形成してエツチング処理することにより容
易に形成することがでさ、ドリルにより穴あけが可能で
あるため、スルーホールの形成も容易である。
In addition, circuits can be easily formed by forming a resist layer on copper foil and etching it in the same way as with conventional steel-clad laminates. It is also easy to form.

以下、実施例を挙げて本発明を脱明する。The present invention will be explained below with reference to Examples.

(実施例) 第1図はセラミックを溶射した銅箔とプリプレグのa層
構成図、第2図は得られた禎虐仏の断面模式図である。
(Example) Fig. 1 is a diagram showing the configuration of the a-layer of prepreg and copper foil sprayed with ceramic, and Fig. 2 is a schematic cross-sectional view of the obtained Teishokubutsu.

厚さ35μの銅箔1の片面にロールコータ−を用いてエ
ポキシ樹脂2を厚さ50μに塗布、加熱乾燥してBステ
ージ化し、室温でべたつきのない状態とした。このよう
にして得1こエボキク樹脂塗布銅箔のエポキシ樹脂塗薄
側にプラズマf!!射法によりてア/L−ミナ全約10
0μの厚さに苗刺してアルミナ階躬層3を形成した。
Epoxy resin 2 was coated on one side of copper foil 1 with a thickness of 35 μm to a thickness of 50 μm using a roll coater, and heated and dried to form a B stage, and a non-stick state was obtained at room temperature. In this way, a plasma f! ! Depending on the shooting method, A/L-Mina total about 10
Alumina layer 3 was formed by pricking seedlings to a thickness of 0 μm.

このアルはす溶射銅箔とガラスクロス/エポキシ樹脂含
浸プリプレグ4を第1図の積層構成に積み重ね、熱圧底
形して第2図に示す構成の積層板を得た◎ この積層板はガラス繊維基材エポキシ樹脂50表面にア
ルミナ層を有し、さらにその上に銅箔I@wmするもの
である。
This aluminum sprayed copper foil and glass cloth/epoxy resin-impregnated prepreg 4 were stacked in the laminated configuration shown in Figure 1, and then shaped under heat and pressure to obtain a laminated plate with the configuration shown in Figure 2.◎ This laminated plate is made of glass The fiber base epoxy resin 50 has an alumina layer on its surface, and a copper foil I@wm is further applied thereon.

この積層板のJISC6481の銅箔用さはがし強さは
1.7kg/am、吸水率はQ、04%であった。この
積層板は一般のガラス繊維基材エポキシ樹脂銅張積層板
と同様の方法でエツチングによる回路形成、ドリル穴ろ
け、スルーホールの形成が可能であった。
The JISC6481 copper foil peeling strength of this laminate was 1.7 kg/am, and the water absorption rate was Q.04%. With this laminate, it was possible to form circuits by etching, drill holes, and form through holes in the same manner as general glass fiber-based epoxy resin copper-clad laminates.

また、回路に接して熱伝導性のよいアルミナ層が存在す
るために熱放散性にすぐれ、耐熱性、表面硬度も大きく
、アルミナが低熱膨張であるため熱膨張係数も従来のも
のに比べて小さくすることができた。
In addition, since there is an alumina layer with good thermal conductivity in contact with the circuit, it has excellent heat dissipation, has high heat resistance and surface hardness, and because alumina has low thermal expansion, the coefficient of thermal expansion is also smaller than conventional ones. We were able to.

(比較例) 実施例と同様な方法によりアルミナ浴躬鳩の樹脂による
封孔処理を行わずに、他は同条件でat層板を作製した
。得られた積層板のJISC6481の銅箔引きはがし
強さは01kg/Cl11と極端に低く、吸水率は(L
35%で吸水時の絶縁抵抗の低下は著しいものであった
(Comparative Example) An AT laminate was produced in the same manner as in the example without sealing the alumina bath with resin, but under the same conditions. The JISC6481 copper foil peeling strength of the obtained laminate is extremely low at 01 kg/Cl11, and the water absorption rate is (L
At 35%, the insulation resistance decreased significantly when water was absorbed.

(発明の効果) 本発明の方法により、従来の有磯質基取のペースとして
その表面にセラミック層を有する槓J傾根を容易にしか
も安酒に製造することができろ。本発明により得られる
積層板は特性的にもすぐれたもので、回路形成、スルー
ホールの形成なども従来の有機質基板と同様の方法で行
うことができ、従来の有機質基板、セラばツク基板、メ
タルペース、メタルコア基金の問題点を解決し得るもの
である。
(Effects of the Invention) By the method of the present invention, it is possible to easily and inexpensively produce a conventional rock-based base having a ceramic layer on its surface. The laminate obtained by the present invention has excellent characteristics, and circuit formation and through-hole formation can be performed in the same manner as conventional organic substrates. This could solve the problems of Metalpace and Metalcore Funds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミックを萌刺しγこ@箔とプリプ
レグの積層lR成向、$2図は得られた積層板の断面模
式図である。 符号の説明 1 銅箔        2 エポキシ樹脂層6 アル
ミナ浴刺層   4 プリプレグ5 ガラスllIm基
材 エポキシ樹脂 −・\
FIG. 1 is a laminated lR orientation of the ceramic of the present invention, gamma foil and prepreg, and FIG. 2 is a schematic cross-sectional view of the obtained laminate. Explanation of symbols 1 Copper foil 2 Epoxy resin layer 6 Alumina bath layer 4 Prepreg 5 Glass llIm base epoxy resin - \

