JPH0720685B2 - Method for manufacturing ceramic coat laminate - Google Patents

Method for manufacturing ceramic coat laminate

Info

Publication number
JPH0720685B2
JPH0720685B2 JP961387A JP961387A JPH0720685B2 JP H0720685 B2 JPH0720685 B2 JP H0720685B2 JP 961387 A JP961387 A JP 961387A JP 961387 A JP961387 A JP 961387A JP H0720685 B2 JPH0720685 B2 JP H0720685B2
Authority
JP
Japan
Prior art keywords
resin
ceramic
copper foil
prepreg
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP961387A
Other languages
Japanese (ja)
Other versions
JPS63178042A (en
Inventor
寛士 長谷川
光弘 井上
憲次 塚西
舜哉 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP961387A priority Critical patent/JPH0720685B2/en
Publication of JPS63178042A publication Critical patent/JPS63178042A/en
Publication of JPH0720685B2 publication Critical patent/JPH0720685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプリント配線板用の積層板の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for manufacturing a laminated board for a printed wiring board.

(従来の技術) 従来、プリント基板としてはフェノール樹脂積層板、エ
ポキシ樹脂積層板が多く用いられてきた。しかし、最
近、電子機器の高性能化、小型化に伴い、高密度実装化
が望まれ、基板材料にも高熱伝導率、高耐熱性、低熱膨
張係数、高寸法安定性などの特性が強く要求されるよう
になってきた。
(Prior Art) Conventionally, a phenol resin laminated board and an epoxy resin laminated board have been often used as a printed circuit board. However, recently, with high performance and miniaturization of electronic devices, high density mounting is desired, and substrate materials are strongly required to have characteristics such as high thermal conductivity, high heat resistance, low thermal expansion coefficient, and high dimensional stability. It has started to be done.

これに対し、従来のフェノール樹脂、エポキシ樹脂など
の有機質系基板は熱伝導性が悪いために熱放散性に欠け
る、熱膨張係数が大きく寸法安定性が悪い、耐熱性に乏
しいなどのためにこのような用途には用いられない。そ
のため、アルミナなどのセラミック基板、あるいは金属
板を芯材としてその表面を絶縁層で覆ったメタルベー
ス、メタルコア基板などが注目されている。また、耐熱
性の点からは従来のフェノール樹脂、エポキシ樹脂系基
板に代わり、ポリイミド樹脂あるいはポリエーテルエー
テルケトン、ポリサルフォンなどの耐熱性熱可塑性樹脂
を用いた基板も開発されている。
On the other hand, conventional organic substrates such as phenol resin and epoxy resin have poor thermal conductivity and thus lack heat dissipation, have a large coefficient of thermal expansion and poor dimensional stability, and have poor heat resistance. It is not used for such purposes. Therefore, attention has been paid to a ceramic substrate such as alumina, or a metal base or metal core substrate whose surface is covered with an insulating layer using a metal plate as a core material. Further, from the viewpoint of heat resistance, a substrate using a heat resistant thermoplastic resin such as a polyimide resin or polyether ether ketone or polysulfone has been developed in place of the conventional phenol resin or epoxy resin substrate.

(発明が解決しようとする問題点) しかし、これらの基板についてみると種々の問題点があ
る。すなわち、アルミナなどのセラミック基板は有機質
系基板に比較すると、熱伝導性、耐熱性、熱膨張係数の
点ではすぐれるが、製造工程が複雑であり、焼結時の収
縮が大きいため寸法精度が出しにくい、ドリル加工が不
可能である等加工性が悪い、もろい、基板の大きさに制
限があり大型の基板が得られない。高価であるなどの欠
点がある。また、金属板を芯材としたメタルベース基
板、メタルコア基板は回路となる導体部と接しているの
は樹脂からなる絶縁層であるために金属芯の高熱伝導性
を十分に生かしきれず、また、表面の耐熱性も十分とは
いえない。また、芯材が導電性の金属板であるためスル
ーホールの形成は難しく、スルーホールを形成するには
非常に複雑な製造工程を必要とする。また、耐熱性樹脂
基板は耐熱性は従来品に比べて向上しているものの、熱
伝導率は変わらないため、熱放散効果は望めない。
(Problems to be Solved by the Invention) However, there are various problems with these substrates. That is, a ceramic substrate such as alumina is superior to an organic substrate in terms of thermal conductivity, heat resistance, and coefficient of thermal expansion, but the manufacturing process is complicated and the shrinkage during sintering is large, so the dimensional accuracy is high. Difficult to work, poor workability such as inability to drill, fragile, and the size of the substrate is limited, so a large substrate cannot be obtained. There are drawbacks such as being expensive. In addition, since the metal base substrate using the metal plate as the core material and the metal core substrate are in contact with the conductor portion which becomes the circuit by the insulating layer made of resin, the high thermal conductivity of the metal core cannot be fully utilized, and However, the heat resistance of the surface is not sufficient. Further, since the core material is a conductive metal plate, it is difficult to form the through holes, and a very complicated manufacturing process is required to form the through holes. Further, although the heat resistance of the heat resistant resin substrate is improved as compared with the conventional product, the heat conductivity is not changed, so that the heat dissipation effect cannot be expected.

