JPH02253940A - Manufacture of ceramic composite copper clad laminated sheet - Google Patents

Manufacture of ceramic composite copper clad laminated sheet

Info

Publication number
JPH02253940A
JPH02253940A JP7750389A JP7750389A JPH02253940A JP H02253940 A JPH02253940 A JP H02253940A JP 7750389 A JP7750389 A JP 7750389A JP 7750389 A JP7750389 A JP 7750389A JP H02253940 A JPH02253940 A JP H02253940A
Authority
JP
Japan
Prior art keywords
ceramic
glass cloth
resin
layer
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7750389A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛士 長谷川
Mitsuhiro Inoue
光弘 井上
Tokuo Okano
岡野 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7750389A priority Critical patent/JPH02253940A/en
Publication of JPH02253940A publication Critical patent/JPH02253940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a printed wiring board material which can cope sufficiently with making of an electronic apparatus into high density, high output and high capacity, by a method wherein after formation of a ceramic layer by performing flame spray coating of ceramic at least on one side of glass cloth, a plurality of prepregs are formed by infiltrating resin into the glass cloth and a copper foil is put on the laminated outermost layer for hot press molding. CONSTITUTION:Alumina layer is formed on one side of glass cloth by performing flame spray coating with a plasmic flame spray device. Epoxy resin is infiltrated into glass cloth having an obtained alumina layer, dried and cast into a stage B for a prepreg. Then a glass cloth base epoxy resin prepreg 1 having an alumina layer 2 into which epoxy resin is infiltrated is laminated along with an electrolytic copper foil 3 and a ceramic composite copper clad laminated sheet is obtained. This laminated sheet can be bored, possesses a low thermal expansion coefficient and is superior in dimensional stability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント配線板に用いられる銅張積層板の製
造方法区間する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a copper-clad laminate used for printed wiring boards.

(従来の技術) プリント配線板に用いられる銅張積層板は、現在紙基材
フェノール樹脂積層板、ガラス布基材エポキシ梅脂積層
板、あるいはガラス布基材ポリイミド樹脂積層板などい
わゆるプラスチック系積層板が主流である。
(Prior art) Copper-clad laminates used for printed wiring boards are currently made of so-called plastic-based laminates such as paper-based phenol resin laminates, glass cloth-based epoxy plum resin laminates, or glass cloth-based polyimide resin laminates. Boards are the mainstream.

しかし、最近では電子機器の小型化、高性能化の進歩は
めざましく、積層板材料にも耐熱性、放熱性、寸法安定
性等の棗求がきびしくなり、従来の積層板では対応でき
ないものが多くなってきている。
However, in recent years, there has been remarkable progress in the miniaturization and higher performance of electronic devices, and the requirements for heat resistance, heat dissipation, dimensional stability, etc. for laminate materials have become stricter, and there are many things that conventional laminates cannot meet. It has become to.

このようなことから、従来のプラスチック系積層板とは
異なったアルミナ、窒化アルミニウム、炭火ケイ素など
のセラミック系基板、あるいはアルミニウム、鋼、銅、
42合金等金属板の表面にプラスチック系の薄い絶縁層
を形成したメタルベース基板がプラスチック系積層板で
は対応しきれない分野に種々用いられている。
For this reason, ceramic substrates such as alumina, aluminum nitride, silicon carbide, etc., which are different from conventional plastic laminates, or aluminum, steel, copper, etc.
2. Description of the Related Art Metal base substrates, in which a thin plastic insulating layer is formed on the surface of a metal plate such as 42 alloy, are used in various fields that cannot be handled by plastic laminates.

(発明が解決しようとする課題) しかし、これら無機系の基板はプラスチック系基板では
得られない特長をもつ反面、セラミック系基板番ごおい
ては穴あけ、切断などの加工性が悪い、もろい、大型の
ものは焼結できず大きさに制限がある、回路の形成が煩
雑になる勢の欠点を有する。また、メタルベース基板は
、スルーホールの形成が困難である等の欠点を有する。
(Problem to be solved by the invention) However, while these inorganic substrates have features that cannot be obtained with plastic substrates, ceramic substrates have poor processability such as drilling and cutting, are brittle, and are large. However, they have the disadvantage that they cannot be sintered and are limited in size, making circuit formation complicated. Further, metal-based substrates have drawbacks such as difficulty in forming through holes.

