JP2806030B2 - Ceramic composite copper-clad laminate and method of manufacturing the same - Google Patents

Ceramic composite copper-clad laminate and method of manufacturing the same

Info

Publication number
JP2806030B2
JP2806030B2 JP2260882A JP26088290A JP2806030B2 JP 2806030 B2 JP2806030 B2 JP 2806030B2 JP 2260882 A JP2260882 A JP 2260882A JP 26088290 A JP26088290 A JP 26088290A JP 2806030 B2 JP2806030 B2 JP 2806030B2
Authority
JP
Japan
Prior art keywords
mullite
clad laminate
ceramic
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2260882A
Other languages
Japanese (ja)
Other versions
JPH04137788A (en
Inventor
寛士 長谷川
光弘 井上
徳雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2260882A priority Critical patent/JP2806030B2/en
Publication of JPH04137788A publication Critical patent/JPH04137788A/en
Application granted granted Critical
Publication of JP2806030B2 publication Critical patent/JP2806030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント配線板に用いる銅張積層板及びそ
の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a copper-clad laminate used for a printed wiring board and a method for producing the same.

(従来の技術) 従来、プリント配線板には、紙基材フェノール樹脂積
層板、ガラス布基材エポキシ樹脂積層板、ガラス布基材
ポリイミド樹脂積層板などが主に用いられてきた。しか
し、最近、電子機器の高出力化、小型化の進歩に伴い、
プリント基板材料にも寸法安定性を向上させるために熱
膨張係数の低減、耐熱性、耐トラッキング性等の向上が
強く望まれている。
(Prior Art) Conventionally, a paper-based phenol resin laminate, a glass cloth-based epoxy resin laminate, a glass cloth-based polyimide resin laminate, and the like have been mainly used as printed wiring boards. However, recently, with the progress of high output and miniaturization of electronic devices,
In order to improve the dimensional stability of printed circuit board materials, it is strongly desired to reduce the coefficient of thermal expansion and to improve heat resistance and tracking resistance.

このような要求に対して、従来のガラス布基材エポキ
シ樹脂積層板などのプラスチック基板は、熱膨張係数、
耐トラッキング性、耐熱性などの点で劣るために高密度
実装化に対応するためには改良が必要である。これに対
してアルミナをはじめとするセラミック基板はこれらの
要求を満たすが、加工性が悪い、基板の大型化ができな
いなどの欠点を有する。
In response to such demands, plastic substrates such as conventional glass cloth-based epoxy resin laminates have thermal expansion coefficients,
Since tracking resistance, heat resistance, and the like are inferior, improvements are required to cope with high-density mounting. On the other hand, ceramic substrates such as alumina satisfy these requirements, but have drawbacks such as poor workability and inability to increase the size of the substrate.

このような状況から、本発明者らは、従来のプラスチ
ック基板とセラミック基板を複合化することを考え、セ
ラミックコート積層板を提案した(特開昭62−152742号
公報)。これは、銅箔と繊維強化プラスチック層との間
にアルミナなどのセラミック層を設けたものである。従
来のプラスチック基板に比べて熱膨張係数が低いために
寸法安定性が良い、熱間での銅箔引きはがし強さ、表面
硬度などの耐熱性にすぐれる、あるいは耐トラッキング
性、耐アーク性にすぐれるなどの特長があり、セラミッ
ク基板では不可能であるが、ドリル加工も可能である。
Under such circumstances, the inventors of the present invention have proposed a ceramic-coated laminate in consideration of combining a conventional plastic substrate and a ceramic substrate (Japanese Patent Application Laid-Open No. 62-152742). In this case, a ceramic layer such as alumina is provided between a copper foil and a fiber-reinforced plastic layer. Excellent dimensional stability due to lower coefficient of thermal expansion compared to conventional plastic substrates, excellent heat resistance such as hot copper foil peeling strength and surface hardness, or excellent tracking resistance and arc resistance It has advantages such as superiority, and although it is impossible with a ceramic substrate, drilling is also possible.