本発明はこれらの欠点を改良し、従来のセラミック基板
と有機質系基板との長所をとり入れ、しかもこれらの短
所を改善した、従来の有機質系基板と同様の製造、加工
方法が可能で、しかも熱伝導性、耐熱性にすぐれ、体熱
膨張係数の基板を安価に得る方法を提供するものであ
る。
The present invention improves these drawbacks, takes in the advantages of the conventional ceramic substrate and the organic substrate, and further improves these disadvantages, the same manufacturing and processing methods as the conventional organic substrate are possible, It is intended to provide a method for inexpensively obtaining a substrate having excellent conductivity and heat resistance and a body thermal expansion coefficient.

(問題点を解決するための手段) 本発明は銅箔にセラミックを溶射してセラミック層を形
成し、該セラミック層の気孔に未硬化の熱硬化性樹脂を
含浸させて、その後、該銅箔のセラミック層側と接する
ようにプリプレグを積層して熱圧成形して一体化し、銅
箔と有機質基板の間に気孔を樹脂で封孔したセラミック
溶射層を設けることを特徴とするものである。
(Means for Solving Problems) In the present invention, a ceramic is sprayed on a copper foil to form a ceramic layer, and pores of the ceramic layer are impregnated with an uncured thermosetting resin, and then the copper foil is formed. The prepreg is laminated so as to be in contact with the ceramic layer side, and is thermocompression-molded to be integrated, and a ceramic sprayed layer having pores sealed with a resin is provided between the copper foil and the organic substrate.

銅箔へのセラミック層の形成を溶射により行うのは、他
にセラミックのコーティング法はCVD、PVD、ゾルゲル法
などがあるが、これらの中で溶射が最も成膜速度が早く
高生産性で、しかも溶射面積の制約がなく大面積へのセ
ラミックコーティングが可能であるためである。セラミ
ックの溶射はガス溶射法、プラズマ溶射法、減圧プラズ
マ溶射法、水プラズマ溶射法などが適用できる。
There are other ceramic coating methods such as CVD, PVD, and sol-gel method for forming the ceramic layer on the copper foil by thermal spraying. Among these, thermal spraying has the fastest film formation rate and high productivity, Moreover, there is no restriction on the sprayed area, and it is possible to perform ceramic coating on a large area. Gas spraying, plasma spraying, reduced pressure plasma spraying, water plasma spraying and the like can be applied to the ceramic spraying.