このようなことから、これらの材料はそれぞれ一長一蝮
があり、セラミック材料とプラスチック材料を複合する
こと曇こよりそれぞれの欠点を補い、それぞれの特長を
あわせもつ材料が得られないかと考えられる。
For this reason, each of these materials has its own advantages and disadvantages, and it is thought that by combining ceramic and plastic materials, it would be possible to compensate for the drawbacks of each and obtain a material that combines the features of each.

その方法の一つとして、セラミック基板とプラスチック
系基板を貼りあわせることが考えられるが、この方法で
はセラミックとプラスチックが全くの異1に林料であり
、しかも熱膨張係数も大きく異なることから層高の密着
性が十分でなく、実用に耐えるものは得られにくい。ま
た、もう一つの方法として樹脂中にセラミック粉を混合
する方法もある。しかし、この方法においてもセラミッ
クは層を形成せず単に樹脂中に分散するのみであるから
、熱膨張係数をはじめとして改良効果はほとんど期待で
きない。
One possible method is to bond a ceramic substrate and a plastic substrate together, but in this method, the layer height is low because ceramic and plastic are completely different forest materials, and their coefficients of thermal expansion are also significantly different. The adhesion is not sufficient and it is difficult to obtain a product that can withstand practical use. Another method is to mix ceramic powder into the resin. However, even in this method, since the ceramic does not form a layer but is simply dispersed in the resin, little improvement in the thermal expansion coefficient or other properties can be expected.

本発明は、かかる問題点をふまえて、セラミックとプラ
スチック材料を複合することにより従来lζはない新し
い特性を有するセラミック複合銅張株層板の製造方法を
提供するものである。
In view of these problems, the present invention provides a method for manufacturing a ceramic composite copper-clad laminate having new characteristics not found in conventional laminated sheets by combining ceramic and plastic materials.

(課題を解決するための手段) すなわち本発明は、プラスチック系積層板の層間にセラ
ミック層を形成したセラミック複合銅張積層板を得るに
あたり、積層板の基材となるガラスクロスにセラミック
を溶射することによってセラミック層を形成し、このよ
うにして得られた竜うtツク層を有するガラスクロスに
樹脂を含浸して乾燥、Bステージ化してプリプレグを得
る。このようにして得たセラミック層をもつプリプレグ
を銅箔とともに熱圧成形することを特徴とするものであ
る。
(Means for Solving the Problems) In other words, the present invention involves thermally spraying ceramic onto glass cloth, which is the base material of the laminate, in order to obtain a ceramic composite copper-clad laminate in which a ceramic layer is formed between the layers of a plastic laminate. A ceramic layer is formed by this process, and the thus obtained glass cloth having the tack layer is impregnated with a resin, dried, and B-staged to obtain a prepreg. This method is characterized in that the prepreg having the ceramic layer obtained in this manner is hot-press molded together with copper foil.

本発明において、ガラスクロス曇こセラミックを溶射す
ることによってセラミック層を形成するのは、樹脂とセ
ラミック層の間の高い密着性を得るためである。溶剤に
よって形成されるセラミック層の表面は粗面であり、し
かもその内部は多孔質で連続した気孔を有する。したが
って、このように溶射によって形成した竜ラミック層に
樹脂を含浸すると、樹脂は容易に気孔の中に含浸する。
In the present invention, the ceramic layer is formed by thermal spraying glass cloth frosted ceramic in order to obtain high adhesion between the resin and the ceramic layer. The surface of the ceramic layer formed by the solvent is rough, and the inside thereof is porous and has continuous pores. Therefore, when the lamic layer formed by thermal spraying is impregnated with resin, the resin easily impregnates into the pores.

