JPH0655477B2 - Method for manufacturing ceramic coat laminate - Google Patents

Method for manufacturing ceramic coat laminate

Info

Publication number
JPH0655477B2
JPH0655477B2 JP61028698A JP2869886A JPH0655477B2 JP H0655477 B2 JPH0655477 B2 JP H0655477B2 JP 61028698 A JP61028698 A JP 61028698A JP 2869886 A JP2869886 A JP 2869886A JP H0655477 B2 JPH0655477 B2 JP H0655477B2
Authority
JP
Japan
Prior art keywords
ceramic
metal plate
resin
layer
coated laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61028698A
Other languages
Japanese (ja)
Other versions
JPS62187028A (en
Inventor
寛士 長谷川
光弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61028698A priority Critical patent/JPH0655477B2/en
Priority to GB8630311A priority patent/GB2185437B/en
Priority to US06/943,695 priority patent/US4713284A/en
Priority to DE19863644310 priority patent/DE3644310C2/en
Publication of JPS62187028A publication Critical patent/JPS62187028A/en
Publication of JPH0655477B2 publication Critical patent/JPH0655477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性、熱伝導性にすぐれたプリント配線板用
の積層板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a laminated board for printed wiring boards, which is excellent in heat resistance and thermal conductivity.

(従来の技術) 従来、プリント配線板としてはフェノール樹脂積層板、
エポキシ樹脂積層板が多く用いられてきた。しかし最
近、電子機器の高性能化、小型化に伴ない、部品の高密
度実装化が望まれ、それによって生ずる熱の高密度発生
をいかに処理するかということが問題になってきた。
(Prior Art) Conventionally, as a printed wiring board, a phenol resin laminated board,
Epoxy resin laminates have been widely used. However, recently, as electronic devices have become higher in performance and smaller in size, higher density mounting of components has been desired, and how to handle the high density generation of heat generated thereby has become a problem.

これに対し、従来の有機質系基板は熱伝導性が悪いため
熱放散性に欠ける、また耐熱性に乏しいなどのために高
密度実装化は困難であった。そのため、熱伝導性にすぐ
れた基板としてアルミナなどのセラミック基板、あるい
は金属板を芯材としてその表面を絶縁層で覆ったメタル
コア基板などが注目されている、また、耐熱性の点から
も従来のフェノール樹脂、エポキシ樹脂系基板に代わ
り、ポリイミド樹脂あるいはポリエーテルエーテルケト
ン、ポリサルフォンなどの耐熱性樹脂を用いた基板の開
発も行われている。
On the other hand, the conventional organic substrate has poor heat conductivity and thus lacks heat dissipation, and has poor heat resistance. Therefore, high-density mounting is difficult. Therefore, attention is focused on a ceramic substrate such as alumina as a substrate having excellent thermal conductivity, or a metal core substrate whose surface is covered with an insulating layer using a metal plate as a core material. Substrates using heat-resistant resins such as polyimide resin, polyether ether ketone, and polysulfone are being developed in place of phenol resin and epoxy resin substrates.

(発明が解決しようとする問題点) しかし、これらの基板についてみると種々の問題点があ
る。すなわち、アルミナ、炭化ケイ素、ベリリアなどの
セラミック基板は熱伝導性、耐熱性にすぐれているが、
製造工程が複雑で加工性が悪い、機械的強度が低い、基
板の大きさに制限があり、大型の基板が得られないなど
の欠点がある。また、金属板を芯材としたメタルコア基
板は回路となる導体部と接しているのは熱伝導率の低い
樹脂からなる絶縁層であるために金属芯の高熱伝導性を
十分に活かすことができず、熱放散性は十分でない。ま
た、芯材が金属板であるため、スルーホールの形成が容
易ではなく、非常に複雑な製造工程を必要とする。
(Problems to be Solved by the Invention) However, there are various problems with these substrates. In other words, ceramic substrates such as alumina, silicon carbide and beryllia have excellent thermal conductivity and heat resistance,
It has drawbacks such as complicated manufacturing process, poor workability, low mechanical strength, limited size of substrate, and large substrate cannot be obtained. In addition, since the metal core substrate using the metal plate as the core material is in contact with the conductor portion that becomes the circuit because of the insulating layer made of resin having low thermal conductivity, the high thermal conductivity of the metal core can be fully utilized. No heat dissipation is sufficient. Further, since the core material is a metal plate, it is not easy to form the through holes, and a very complicated manufacturing process is required.