このようにして得たセラミック溶射層に未硬化の熱硬化
性樹脂を含浸するのはセラミック溶射層中に存在する気
孔を封入するためである。セラミック溶射層は焼結体と
異なり、一般に5〜15vol%の気孔が存在する。そのた
めにこの気孔を封孔せずにそのままプリプレグとともに
熱圧成形するとどうしてもセラミック溶射層中に気孔が
残り、給水率が大きい、したがって吸湿時の絶縁抵抗、
誘電特性、耐はんだ耐熱性などの特性低下が大きい。し
たがってセラミック溶射層中の気孔は封孔する必要があ
るのである。封孔法としては低粘度の未硬化の熱硬化性
樹脂を銅箔上のセラミック溶射層にはけ塗り、スプレー
法、ドクターブレード法などにより塗布して浸透させ、
その後、プリプレグと熱圧成形する時に加圧によりさら
に完全に含浸、封孔せしめ、硬化させる方法が最適であ
る。なお、セラミック溶射層を樹脂によって封孔するこ
とにより銅箔とセラミック層の密着性も大きく向上す
る。セラミック溶射の金属への密着性はプラスト等の前
処理条件の影響もあるが、金属の種類によって異なり、
銅あるいは銅合金への密着強度は最も低いといわれてい
る。したがってセラミック層は樹脂によって封孔しない
場合は銅箔のセラミック層との密着性は十分な値が得ら
れない。ところが樹脂により封孔すると樹脂が銅箔の表
面まで浸透するため、これが銅箔と接着して密着性を大
きく向上するのである。
The reason why the ceramic sprayed layer thus obtained is impregnated with the uncured thermosetting resin is to seal the pores existing in the ceramic sprayed layer. Unlike the sintered body, the ceramic sprayed layer generally has 5 to 15 vol% of pores. For this reason, if the pores are not sealed and thermocompression molded together with the prepreg, the pores inevitably remain in the ceramic sprayed layer, the water supply rate is large, and therefore the insulation resistance during moisture absorption,
The characteristics such as dielectric characteristics and soldering heat resistance are greatly degraded. Therefore, it is necessary to seal the pores in the ceramic sprayed layer. As a sealing method, a low-viscosity uncured thermosetting resin is applied to the ceramic sprayed layer on the copper foil by brushing, spraying, applying by a doctor blade method, etc.
After that, a method of more completely impregnating, sealing, and curing by pressurization at the time of thermocompression molding with a prepreg is most suitable. By sealing the ceramic sprayed layer with resin, the adhesion between the copper foil and the ceramic layer is also greatly improved. The adhesion of ceramic sprayed to metal is affected by pretreatment conditions such as plast, but it depends on the type of metal,
It is said that the adhesion strength to copper or copper alloy is the lowest. Therefore, if the ceramic layer is not sealed with resin, sufficient adhesion of the copper foil to the ceramic layer cannot be obtained. However, when the resin is sealed, the resin penetrates to the surface of the copper foil, which adheres to the copper foil and greatly improves the adhesion.

セラミック溶射層を封孔する熱硬化樹脂としてはエポキ
シ樹脂、フェノール樹脂、ポリミド樹脂、メラミン樹
脂、不飽和ポリエステル樹脂、ビニルエステル樹脂など
を用いることができるが、プリプレグと最も大きな接着
力を得るためにはプリプレグの樹脂と同種類の樹脂を用
いるのが好ましい。これらの樹脂は封孔という目的から
浸透性が要求されるために低粘度のものが望ましく、場
合によっては溶剤で希釈して用いられる。また、生産性
からは、これらの樹脂が封孔後、べたついたりすると取
扱い性が悪くなり、溶剤で希釈した場合は残留溶剤がプ
レス時に問題となるので、加熱処理をして乾燥、Bステ
ージ化して常温でべたつかないようにした方がよい。し
かし、加熱により完全に硬化させてしまうとプリプレグ
との接着性が低下するため、これは避けなければならな
い。
Epoxy resin, phenol resin, polyimide resin, melamine resin, unsaturated polyester resin, vinyl ester resin, etc. can be used as the thermosetting resin for sealing the ceramic sprayed layer, but in order to obtain the greatest adhesive strength with the prepreg. It is preferable to use the same type of resin as the resin of the prepreg. These resins are desired to have a low viscosity because they are required to have permeability for the purpose of sealing, and they may be diluted with a solvent before use. In terms of productivity, if these resins become sticky after sealing, the handling will be poor, and if diluted with a solvent, residual solvent will cause problems during pressing. It is better to avoid stickiness at room temperature. However, if it is completely cured by heating, the adhesiveness with the prepreg deteriorates, so this must be avoided.

本発明において銅箔に溶射するセラミックとしては、セ
ラミック基板として最も広く用いられているアルミナが
好適であるが、その他にスピネル、ムライト、ベリリ
ア、炭化ケイ素、ジルコニア、窒化アルミニウムなどの
電気絶縁性のセラミックが用いられる。
Alumina, which is most widely used as a ceramic substrate, is suitable as the ceramic sprayed on the copper foil in the present invention, but other electrically insulating ceramics such as spinel, mullite, beryllia, silicon carbide, zirconia, and aluminum nitride. Is used.