(発明が解決しようとする課題) しかし、このような特長を有するセラミックコート積
層板の大きな欠点は、このドリル加工性が従来のプラス
チック基板に比べて劣る点であった。すなわち、φ1.0
程度ならば超硬ドリルで、ドリルの摩耗は大きいものの
加工可能であるが、φ0.3程度の小径になるとドリルが
折損しやすい。例えばセラミック層をアルミナとして厚
さ100μmにすると、約200穴程度でドリルが折損する。
したがって小径穴を有するプリント配線板に適用するに
は問題があり、寸法安定性、耐トラッキング性、耐熱性
などの特長を有するものの用途が限定されてしまう。
(Problems to be Solved by the Invention) However, a major drawback of the ceramic coated laminate having such features is that the drill workability is inferior to that of a conventional plastic substrate. That is, φ1.0
If the diameter is small, a carbide drill can be used although the wear of the drill is large, but if the diameter is as small as about φ0.3, the drill is easily broken. For example, if the ceramic layer is made of alumina and has a thickness of 100 μm, the drill breaks at about 200 holes.
Therefore, there is a problem in applying it to a printed wiring board having a small-diameter hole, and although it has features such as dimensional stability, tracking resistance, and heat resistance, its use is limited.

本発明はこの欠点を改良し、ドリル加工性が改良さ
れ、しかも寸法安定性、耐トラッキング性、耐熱性など
の特長を有するセラミック複合銅張積層板を提供するも
のである。
The present invention is to provide a ceramic composite copper clad laminate which has improved drawbacks, improved drill workability, and has features such as dimensional stability, tracking resistance and heat resistance.

(課題を解決するための手段) すなわち本発明は、銅箔と織布プリプレグ層との間に
ムライトを主体とするセラミック溶射層を設けて熱圧成
形してなる、銅箔と繊維強化プラスチック層との間にム
ライト溶射層を有する構造のセラミック複合銅張積層板
である。
(Means for Solving the Problems) That is, the present invention provides a copper foil and a fiber-reinforced plastic layer obtained by providing a ceramic sprayed layer mainly composed of mullite between a copper foil and a woven prepreg layer and hot-press molding. And a ceramic composite copper-clad laminate having a mullite sprayed layer between the two.

その製造法は、銅箔の片面にムライトを主体とするセ
ラミックを溶射して溶射層を形成し、該ムライト溶射層
と接するように織布プリプレグを積層載置して、熱圧成
形するものである。
The production method involves spraying a ceramic mainly composed of mullite on one side of a copper foil to form a sprayed layer, laminating and placing a woven prepreg so as to be in contact with the mullite sprayed layer, and hot-press molding. is there.

銅箔と繊維強化プラスチック層との間に設けるセラミ
ックをムライトを主体とするセラミックとしたのは、ム
ライトがアルミナに比べて軟質でしかも熱膨張係数が低
いためである。すなわち、熱膨張係数の低いムライト層
を設けることによって熱膨張係数の高い繊維強化プラス
チック層の熱膨張を抑えることができ、結果的に積層板
の熱膨張係数が低くなり、寸法安定性が向上するのであ
る。また、セラミック層としてアルミナを用いた場合
は、アルミナが硬質で加工性が悪いために、ドリル加工
時にドリルの摩耗が著しく、したがってドリルが折損し
やすい。特にドリルが小径になるとこの現象は顕著であ
る。ところが、セラミック層としてアルミナに代えてム
ライトを用いると、ムライトはアルミナに比べて軟質の
ため、ドリル加工時のドリル摩耗は少なくなり、ドリル
は折損しにくくなる。
The reason why the ceramic provided between the copper foil and the fiber-reinforced plastic layer is a ceramic mainly composed of mullite is that mullite is softer and has a lower thermal expansion coefficient than alumina. That is, by providing the mullite layer having a low coefficient of thermal expansion, the thermal expansion of the fiber-reinforced plastic layer having a high coefficient of thermal expansion can be suppressed, and as a result, the coefficient of thermal expansion of the laminated board is reduced, and the dimensional stability is improved. It is. Further, when alumina is used as the ceramic layer, the alumina is hard and the workability is poor, so that the drill is significantly worn during drilling, so that the drill is easily broken. This phenomenon is particularly remarkable when the diameter of the drill is small. However, when mullite is used instead of alumina as the ceramic layer, mullite is softer than alumina, so drill wear during drilling is reduced, and the drill is less likely to break.