さらに耐熱性樹脂基板は耐熱性は向上しているものの、
樹脂の熱伝導率が低いために熱放散効果は望めない。
Furthermore, although the heat resistant resin substrate has improved heat resistance,
The heat dissipation effect cannot be expected due to the low thermal conductivity of the resin.

本発明はこれらの欠点を改良し、従来の有機質系基板と
同様な製造加工方法が可能で、しかも熱伝導性、耐熱性
にすぐれた基板を得る製造方法を提供するものである。
The present invention solves these drawbacks, and provides a manufacturing method capable of manufacturing and processing methods similar to those of conventional organic substrates, and obtaining a substrate excellent in thermal conductivity and heat resistance.

(問題点を解決するための手段) すなわち本発明は金属板の片面に電気絶縁性セラミック
を溶射してセラミック層を形成し、そのセラミック層側
にプリプレグを積層して熱圧成形して一体化し、成形後
金属板を剥離することにより有機質系基板の表面にセラ
ミック層を有する積層板を得ることを特徴とするもので
ある。
(Means for Solving Problems) That is, according to the present invention, an electrically insulating ceramic is sprayed on one surface of a metal plate to form a ceramic layer, and a prepreg is laminated on the ceramic layer side and thermocompression molded to be integrated. After the molding, the metal plate is peeled off to obtain a laminated plate having a ceramic layer on the surface of the organic substrate.

本発明においてセラミックを金属板に溶射してそこにプ
リプレグを載置して熱圧成形して一体化するのはセラミ
ックと樹脂の密着性向上のためと表面のセラミック層の
平滑性のためである。一般に無機質であるセラミックと
有機質である樹脂は異質でしかも熱膨張係数も異なるた
めに密着性に乏しい。したがって成形後の有機質系基板
表面にセラミックを溶射したのでは十分な密着性は得ら
れにくい。また、溶射層の表面はそのままでは粗面であ
り、その表面に回路を形成するためには研摩処理して平
滑にしなければならない。そこで金属板上にセラミック
を溶射してその上にプリプレグを積層、熱圧成形して一
体化し、成形後、金属板を取り除くことにより粗面でし
かも気孔が存在するセラミック溶射層上でプリプレグの
樹脂が溶融、低粘度化し、その間隙に浸透して硬化する
ために接着面積が増大し、良好な密着性が得られる。ま
た、成形後、金属板を取り除くことにより表面に現われ
るセラミック溶射層はその金属板の表面がそのまま転写
されるので平滑な面が得られ、研摩処理を必要とせず、
そのまま回路を形成することが可能である。
In the present invention, the reason why the ceramic is thermally sprayed on the metal plate and the prepreg is placed on the metal plate and thermocompression-molded to integrate them is to improve the adhesion between the ceramic and the resin and to smooth the surface ceramic layer. . In general, inorganic ceramics and organic resins are different from each other and have different thermal expansion coefficients, so that the adhesion is poor. Therefore, it is difficult to obtain sufficient adhesion by spraying the ceramic on the surface of the organic substrate after molding. Further, the surface of the sprayed layer is a rough surface as it is, and it has to be polished to be smooth in order to form a circuit on the surface. Therefore, ceramic is sprayed on a metal plate, a prepreg is laminated on it, thermocompression molding is performed to integrate it, and after molding, the metal plate is removed to remove the metal plate from the resin of the prepreg on the ceramic sprayed layer with rough surface and pores. Melts, has a low viscosity, penetrates into the gaps, and hardens, so that the adhesive area increases and good adhesion is obtained. Also, after molding, the surface of the metal plate is transferred as it is to the ceramic sprayed layer that appears on the surface by removing the metal plate, so that a smooth surface is obtained and no polishing treatment is required.
It is possible to form the circuit as it is.

本発明で用いる金属板としては鉄板、銅板、アルミナ
板、ステンレス板などが用いられ、成形後の金属板とセ
ラミック層の剥離は小さな機械的力で可能であるが、容
易に剥離するためには溶射前の金属板のブラスト処理を
行わないか、または軽く行うことが望ましい。さらに剥
離を容易にするためには一般のプラスチック成形に行う
シリコーン系、フッ素系などの離型剤を塗布する離型処
理を施すことが有効である。
As the metal plate used in the present invention, an iron plate, a copper plate, an alumina plate, a stainless plate, or the like is used, and the metal plate and the ceramic layer after molding can be peeled off with a small mechanical force, but for easy peeling, It is desirable not to blast the metal plate before spraying or to lightly perform it. Further, in order to facilitate the peeling, it is effective to apply a mold release treatment for applying a mold release agent such as a silicone type or a fluorine type, which is performed in general plastic molding.