Claims (1)

【特許請求の範囲】 1、片面に熱硬化性樹脂を、布してBステージ化しに銅
箔の熱硬化性樹脂塗布側に、セラミックを溶射してセラ
ミック層を形成し、該銅箔のセラミック層側と接するよ
うにプリプレグを積層して熱圧成形することを特徴とす
るセラミックコート積層板の製造方法。 2、セラミックがアルミナを主成分とするものである特
許請求の範囲第1項記載の積層板の製造方法。 5、銅箔の片面に塗布する熱硬化性樹脂が積層に用いる
樹脂と同種類の樹脂を主成分とするものである特許請求
の範囲第1項記載の積層板の製造方法。 4、プリプレグの樹脂がエポキシ樹脂である特許請求の
範囲第1項記載の積層板の製造方法。 5、プリプレグの樹脂がポリイミド樹脂である特許請求
の範囲第1項記載の積層板の製造方法。 6、プリプレグの繊維がガラス繊維である特許請求の範
囲第1項記載の積層板の製造方法。
[Claims] 1. A thermosetting resin is applied to one side of the copper foil to form a B stage, and a ceramic layer is formed by thermal spraying a ceramic layer on the thermosetting resin-coated side of the copper foil. A method for manufacturing a ceramic coated laminate, characterized by laminating prepregs so as to be in contact with the layer side and thermo-pressing forming the prepregs. 2. The method for manufacturing a laminate according to claim 1, wherein the ceramic is mainly composed of alumina. 5. The method for manufacturing a laminate according to claim 1, wherein the thermosetting resin applied to one side of the copper foil has the same type of resin as the resin used for lamination as a main component. 4. The method for manufacturing a laminate according to claim 1, wherein the resin of the prepreg is an epoxy resin. 5. The method for manufacturing a laminate according to claim 1, wherein the resin of the prepreg is a polyimide resin. 6. The method for manufacturing a laminate according to claim 1, wherein the fibers of the prepreg are glass fibers.
JP31155886A 1986-12-25 1986-12-25 Manufacture of ceramic-coated laminated board Pending JPS63160829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31155886A JPS63160829A (en) 1986-12-25 1986-12-25 Manufacture of ceramic-coated laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31155886A JPS63160829A (en) 1986-12-25 1986-12-25 Manufacture of ceramic-coated laminated board

Publications (1)

Publication Number Publication Date
JPS63160829A true JPS63160829A (en) 1988-07-04

Family

ID=18018677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31155886A Pending JPS63160829A (en) 1986-12-25 1986-12-25 Manufacture of ceramic-coated laminated board

Country Status (1)

Country Link
JP (1) JPS63160829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269996A (en) * 1988-08-01 1990-03-08 Internatl Business Mach Corp <Ibm> Electronic circuit board
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
JP2013191903A (en) * 2010-03-31 2013-09-26 Kyocera Corp Interposer and electronic apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269996A (en) * 1988-08-01 1990-03-08 Internatl Business Mach Corp <Ibm> Electronic circuit board
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
JP2013191903A (en) * 2010-03-31 2013-09-26 Kyocera Corp Interposer and electronic apparatus using the same

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
US4407883A (en) Laminates for printed circuit boards
JPS63274196A (en) Metal core printed circuit board
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JPS62187028A (en) Manufacture of ceramic-coated laminated board
JPH01194384A (en) Manufacture of copper-clad laminated plate
JP2005159201A (en) Wiring board and its manufacturing method
JP2806030B2 (en) Ceramic composite copper-clad laminate and method of manufacturing the same
JP2894105B2 (en) Copper clad laminate and method for producing the same
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPS62255133A (en) Manufacture of ceramic coated laminated board
JPH0720685B2 (en) Method for manufacturing ceramic coat laminate
JPS62187035A (en) Manufacture of ceramic-coated lamianted board
JPH03149890A (en) Ceramic circuit board
JPH0433389A (en) Ceramic composite copper clad board and manufacture thereof
JPS63203331A (en) Manufacture of ceramic coated laminated board
JPH01232796A (en) Manufacture of metal core insulated board
JPS63207638A (en) Manufacture of copper-clad ceramic coated laminated board
JPH0771832B2 (en) Method for manufacturing ceramic coat laminate
JPS62152742A (en) Ceramic coated laminated board
JPH02253940A (en) Manufacture of ceramic composite copper clad laminated sheet
JPH05152742A (en) Metal foil clad ceramic board
JPS63145021A (en) Multilayer wiring substrate
JPH02293132A (en) Thermoplastic resin laminated sheet