また、その製造法としてムライトを主体とするセラミ
ックを銅箔に溶射してムライト溶射層を形成し、これを
織布プリプレグとともに熱圧成形して一体化する方法を
採用したのは、次のような利点からである。
In addition, as a method for producing the mullite, a method of spraying a ceramic mainly composed of mullite onto copper foil to form a mullite sprayed layer, and hot-press molding the mullite with a woven prepreg and integrating them is adopted as follows. It is from a great advantage.

溶射とは、プラズマ溶射法、ガス溶射法などの一般の
セラミック溶射に用いられる溶射法が適用できるが、セ
ラミックの粉末を熱で溶融させ、高速で被溶射体に衝突
させて、固着させるものである。したがって得られる溶
射層は、溶射材料であるセラミック粉末のへん平な粒子
がたい積した構造で5〜20体積パーセントの気孔を有す
る。一般にこの気孔の存在は、電気絶縁用途には大きな
欠点になる。すなわち、気孔が吸湿しやすく、吸湿時の
絶縁特性が低下するのである。ところが、本発明の製造
法においては、この気孔の存在が逆に大きな利点にな
る。というのは、銅箔にムライトを主体とするセラミッ
クを溶射してムライト溶射層を成形し、これに織布プリ
プレグを載置して熱圧成形すると、織布プリプレグの樹
脂が熱圧成形時に軟化、溶融し、ムライト溶射層の気孔
に含浸する。その結果、ムライト溶射層の気孔は封孔さ
れ、吸湿時の絶縁特性の低下の問題は解決される。さら
に、セラミックの樹脂の接着性は、互いに一種材料であ
り、しかも熱膨張係数が異なるために良好ではないが、
熱圧成形時に樹脂がムライト溶射層の気孔に含浸するた
めに強固な接着力が得られる。また銅箔とムライト溶射
層との接着力も溶射したままでは、プリント配線板とし
て用いるには満足なものでもないが、樹脂がムライト溶
射層を通して銅箔面にまで達することによって強固な接
着力が得られる。
Thermal spraying can be applied by the general thermal spraying method used in general ceramic spraying such as plasma spraying and gas spraying.However, ceramic powder is melted by heat and collides with the object to be sprayed at high speed to fix it. is there. Thus, the resulting sprayed layer has a structure in which flat particles of ceramic powder, which is a sprayed material, are deposited and has pores of 5 to 20% by volume. Generally, the presence of this pore is a major drawback for electrical insulation applications. That is, the pores easily absorb moisture, and the insulating properties at the time of moisture absorption are reduced. However, in the production method of the present invention, the presence of the pores is a great advantage. This is because the mullite sprayed layer is formed by spraying a ceramic mainly composed of mullite on copper foil, and the woven prepreg is placed on this and hot-pressed, and the resin of the woven prepreg softens during hot pressing. Melts and impregnates the pores of the mullite sprayed layer. As a result, the pores of the mullite sprayed layer are sealed, and the problem of a decrease in insulating properties during moisture absorption is solved. Furthermore, the adhesiveness of the ceramic resin is a kind of material, and it is not good because of the different thermal expansion coefficients.
Since the resin impregnates the pores of the mullite sprayed layer during hot pressing, a strong adhesive force is obtained. The adhesive strength between the copper foil and the mullite sprayed layer is not satisfactory for use as a printed wiring board if it is still sprayed, but a strong adhesive strength is obtained by the resin reaching the copper foil surface through the mullite sprayed layer. Can be

本発明に用いる織布プリプレグの織布としては、一般
の積層板に用いられているガラス繊維織布がその特性、
価格の点から好適であるが、その他のアラミド繊維、ク
ォーツ繊維などの織布を用いることができる。また、樹
脂も一般の積層板に用いられているエポキシ樹脂または
ポリイミド樹脂が好適であるがその他にフェノール樹
脂、メラミン樹脂、不飽和ポリエステル樹脂、ビニルエ
ステル樹脂、ふっ素樹脂などを用いることができる。
As the woven fabric of the woven prepreg used in the present invention, the glass fiber woven fabric used for general laminates has its characteristics,
Although suitable in terms of price, other woven fabrics such as aramid fibers and quartz fibers can be used. The resin is preferably an epoxy resin or a polyimide resin used for a general laminate, but may be a phenol resin, a melamine resin, an unsaturated polyester resin, a vinyl ester resin, a fluorine resin, or the like.