ここで用いる電気絶縁性のセラミックはセラミック基板
として最も多く用いられているアルミナが好適である
が、その他にスピネル、ムライト、ベリリア、窒化アル
ミニウムなどの高熱伝導性で電気絶縁性のセラミックを
用いることができる。またセラミックの溶射法としては
プラズマ溶射法、ガス溶射法、水プラズマ溶射法などが
適用できる。
Alumina, which is most often used as a ceramic substrate, is suitable as the electrically insulating ceramic used here, but it is also possible to use a highly thermally conductive and electrically insulating ceramic such as spinel, mullite, beryllia, or aluminum nitride. it can. As a ceramic spraying method, a plasma spraying method, a gas spraying method, a water plasma spraying method, or the like can be applied.

さらにプリプレグについて述べると、樹脂としては電気
特性、成形加工性の点からエポキシ樹脂、ポリイミド樹
脂が好適であるが、その他にフェノール樹脂、不飽和ポ
リエステル樹脂、メラミン樹脂、ビニルエステル樹脂な
どの熱硬化性樹脂、あるいはポリサルフォン、ポリエー
テルエーテルケトン、ポリエーテルサルフォン、ポリエ
ーテルイミドなどの熱可塑性樹脂を用いることができ
る。また、繊維としては一般に用いられるガラス繊維の
他にケプラー繊維、紙、SiC繊維、シリカ繊維などを用
いることができる。
Furthermore, regarding the prepreg, epoxy resin and polyimide resin are preferable as the resin from the viewpoint of electrical characteristics and moldability, but in addition, thermosetting properties such as phenol resin, unsaturated polyester resin, melamine resin, vinyl ester resin, etc. A resin or a thermoplastic resin such as polysulfone, polyetheretherketone, polyethersulfone, or polyetherimide can be used. Further, as the fiber, in addition to commonly used glass fiber, Kepler fiber, paper, SiC fiber, silica fiber or the like can be used.

また、セラミック層は有機質基板の両面に設けても、片
面に設けてもさしつかえなく、その厚みは20μ〜50
0μの範囲であることが好ましい。20μ未満では耐熱
性、熱伝導性への効果が十分ではなく、500μを超え
るとドリル加工性などの加工性が悪くなり、また高価に
なってしまうためである。
The ceramic layer may be provided on both sides or one side of the organic substrate, and the thickness thereof is 20 μ to 50 μm.
It is preferably in the range of 0 μ. This is because if it is less than 20 μm, the effect on heat resistance and thermal conductivity is not sufficient, and if it exceeds 500 μm, workability such as drill workability is deteriorated and it becomes expensive.

本発明の方法により有機質基板の表面にセラミック層を
有する積層板を容易に得ることができる、本発明の方法
では有機質基板上にセラミックを溶射するという従来の
考え方とは異なり、金属板上にセラミック溶射層を形成
し、その上にプリプレグを積層して熱圧成形、一体化す
るため、セラミックと有機質基板の密着性は非常に良好
である。また得られるセラミックコート積層板の表面の
セラミック層は金属板の表面がそのまま転写されたもの
であるために平滑であり、そのまま回路を形成すること
が可能てある。
By the method of the present invention, a laminated plate having a ceramic layer on the surface of an organic substrate can be easily obtained. In the method of the present invention, unlike the conventional idea of spraying the ceramic on the organic substrate, the ceramic is formed on the metal plate. Since a thermal sprayed layer is formed and a prepreg is laminated on it and thermocompression molded and integrated, the adhesion between the ceramic and the organic substrate is very good. Further, the ceramic layer on the surface of the obtained ceramic-coated laminated plate is smooth because the surface of the metal plate is transferred as it is, and a circuit can be formed as it is.

以下、実施例を挙げて本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例) 第1図は本発明の実施例の積層構成図、第2図は実施例
で得られたセラミックコート積層板の断面模式図であ
る。
(Example) FIG. 1 is a schematic diagram of a laminated structure of an example of the present invention, and FIG. 2 is a schematic sectional view of a ceramic-coated laminated plate obtained in the example.