プリプレグの樹脂は電気特性、成形加工性の点からエポ
キシ樹脂、ポリイミド樹脂が好適であるが、その他にフ
ェノール樹脂、不飽和ポリエステル樹脂、メラミン樹
脂、ビニルエステル樹脂などの熱硬化性樹脂、あるいは
ポリサルフォン、ポリエーテルエーテルケトン、ポリエ
ーテルサルフォン、ポリエーテルイミドなどの熱可塑性
樹脂を用いることができる。また、繊維としては一般に
用いられるガラス繊維の他にケプラー繊維、紙、SiC繊
維、シリカ繊維などを用いることができる。
The resin of the prepreg is preferably an epoxy resin or a polyimide resin from the viewpoint of electrical characteristics and molding processability, but in addition, a thermosetting resin such as phenol resin, unsaturated polyester resin, melamine resin, vinyl ester resin, or polysulfone, Thermoplastic resins such as polyether ether ketone, polyether sulfone and polyether imide can be used. Further, as the fiber, in addition to commonly used glass fiber, Kepler fiber, paper, SiC fiber, silica fiber or the like can be used.

(作用) 本発明の方法により得られる積層板は有機質基板の表面
にセラミック層を有するために熱放散性、耐熱性、表面
硬度などにすぐれた熱熱膨張係数も小さい。さらにセラ
ミック層の気孔は樹脂によって封孔されているので吸水
率も従来の有機質基板より低く、吸温時の電気特性、機
械的特性も良好であり、銅箔とセラミック層間の密着性
も十分である。
(Function) Since the laminate obtained by the method of the present invention has the ceramic layer on the surface of the organic substrate, it has a small coefficient of thermal expansion, which is excellent in heat dissipation, heat resistance and surface hardness. Furthermore, since the pores of the ceramic layer are sealed with resin, the water absorption rate is lower than that of the conventional organic substrate, the electrical and mechanical properties at the time of heat absorption are good, and the adhesion between the copper foil and the ceramic layer is sufficient. is there.

また、回路の形成は、従来の銅張積層板と同様に銅箔に
レジスト層を形成してエッチング処理することにより容
易に形成することができ、ドリルにより穴あけが可能で
あるため、スルーホールの形成も容易である。
Further, the circuit can be easily formed by forming a resist layer on a copper foil and etching the same as in the conventional copper-clad laminate, and since it is possible to drill a hole, a through hole can be formed. It is easy to form.

以下、実施例を挙げて本発明を説明する。Hereinafter, the present invention will be described with reference to examples.

(実施例) 第1図は樹脂により封孔処理したセラミック溶射銅箔と
プリプレグの積層構成図、第2図は得られた積層板の断
面模式図である。
(Example) FIG. 1 is a laminated constitutional view of a ceramic sprayed copper foil and a prepreg which have been sealed with a resin, and FIG. 2 is a schematic sectional view of the obtained laminated plate.

厚さ35μの銅箔1にプラズマ溶射法によってアルミナを
約100μの厚さに溶射してアルミナ溶射層2を形成し
た。このアルミナ溶射銅箔のアルミナ溶射層に積層に用
いるプリプレグと同じエポキシ樹脂を溶剤で希釈した液
をスプレーしてアルミナ溶射層に浸透、含浸した。その
後、170℃で2分間加熱処理して溶剤を除去するととも
に樹脂をBステージ化し、封孔処理したアルミナ溶射銅
箔を得た。
Alumina sprayed layer 2 was formed by spraying alumina to a thickness of about 100μ on a copper foil 1 having a thickness of 35μ by plasma spraying. The alumina sprayed layer of this alumina sprayed copper foil was sprayed with a solution prepared by diluting the same epoxy resin as the prepreg used for lamination with a solvent to penetrate and impregnate the alumina sprayed layer. Then, the solvent was removed by heating at 170 ° C. for 2 minutes, and the resin was B-staged to obtain a sealed alumina sprayed copper foil.