(作用) 本発明のセラミック複合銅張積層板は、銅箔と繊維強
化プラスチック層との間にムライト溶射層を有するもの
である。熱膨張係数が低い(4.5×10-6/℃)ムライト層
が存在するために積層板の熱膨張係数はムライト層のな
い従来の銅張積層板に比べて格段に低くなり、基板の寸
法安定性を大きく向上することができる。また、アルミ
ナ溶射層に比べるとムライト溶射層は、軟かいためにド
リル加工時のドリル摩耗もアルミナを用いた場合よりも
少なく、そのためにドリルも折損しにくくなる。特に小
径ドリルでは、顕著な効果がある。
(Function) The ceramic composite copper-clad laminate of the present invention has a mullite sprayed layer between a copper foil and a fiber-reinforced plastic layer. Due to the presence of a mullite layer with a low coefficient of thermal expansion (4.5 × 10 -6 / ° C), the coefficient of thermal expansion of the laminate is significantly lower than that of a conventional copper-clad laminate without a mullite layer, and the dimensional stability of the substrate Properties can be greatly improved. Further, since the mullite sprayed layer is softer than the alumina sprayed layer, drill abrasion during drilling is smaller than that in the case of using alumina, and therefore, the drill is less likely to be broken. In particular, a small diameter drill has a remarkable effect.

さらに、銅箔のすぐ下にセラミックであるムライト溶
射層が存在するために耐トラッキング性、耐アーク性、
加熱時の銅箔引きはがし強さなどもすぐれたものであ
る。
In addition, due to the presence of the ceramic mullite sprayed layer immediately below the copper foil, tracking resistance, arc resistance,
The copper foil peeling strength during heating is also excellent.

以下、実施例を挙げて本発明をさらに説明する。 Hereinafter, the present invention will be further described with reference to examples.

(実施例) 厚さ18μmの電解銅箔1(TSTO−18μm、古河サーキ
ットフォイル製)の粗化面に米国プラズマダイン社製の
プラズマ溶射機、プラズマダインシステム3600−80R型
を用いてムライト(ショウコートK80M、昭和電工製)を
溶射し、厚さ100μmのムライト溶射層2を形成した。
次いで第1図に示す積層構成でガラス繊維織布エポキシ
樹脂プリプレグ3とともに熱圧成形し、第2図に示す構
造の板厚0.4mmのセラミック複合銅張積層板を得た。
(Example) Mullite (show) was used on the roughened surface of an electrolytic copper foil 1 having a thickness of 18 μm (TSTO-18 μm, manufactured by Furukawa Circuit Foil) using a plasma spraying machine manufactured by Plasmadyne Co., Ltd., Plasmadyne System Model 3600-80R. Coat K80M, manufactured by Showa Denko) was sprayed to form a mullite sprayed layer 2 having a thickness of 100 μm.
Then, it was hot-pressed together with the glass fiber woven fabric epoxy resin prepreg 3 in the laminated structure shown in FIG. 1 to obtain a ceramic composite copper-clad laminate having a structure shown in FIG.