平滑な表面を有するステンレス板1(厚さ2mm)の表面
にシリコーン系離型剤を塗布後、プラズマ溶射装置を用
いてアルミナを約100μの厚さに溶射してアルミナ層
2を形成した。
After coating the surface of a stainless steel plate 1 (thickness: 2 mm) having a smooth surface with a silicone-based mold release agent, alumina was sprayed to a thickness of about 100 μm using a plasma spraying device to form an alumina layer 2.

このステンレス板とガラスクロス/エポキシ樹脂含浸プ
リプレグ3を第1図の積層構成に積み重ね、熱圧成形し
て一体化した。この成形品を冷却後、表面のステンレス
板を引きはがして除去し、第2図に示すごとき表面にア
ルミン層を有する積層板を得た。
The stainless steel plate and the glass cloth / epoxy resin impregnated prepreg 3 were stacked in the laminated structure shown in FIG. After cooling this molded product, the stainless steel plate on the surface was peeled off and removed to obtain a laminated plate having an aluminum layer on the surface as shown in FIG.

得られた積層板は表面に平滑なアルミナ層をもつもので
アルミナ層とエポキシ樹脂間の密着性は良好であり、表
面に熱伝導性のよいアルミナ層があるために、熱放散性
にすぐれ、耐熱性もあり耐アーク性、耐トラッキング性
も良好なものであった。また、この積層板の芯は従来と
同様のガラス/エポキシ基板であるためスルーホールの
形成、ドリル加工などは従来の方法で可能であった。
The obtained laminated plate has a smooth alumina layer on the surface, the adhesion between the alumina layer and the epoxy resin is good, and since the alumina layer with good thermal conductivity is on the surface, it has excellent heat dissipation, It also had heat resistance and good arc resistance and tracking resistance. Further, since the core of this laminated plate is the same glass / epoxy substrate as the conventional one, formation of through holes, drilling and the like can be performed by the conventional method.

(発明の効果) 本発明によれば熱伝導性、耐熱性にすぐれた積層板を容
易に製造することができる。得られる積層板は有機質系
基板のもつすぐれた成形性、加工性と、セラミック基板
のもつすぐれた耐熱性、熱伝導性を兼ねそなえたもので
あり、しかもこれらの従来の欠点を解決し得るものであ
る。
(Effects of the Invention) According to the present invention, a laminate having excellent thermal conductivity and heat resistance can be easily manufactured. The resulting laminate has both excellent moldability and processability of organic substrates and excellent heat resistance and thermal conductivity of ceramic substrates, and is capable of solving these conventional drawbacks. Is.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例の積層構成図、第2図は実施
例で得られたセラミックコート積層板の断面模式図であ
る。 符号の説明 1……金属板、2……セラミック溶射層 3……プリプレグ、4……繊維/樹脂層
FIG. 1 is a stacking diagram of an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a ceramic-coated laminate obtained in the embodiment. Explanation of symbols 1 ... Metal plate, 2 ... Ceramic sprayed layer 3 ... Prepreg, 4 ... Fiber / resin layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属板の片面に電気絶縁性のセラミックを
溶射してセラミック層を形成し、該金属板のセラミック
層側に所定数のプリプレグを積層し熱圧成形金属板を剥
離することを特徴とするセラミックコート積層板の製造
方法。
1. A method of spraying an electrically insulating ceramic on one surface of a metal plate to form a ceramic layer, laminating a predetermined number of prepregs on the ceramic layer side of the metal plate, and peeling the thermocompression-molded metal plate. A method of manufacturing a ceramic-coated laminate characterized by the above.
【請求項2】セラミックを溶射する側の金属板の表面が
予め離型処理を施したものである特許請求の範囲第1項
記載のセラミックコート積層板の製造方法。
2. The method for producing a ceramic-coated laminate according to claim 1, wherein the surface of the metal plate on which the ceramic is sprayed has been subjected to a release treatment in advance.
【請求項3】セラミックがアルミナを主成分とするもの
である特許請求の範囲第1項記載のセラミックコート積
層板の製造方法。
3. The method for producing a ceramic-coated laminate according to claim 1, wherein the ceramic contains alumina as a main component.
【請求項4】プリプレグの樹脂がエポキシ樹脂またはポ
リイミド樹脂である特許請求の範囲第1項記載のセラミ
ックコート積層板の製造方法。
4. The method for producing a ceramic-coated laminate according to claim 1, wherein the prepreg resin is an epoxy resin or a polyimide resin.
【請求項5】プリプレグの繊維がガラス繊維である特許
請求の範囲第1項記載のセラミックコート積層板の製造
方法。
5. The method for producing a ceramic-coated laminate according to claim 1, wherein the prepreg fibers are glass fibers.
JP61028698A 1985-12-26 1986-02-12 Method for manufacturing ceramic coat laminate Expired - Lifetime JPH0655477B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61028698A JPH0655477B2 (en) 1986-02-12 1986-02-12 Method for manufacturing ceramic coat laminate
GB8630311A GB2185437B (en) 1985-12-26 1986-12-18 Ceramic coated laminate and process for producing the same
US06/943,695 US4713284A (en) 1985-12-26 1986-12-19 Ceramic coated laminate and process for producing the same
DE19863644310 DE3644310C2 (en) 1985-12-26 1986-12-23 Copper-clad base material and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028698A JPH0655477B2 (en) 1986-02-12 1986-02-12 Method for manufacturing ceramic coat laminate