この封孔処理したアルミナ溶射銅箔とガラスクロス/エ
ポキシ樹脂含浸プリプレグ4を第1図の積層構成に積み
重ね、熱圧成形して第2図に示し構成の積層板を得た。
The alumina sprayed copper foil subjected to the sealing treatment and the glass cloth / epoxy resin impregnated prepreg 4 were stacked in the laminated structure shown in FIG. 1 and subjected to thermocompression molding to obtain a laminated plate having the structure shown in FIG.

このようにして得た積層板は、ガラス繊維基材エポキシ
樹脂5の表面にアルミナ層を有し、さらにその上に銅箔
層を有するものである。
The thus obtained laminate has an alumina layer on the surface of the glass fiber base epoxy resin 5, and further has a copper foil layer on the alumina layer.

この積層板のJISC6481の銅箔引きはがし強さは1.5kg/c
m、給紙率は0.04%であった。この積層板は一般のガラ
ス繊維基材エポキシ樹脂銅張積層板と同様の方法でエッ
チングによる回路形成、ドリル穴あけ、スルーホールの
形成が可能であった。
JIS C6481 copper foil peeling strength of this laminated board is 1.5 kg / c
The paper feed rate was 0.04%. This laminated board was capable of forming a circuit by etching, drilling holes, and forming through holes in the same manner as a general glass fiber-based epoxy resin copper-clad laminated board.

また、回路に接して熱伝導性のよいアルミナ層が存在す
るために熱放散性にすぐれ、耐熱性、表面硬度も大き
く、アルミナが低熱膨張であるため熱膨張係数も従来の
ものに比べて小さくすることができた。
In addition, it has excellent heat dissipation due to the presence of an alumina layer with good thermal conductivity in contact with the circuit, has high heat resistance and surface hardness, and has a low coefficient of thermal expansion because of the low thermal expansion of alumina. We were able to.

(比較例) 実施例と同様な方法によりアルミナ溶射層の樹脂による
封孔処理を行わずに、他は同条件で積層板を作製した。
得られた積層板のJISC6481の銅箔引きはがし強さは0.1k
g/cmと極端に低く、吸水率は0.35%で吸水時の絶縁抵抗
の低下は著しいものであった。
(Comparative Example) A laminated plate was produced in the same manner as in the example except that the alumina sprayed layer was not sealed with the resin under the same conditions.
JIS C6481 copper foil peeling strength of the obtained laminate is 0.1k
It was extremely low at g / cm, and the water absorption rate was 0.35%, indicating a significant decrease in insulation resistance during water absorption.

(発明の効果) 本発明の方法により、従来の有機質基板のベースとして
その表面にセラミック層を有する積層板を容易にしかも
安価に製造することができる。本発明により得られる積
層板は、特性的にもすぐれたもので、回路形成、スルー
ホールの形成なども従来の有機質基板と同様の方法で行
うことができ、従来の有機質基板、セラミック基板、メ
タルベース、メタルコア基板の問題点を解決し得るもの
である。
(Effect of the Invention) By the method of the present invention, a laminate having a ceramic layer on its surface as a base of a conventional organic substrate can be easily manufactured at low cost. The laminated plate obtained by the present invention has excellent characteristics, and circuits, through holes, etc. can be formed in the same manner as in the conventional organic substrate, and the conventional organic substrate, ceramic substrate, and metal substrate can be used. It can solve the problems of the base and metal core substrates.

【図面の簡単な説明】[Brief description of drawings]