得られたセラミック複合銅張積層板の面方向の熱膨張
係数は、7.8×10-6-1であり、このセラミック複合銅
張積層板を内層板に用いた4層板の4層板プレス後の寸
法変化率は0.004%であった。なお、ムライト溶射層の
代わりにアルミナ溶射層を有するセラミック複合銅張積
層板の面方向の熱膨張係数は8.3×10-6-1、4層板プ
レス後の寸法変化率は0.003%とほぼ同等であった。ま
た、セラミック溶射層のない従来の銅張積層板では、面
方向の熱膨張係数は13.7×10-6-1、4層板プレス後の
寸法変化率は0.025%であった。
The coefficient of thermal expansion in the plane direction of the obtained ceramic composite copper-clad laminate was 7.8 × 10 −6 ° C. −1 , and a four-layer plate press using a four-layer plate using this ceramic composite copper-clad laminate as an inner layer plate was used. The subsequent dimensional change was 0.004%. The thermal expansion coefficient in the surface direction of the ceramic composite copper-clad laminate having an alumina sprayed layer instead of the mullite sprayed layer was 8.3 × 10 -6 ° C -1 , and the dimensional change after pressing the four-layered plate was almost 0.003%. It was equivalent. In the conventional copper-clad laminate without the ceramic sprayed layer, the thermal expansion coefficient in the plane direction was 13.7 × 10 −6 ° C. −1 , and the dimensional change after pressing the four-layer plate was 0.025%.

次にムライト溶射層をもつセラミック複合銅張積層板
で直径0.35mmの超硬ドリルによる穴あけを行ったとこ
ろ、加工穴数10,000穴でもドリルは折損しなかった。一
方、アルミナ溶射層をもつセラミック複合銅張積層板で
は206穴でドリルが折損した。
Next, when a hole was drilled with a carbide drill having a diameter of 0.35 mm using a ceramic composite copper-clad laminate having a mullite sprayed layer, the drill did not break even with 10,000 holes. On the other hand, in the ceramic composite copper clad laminate having the alumina sprayed layer, the drill was broken at 206 holes.

(発明の効果) 以上、本発明の方法により得られるセラミック複合銅
張積層板は、熱膨張係数が低く、耐トラッキング性、熱
間での銅箔引きはがし強さなどが、従来の銅張積層板に
比べてすぐれており、しかもセラミックにアルミナ溶射
層を用いたセラミック複合銅張積層板の最大の欠点であ
るドリル加工性を大幅に改善することができるものであ
る。
(Effects of the Invention) As described above, the ceramic composite copper-clad laminate obtained by the method of the present invention has a low coefficient of thermal expansion, tracking resistance, hot copper foil peeling strength, and the like. It is superior to a plate, and can greatly improve the drilling property, which is the biggest drawback of a ceramic composite copper-clad laminate using an alumina sprayed ceramic layer.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例の積層構成を示す断面模式
図、第2図は、得られたセラミック複合銅張積層板の構
造を示す断面模式図である。 符号の説明 1……電解銅箔、2……ムライト溶射層 3……ガラス繊維織布エポキシ樹脂プリプレグ 4……ガラス布基材エポキシ樹脂
FIG. 1 is a schematic cross-sectional view showing a laminated structure according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of the obtained ceramic composite copper-clad laminate. DESCRIPTION OF SYMBOLS 1 ... Electrolytic copper foil 2 ... Mullite sprayed layer 3 ... Glass fiber woven cloth epoxy resin prepreg 4 ... Glass cloth base epoxy resin

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−164530(JP,A) 特開 昭63−219562(JP,A) 特開 平1−194384(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05K 1/03────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-164530 (JP, A) JP-A-63-219562 (JP, A) JP-A-1-194384 (JP, A) (58) Field (Int.Cl. 6 , DB name) H05K 1/03