そのために、セラミックと樹脂がうまく複合し、しかも
セラミック層の表面は粗面であるために接着面積も大き
く、普通のセラミックと樹脂では得られない高い密着性
が得られるのである。
For this reason, the ceramic and resin form a good composite, and since the surface of the ceramic layer is rough, the adhesion area is large, resulting in high adhesion that cannot be obtained with ordinary ceramic and resin.

セラミックの溶射法としては、ガス溶射法、プラズマ溶
射法、減圧プラズマ溶射法などが適用できる。また、溶
射する七ラミックは、セラミック基板として広く用いら
れている電気特性の良いアルミナが好適であるが、その
他にムライト、スピネル、ジルコニア、カルシア、シリ
カ、チタン酸バリウム、イツトリア、コージェライトな
どの電気絶縁性のセラミックを用いることができる。
As the ceramic spraying method, a gas spraying method, a plasma spraying method, a reduced pressure plasma spraying method, etc. can be applied. In addition, alumina, which has good electrical properties and is widely used as a ceramic substrate, is suitable for thermal spraying, but other electrical materials such as mullite, spinel, zirconia, calcia, silica, barium titanate, ittria, and cordierite are also suitable. Insulating ceramic can be used.

なお、セラミックを溶射してセラミックを形成したガラ
スクロスに含浸させる樹脂は、ガラス布基材積層板とし
て広く用いられているエポキシ樹脂あるいはポリイミド
樹脂が好適であるか、その他にフェノール樹脂、メラミ
ン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂
などの熱硬化性樹脂あるいはテフロン樹脂、ポリサルホ
ン、ポリエーテルイミド、ポリエーテルエーテルケトン
、ポリエーテルサルホンなどの熱可塑性樹脂を用いるこ
とができる。
The resin to be impregnated into the glass cloth with ceramic formed by thermal spraying is preferably epoxy resin or polyimide resin, which are widely used as glass cloth base laminates, or other materials such as phenol resin, melamine resin, Thermosetting resins such as unsaturated polyester resins and vinyl ester resins, or thermoplastic resins such as Teflon resins, polysulfones, polyetherimides, polyetheretherketones, and polyethersulfones can be used.

(作用) 本発明において、溶射によってガラスクロスに形成され
たセラミック層は下記の二つの特長をもつ。
(Function) In the present invention, the ceramic layer formed on the glass cloth by thermal spraying has the following two features.

第一は、セラミック層と樹脂の高い書名性か得られるこ
とである。これは、溶射によって形成されたセラミック
層が多孔質でその気孔に樹脂が含浸するため及びセラミ
ック層の表面が粗面のため樹脂との接着面積が非常に大
きいためである。
The first is that the ceramic layer and resin provide a high level of title quality. This is because the ceramic layer formed by thermal spraying is porous and the resin is impregnated into its pores, and the surface of the ceramic layer is rough so that the adhesive area with the resin is very large.

第二は、溶射したセラミックは層を形成するためにセラ
ミック本来の特長を十分引き出すことができ、充填剤と
してセラミックを樹脂に混合した場合では得られない特
性が得られる。例えば熱膨張係数をみると、セラミック
を充填剤として樹脂に混合したものは充填剤を加えない
ものとほとんど熱膨張係数は変わらない。ところが、本
発明の方法により作製したセラミック複合銅張積層板は
、セラミックが層状になっているため面方向の熱膨張係
数は、セラミック層の熱膨張係数が小さいために樹脂の
熱膨張が抑制され、しかもセラミック層と樹脂層は強固
に接着しているために低くすることができる。
Second, since the thermally sprayed ceramic forms a layer, the inherent characteristics of the ceramic can be fully brought out, and characteristics that cannot be obtained by mixing ceramic with resin as a filler can be obtained. For example, looking at the coefficient of thermal expansion, the coefficient of thermal expansion is almost the same when ceramic is mixed with resin as a filler and when no filler is added. However, in the ceramic composite copper-clad laminate manufactured by the method of the present invention, since the ceramic is layered, the coefficient of thermal expansion in the plane direction is small, and the thermal expansion of the resin is suppressed because the coefficient of thermal expansion of the ceramic layer is small. Moreover, since the ceramic layer and the resin layer are strongly bonded, the cost can be lowered.