第1図は樹脂により封孔処理したセラミック溶射銅箔と
プリプレグの積層構成図、第2図は本発明により得られ
た積層板の断面模式図である。 符号の説明 1…銅箔、2…アルミナ溶射層 3…封孔処理した樹脂、4…プリプレグ 5…ガラス繊維基材エポキシ樹脂
FIG. 1 is a laminated constitution view of a ceramic sprayed copper foil sealed with a resin and a prepreg, and FIG. 2 is a schematic sectional view of a laminated plate obtained by the present invention. DESCRIPTION OF SYMBOLS 1 ... Copper foil, 2 ... Alumina sprayed layer 3 ... Sealed resin, 4 ... Prepreg 5 ... Glass fiber base epoxy resin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】銅箔にセラミックを溶射してセラミック層
を形成し、該セラミック層の気孔に未硬化の熱硬化性樹
脂を含浸させて、しかる後、該銅箔のセラミック層側と
接するようにプリプレグを積層して熱圧成形することを
特徴とするセラミックコート積層板の製造方法。
1. A ceramic layer is formed by spraying a ceramic on a copper foil, and the pores of the ceramic layer are impregnated with an uncured thermosetting resin. Then, the copper layer is contacted with the ceramic layer side of the copper foil. A method for producing a ceramic-coated laminate, comprising laminating a prepreg on a sheet and thermoforming.
【請求項2】セラミックがアルミナを主成分とするもの
である特許請求の範囲第1項記載の積層板の製造方法。
2. The method for producing a laminated plate according to claim 1, wherein the ceramic contains alumina as a main component.
【請求項3】銅箔上に形成されたセラミック層に含浸さ
せる樹脂は積層に用いるプリプレグの樹脂と同種類の樹
脂を主成分とするものである特許請求の範囲第1項記載
の積層板の製造方法。
3. The laminated board according to claim 1, wherein the resin with which the ceramic layer formed on the copper foil is impregnated is mainly composed of the same kind of resin as the resin of the prepreg used for lamination. Production method.
【請求項4】プリプレグの樹脂がエポキシ樹脂である特
許請求の範囲第1項記載の積層板の製造方法。
4. The method for producing a laminated board according to claim 1, wherein the resin of the prepreg is an epoxy resin.
【請求項5】プリプレグの樹脂がポリイミド樹脂である
特許請求の範囲第1項記載の積層板の製造方法。
5. The method for producing a laminated board according to claim 1, wherein the resin of the prepreg is a polyimide resin.
【請求項6】プリプレグの繊維がガラス繊維である特許
請求の範囲第1項記載の積層板の製造方法。
6. The method for producing a laminated board according to claim 1, wherein the fibers of the prepreg are glass fibers.
JP961387A 1987-01-19 1987-01-19 Method for manufacturing ceramic coat laminate Expired - Lifetime JPH0720685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP961387A JPH0720685B2 (en) 1987-01-19 1987-01-19 Method for manufacturing ceramic coat laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP961387A JPH0720685B2 (en) 1987-01-19 1987-01-19 Method for manufacturing ceramic coat laminate

Publications (2)

Publication Number Publication Date
JPS63178042A JPS63178042A (en) 1988-07-22
JPH0720685B2 true JPH0720685B2 (en) 1995-03-08

Family

ID=11725141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP961387A Expired - Lifetime JPH0720685B2 (en) 1987-01-19 1987-01-19 Method for manufacturing ceramic coat laminate

Country Status (1)

Country Link
JP (1) JPH0720685B2 (en)

Also Published As

Publication number Publication date
JPS63178042A (en) 1988-07-22

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
KR20010051189A (en) Method for the preparation of multilayered printed wiring board using adhesive film
JP3071764B2 (en) Film with metal foil and method of manufacturing wiring board using the same
JPH0720685B2 (en) Method for manufacturing ceramic coat laminate
JPH10107445A (en) Multi-layered wiring board and manufacture thereof
JPH0664090A (en) Copper-plated laminated plate and manufacture thereof
JPH0655477B2 (en) Method for manufacturing ceramic coat laminate
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JP3758811B2 (en) Transfer sheet and wiring board manufacturing method using the same
JP2761109B2 (en) Printed wiring board and its manufacturing method
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JP2708821B2 (en) Electric laminate
JP2894105B2 (en) Copper clad laminate and method for producing the same
JPH06232549A (en) Manufacture of metal base board
JPH0655478B2 (en) Method for manufacturing ceramic coat laminate
JP2957786B2 (en) Method for manufacturing metal substrate with insulating layer
JPH01290279A (en) Wiring board and manufacture thereof
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPH1034806A (en) Laminate material and laminate
JPS62187035A (en) Manufacture of ceramic-coated lamianted board
JPH0771832B2 (en) Method for manufacturing ceramic coat laminate
JPH05152741A (en) Manufacture of metal foil clad ceramic board
JPH01232796A (en) Manufacture of metal core insulated board
JPH01268188A (en) Manufacture of metal base board
JPH0654833B2 (en) Method for manufacturing insulating substrate