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅箔とガラス繊維織布プリプレグ層との間
にムライトを主体とするセラミック溶射層を設け、これ
を熱圧成形してなることを特徴とするセラミック複合銅
張積層板。
1. A ceramic composite copper-clad laminate comprising a ceramic sprayed layer mainly composed of mullite provided between a copper foil and a glass fiber woven prepreg layer, which is hot-pressed.
【請求項2】織布プリプレグの樹脂がエポキシ樹脂であ
る請求項1に記載のセラミック複合銅張積層板。
2. The ceramic composite copper clad laminate according to claim 1, wherein the resin of the woven prepreg is an epoxy resin.
【請求項3】織布プリプレグの樹脂がポリイミド樹脂で
ある請求項1に記載のセラミック複合銅張積層板。
3. The ceramic composite copper clad laminate according to claim 1, wherein the resin of the woven prepreg is a polyimide resin.
【請求項4】銅箔の片面にムライトを主体とするセラミ
ックを溶射してムライトを主体とするセラミック溶射層
を形成し、該ムライト溶射層に接するようにガラス繊維
織布プリプレグを設置して、これを熱圧成形することを
特徴とする複合銅張積層板の製造方法。
4. A mullite-based ceramic sprayed layer is formed by spraying mullite-based ceramic on one side of a copper foil, and a glass fiber woven prepreg is placed in contact with the mullite-sprayed layer. A method for producing a composite copper-clad laminate, comprising hot-pressing the composite.
【請求項5】織布プリプレグの樹脂がエポキシ樹脂であ
る請求項4に記載の複合銅張積層板の製造方法。
5. The method for producing a composite copper clad laminate according to claim 4, wherein the resin of the woven prepreg is an epoxy resin.
【請求項6】織布プリプレグの樹脂がポリイミド樹脂で
ある請求項4に記載の複合銅張積層板の製造方法。
6. The method for producing a composite copper-clad laminate according to claim 4, wherein the resin of the woven prepreg is a polyimide resin.
JP2260882A 1990-09-28 1990-09-28 Ceramic composite copper-clad laminate and method of manufacturing the same Expired - Lifetime JP2806030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260882A JP2806030B2 (en) 1990-09-28 1990-09-28 Ceramic composite copper-clad laminate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260882A JP2806030B2 (en) 1990-09-28 1990-09-28 Ceramic composite copper-clad laminate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04137788A JPH04137788A (en) 1992-05-12
JP2806030B2 true JP2806030B2 (en) 1998-09-30

Family

ID=17354062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260882A Expired - Lifetime JP2806030B2 (en) 1990-09-28 1990-09-28 Ceramic composite copper-clad laminate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2806030B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219562A (en) * 1987-03-10 1988-09-13 Hitachi Chem Co Ltd Manufacture of ceramic coat laminated sheet
JPH01194384A (en) * 1988-01-28 1989-08-04 Hitachi Chem Co Ltd Manufacture of copper-clad laminated plate
JPH0720686B2 (en) * 1988-12-19 1995-03-08 日立化成工業株式会社 Method for manufacturing ceramic-coated thermoplastic resin laminate

Also Published As

Publication number Publication date
JPH04137788A (en) 1992-05-12

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
US7730613B2 (en) Processes for manufacturing printed wiring boards
WO2007103949A2 (en) Processes for manufacturing printed wiring boards possessing electrically conductive constraining cores
JPH10270847A (en) Manufacture of multilayered printed wiring board
JP3760771B2 (en) Circuit forming substrate and method of manufacturing circuit forming substrate
JP2806030B2 (en) Ceramic composite copper-clad laminate and method of manufacturing the same
JP3969477B2 (en) Multilayer wiring board and manufacturing method thereof
JPH11298153A (en) Multilayered printed circuit board
JP2956370B2 (en) Copper clad laminate and method for producing the same
USRE45637E1 (en) Processes for manufacturing printed wiring boards
JPH06252555A (en) Multilayered wiring board
JPH0719941B2 (en) Ceramic composite copper clad laminate and its manufacturing method
JP2650072B2 (en) Manufacturing method of multilayer printed wiring board
JPH0697670A (en) Board for multilayer printed wiring
JPH04137787A (en) Ceramic composite copper plated laminated plate and its production
JPH04334085A (en) Manufacture of composite copper-clad ceramic laminate
JPH04334086A (en) Manufacture of composite copper-clad ceramic laminate
JPH07106770A (en) Multilayered printed wiring board
JPH06334284A (en) Printed wiring board
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH0582971A (en) Multilayered printed wiring board
JPH03219692A (en) Multilayer printed-wiring board and its manufacture
JPH04279081A (en) Epoxy resin-copper foil laminated board and manufacture thereof
JP2917579B2 (en) Multilayer printed wiring board