このように本発明の方法によって得られるセラミック複
合銅張積層板は、従来のプラスチック系積層板に比べて
面方向の熱膨張係数が低くなるために寸法安定性にすぐ
れる。
As described above, the ceramic composite copper-clad laminate obtained by the method of the present invention has a lower coefficient of thermal expansion in the planar direction than conventional plastic laminates, and therefore has excellent dimensional stability.

また、アルミナをはじめとするセラミック基板はドリル
による穴加工は不可能であるが、本発明のセラミック複
合銅張積層板は、樹脂と樹脂との漸開に薄いセラミック
層を分散しているためにドリルによる穴加工が可能であ
る。ところで、ガラスクロスに形成するセラミック層の
厚さは本発明の範囲を限定するものではないが、10μ
mから50μmの範島が好適である。セラミック層の厚
さが10μm未満ではセラミック層が連続になりにくく
、したがって層状にならないために熱膨張係数の低減効
果が少ない。
In addition, although it is impossible to drill holes in ceramic substrates such as alumina, the ceramic composite copper clad laminate of the present invention has a thin ceramic layer dispersed between resins. Holes can be drilled using a drill. Incidentally, although the thickness of the ceramic layer formed on the glass cloth does not limit the scope of the present invention, it is 10μ.
A range of 50 μm from m to 50 μm is preferred. When the thickness of the ceramic layer is less than 10 μm, the ceramic layer is difficult to be continuous and therefore not layered, so that the effect of reducing the coefficient of thermal expansion is small.

また、50μmを超えるとドリル等の九工性が悪くなる
ととも番ごセラミック層を形成したガラスクロスの柔軟
性が損われ、樹脂論工時さらにはプリプレグとしての取
扱い時にクラックが入ったり、割れたりしやすく取扱い
性が悪(なるためである。
Moreover, if it exceeds 50 μm, the ease of drilling etc. will deteriorate, and the flexibility of the glass cloth on which the ceramic layer is formed will be impaired, resulting in cracks or breakage during resin processing or even when handling as a prepreg. This is because it is easy to handle and difficult to handle.

(実施例) 本発明の実施例を第1図、第2図に基づき以下説明する
。プラズマ溶射装置(米国プラズマダイン社製:プラズ
マダインシステム3600−80R型)によりガラスク
ロスの片面にアルミナ(純度99.696)を溶射して
厚さ15μmのアルミナ層を形成した。このようにして
得たアルミナ層を有するガラスクロスにエポキシ樹脂を
含浸、乾燥、Bステージ化しプリプレグを形成した。こ
のプリプレグの熱圧成形後の厚みはガラスクロス基相エ
ポキシ樹脂論で0.2m、エポキシ樹脂含浸アルミナ層
で15μmである。
(Example) An example of the present invention will be described below based on FIGS. 1 and 2. Alumina (purity 99.696) was sprayed onto one side of the glass cloth using a plasma spraying device (Plasma Dyne System Model 3600-80R, manufactured by Plasma Dyne Inc., USA) to form an alumina layer with a thickness of 15 μm. The thus obtained glass cloth having the alumina layer was impregnated with epoxy resin, dried, and B-staged to form a prepreg. The thickness of this prepreg after hot-press molding is 0.2 m based on glass cloth based epoxy resin, and 15 μm for the epoxy resin-impregnated alumina layer.

次に第1図に示すように、エポキシ樹脂含浸アルミナ層
2を有するガラスクロス基材エポキシ樹脂プリプレグl
を厚さ18μmの電解銅箔3とともに積へし、成形温度
170℃、成形圧力5(Hg/cdの条件で2時間熱圧
成形して第2図の構成のセラミック複合銅張様層板を得
た。
Next, as shown in FIG. 1, a glass cloth base epoxy resin prepreg l having an epoxy resin impregnated alumina layer 2
was laminated with an electrolytic copper foil 3 having a thickness of 18 μm, and hot-press molded for 2 hours at a molding temperature of 170° C. and a molding pressure of 5 (Hg/cd) to obtain a ceramic composite copper-clad-like laminate having the configuration shown in Fig. 2. Obtained.