Publications (2)

Publication Number Publication Date
JPS62187028A JPS62187028A (en) 1987-08-15
JPH0655477B2 true JPH0655477B2 (en) 1994-07-27

Family

ID=12255690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028698A Expired - Lifetime JPH0655477B2 (en) 1985-12-26 1986-02-12 Method for manufacturing ceramic coat laminate

Country Status (1)

Country Link
JP (1) JPH0655477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
EP1995343A2 (en) 2007-05-21 2008-11-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide-containing sprayed plate and making method
US10137597B2 (en) 2013-10-09 2018-11-27 Shin-Etsu Chemical Co., Ltd. Sprayed article and making method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035164A (en) * 1996-04-25 1998-02-10 Samsung Aerospace Ind Ltd Ic card and manufacture thereof
EP1995343A2 (en) 2007-05-21 2008-11-26 Shin-Etsu Chemical Co., Ltd. Rare earth oxide-containing sprayed plate and making method
US10137597B2 (en) 2013-10-09 2018-11-27 Shin-Etsu Chemical Co., Ltd. Sprayed article and making method
US10744673B2 (en) 2013-10-09 2020-08-18 Shin-Etsu Chemical Co., Ltd. Sprayed article and making method

Also Published As

Publication number Publication date
JPS62187028A (en) 1987-08-15

Similar Documents

Publication Publication Date Title
US4713284A (en) Ceramic coated laminate and process for producing the same
RU2214698C2 (en) Heat removing facility, electric system including heat removing facility, process of manufacture of heat removing facility and of electric component
JP5383541B2 (en) Method for producing copper-clad resin composite ceramic plate
US8134085B2 (en) Printed interconnection board having a core including carbon fiber reinforced plastic
JPH0655477B2 (en) Method for manufacturing ceramic coat laminate
JP2501331B2 (en) Laminate
RU2256307C2 (en) Heat transfer device (alternatives), power system incorporating heat transfer device (alternatives), heat transfer device manufacturing process (alternatives), and electrical component manufacturing process (alternatives)
JPH01157589A (en) Manufacture of metal base substrate
JPH0655478B2 (en) Method for manufacturing ceramic coat laminate
JP2708821B2 (en) Electric laminate
JPS62187035A (en) Manufacture of ceramic-coated lamianted board
JPS63160829A (en) Manufacture of ceramic-coated laminated board
JPH0654833B2 (en) Method for manufacturing insulating substrate
JP2761109B2 (en) Printed wiring board and its manufacturing method
JPS62187027A (en) Manufacture of ceramic-coated laminated board
JP3227874B2 (en) Manufacturing method of laminated board
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JPH02253941A (en) Preparation of ceramic coated laminated sheet
JPH01194384A (en) Manufacture of copper-clad laminated plate
JP2894105B2 (en) Copper clad laminate and method for producing the same
JPH0720685B2 (en) Method for manufacturing ceramic coat laminate
JPS63299195A (en) Manufacture of superconducting printed substrate
JP2734866B2 (en) Molded product of metal or ceramic with printed wiring and method of manufacturing the same
JPS63203331A (en) Manufacture of ceramic coated laminated board
JPH01268188A (en) Manufacture of metal base board