この積層板の板厚は0.9mであり、うち、3層に分散
したアルミナ層の合計ルみは60μmであった。面方向
の熱膨張係数を測定した結果、9.5×10//℃であ
った。一方、アルえす脂のないガラスクロス基材エポキ
シ樹脂積層板の面方向の熱膨張係数はxtsxxo7℃
であった。
The thickness of this laminate was 0.9 m, and the total lumen of the three alumina layers was 60 μm. The coefficient of thermal expansion in the plane direction was measured to be 9.5×10//°C. On the other hand, the coefficient of thermal expansion in the plane direction of the glass cloth-based epoxy resin laminate without aluminum resin is xtsxxo7℃
Met.

また、ドリルによる穴あけを検討した結果、実施例の積
層板は従来のガラスクロス基材エポキシ・樹脂積層板と
同様の穴あけが可能であった。
Further, as a result of examining drilling using a drill, it was found that the laminate of the example could be drilled in the same way as a conventional glass cloth base epoxy/resin laminate.

次に、アルミナ層とエポキシ樹脂層の孔着性を評価する
ためにホットオイル法による熱衝撃試験を打つ、た。こ
れは試料を260℃のシリコーンオイル中基ζ20秒島
浸漬した後、ただちに20℃の冷水中に15秒間浸漬す
ることを練り返す試験である。100サイクルまで試験
したが、アルミナ層と樹脂層間の剥離及びクラック、ふ
くれ等の欠陥は認められなかった。
Next, a thermal shock test using the hot oil method was conducted to evaluate the porosity of the alumina layer and epoxy resin layer. This is a test in which a sample is immersed in silicone oil at 260°C for 20 seconds and then immediately immersed in cold water at 20°C for 15 seconds. Although the test was carried out up to 100 cycles, no defects such as peeling between the alumina layer and the resin layer, cracks, or blisters were observed.

(発明の効果) 以上、本発明の方法により得られるセラミック複合銅張
積層板は、セラミックとプラスチックとをうまく複合化
し、それぞれの欠点を改良するとともにお互いの特長を
兼ね備えたものである。したがって、電子機器の高密度
化、高出力化、高性能化に十分対応できるプリント配線
板材料が得られる。
(Effects of the Invention) As described above, the ceramic composite copper-clad laminate obtained by the method of the present invention successfully combines ceramic and plastic, improves the drawbacks of each, and combines the features of each other. Therefore, it is possible to obtain a printed wiring board material that can sufficiently respond to higher density, higher output, and higher performance of electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例においてセラミック島を有す
るガラスクロスプリプレグと銅箔の積層構成を示す断面
模式図、第2図は得られたセラミック複合銅張積層板の
構成を示す断面模式図である。 符号の説明 1・・・エポキシ樹脂含浸ガラスクロス2・・・エポキ
シ樹脂含浸アルミナ層 3・・・銅箔
FIG. 1 is a schematic cross-sectional view showing the laminated structure of glass cloth prepreg having ceramic islands and copper foil in an example of the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of the obtained ceramic composite copper-clad laminate. It is. Explanation of symbols 1...Epoxy resin impregnated glass cloth 2...Epoxy resin impregnated alumina layer 3...Copper foil

Claims (4)

【特許請求の範囲】[Claims] 1.ガラスクロスの少なくとも片面にセラミックを溶射
してセラミック層を形成した後、該ガラスクロスに樹脂
を含浸して複数のプリプレグを形成し、複数のプリプレ
グを積層しその最外層の両面あるいは片面に銅箔を載置
して熱圧成形することを特徴とするセラミック複合銅張
積層板の製造方法。
1. After spraying ceramic on at least one side of the glass cloth to form a ceramic layer, the glass cloth is impregnated with resin to form a plurality of prepregs, the plurality of prepregs are laminated, and a copper foil is applied to both or one side of the outermost layer. A method for manufacturing a ceramic composite copper-clad laminate, which comprises placing a ceramic composite copper-clad laminate and hot-pressing it.
2.溶射するセラミックが、アルミナを主成分とするも
のである請求項1記載のセラミック複合銅張積層板の製
造方法。
2. 2. The method of manufacturing a ceramic composite copper-clad laminate according to claim 1, wherein the ceramic to be thermally sprayed has alumina as a main component.
3.セラミックを溶射したガラスクロスに含浸する樹脂
がエポキシ樹脂である請求項1記載のセラミック複合銅
張積層板の製造方法。
3. 2. The method for manufacturing a ceramic composite copper-clad laminate according to claim 1, wherein the resin impregnated into the ceramic-sprayed glass cloth is an epoxy resin.
4.セラミックを溶射したガラスクロスに含浸する樹脂
がポリイミド樹脂である請求項1記載のセラミック複合
銅張積層板の製造方法。
4. 2. The method for manufacturing a ceramic composite copper-clad laminate according to claim 1, wherein the resin impregnated into the ceramic-sprayed glass cloth is a polyimide resin.
JP7750389A 1989-03-29 1989-03-29 Manufacture of ceramic composite copper clad laminated sheet Pending JPH02253940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7750389A JPH02253940A (en) 1989-03-29 1989-03-29 Manufacture of ceramic composite copper clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7750389A JPH02253940A (en) 1989-03-29 1989-03-29 Manufacture of ceramic composite copper clad laminated sheet

Publications (1)

Publication Number Publication Date
JPH02253940A true JPH02253940A (en) 1990-10-12

Family

ID=13635769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7750389A Pending JPH02253940A (en) 1989-03-29 1989-03-29 Manufacture of ceramic composite copper clad laminated sheet

Country Status (1)

Country Link
JP (1) JPH02253940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525992A (en) * 2009-05-04 2012-10-25 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Composite materials and their applications
WO2023163053A1 (en) * 2022-02-25 2023-08-31 アドパワー・ソリューションズ株式会社 Laminate, acoustic device, and record cutting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525992A (en) * 2009-05-04 2012-10-25 ピーピージー インダストリーズ オハイオ,インコーポレイテッド Composite materials and their applications
US9835418B2 (en) 2009-05-04 2017-12-05 James Carl Peters Composite materials and applications thereof
WO2023163053A1 (en) * 2022-02-25 2023-08-31 アドパワー・ソリューションズ株式会社 Laminate, acoustic device, and record cutting machine

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
EP0196865B1 (en) Electronic circuit substrates
EP0715570B1 (en) Printed circuit board and method of its manufacture
JPH03177376A (en) Ceramic board
JPS63274196A (en) Metal core printed circuit board
KR0158199B1 (en) Printed wiring board
JPS62126694A (en) Multilayer electronic circuit substrate
JPH046907Y2 (en)
JPH02253940A (en) Manufacture of ceramic composite copper clad laminated sheet
JPH06255019A (en) Ceramic composite laminated sheet and production of multilayer wiring board used therewith
JPH07106770A (en) Multilayered printed wiring board
JPH01117086A (en) Substrate device with mounted electronic component
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH01194384A (en) Manufacture of copper-clad laminated plate
JPH01290279A (en) Wiring board and manufacture thereof
JPH03221448A (en) Manufacture of copper coated laminate sheet with high dielectric constant
JPH071655A (en) Metal foil-clad laminated sheet
JP2894105B2 (en) Copper clad laminate and method for producing the same
JPH02256293A (en) Manufacture of wiring board
JPH0250833A (en) Laminated sheet
JPS63203331A (en) Manufacture of ceramic coated laminated board
JP2917645B2 (en) Manufacturing method of copper clad laminate
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPH05152742A (en) Metal foil clad ceramic board
JPH0720685B2 (en) Method for manufacturing ceramic coat laminate