JP3227874B2 - Manufacturing method of laminated board - Google Patents

Manufacturing method of laminated board

Info

Publication number
JP3227874B2
JP3227874B2 JP06238493A JP6238493A JP3227874B2 JP 3227874 B2 JP3227874 B2 JP 3227874B2 JP 06238493 A JP06238493 A JP 06238493A JP 6238493 A JP6238493 A JP 6238493A JP 3227874 B2 JP3227874 B2 JP 3227874B2
Authority
JP
Japan
Prior art keywords
aramid fiber
thermal expansion
resin
nonwoven fabric
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06238493A
Other languages
Japanese (ja)
Other versions
JPH06270178A (en
Inventor
徳雄 岡野
寛士 長谷川
正美 新井
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP06238493A priority Critical patent/JP3227874B2/en
Publication of JPH06270178A publication Critical patent/JPH06270178A/en
Application granted granted Critical
Publication of JP3227874B2 publication Critical patent/JP3227874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プリント配線板に用い
られる積層板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated board used for a printed wiring board.

【0002】[0002]

【従来の技術】最近、電子機器の小型化、高密度化が進
むにつれて、プリント配線板に実装される部品は従来の
挿入型から面付け型に移行しており、プリント配線板へ
の実装方式も表面実装方式が主流になりつつある。した
がってプリント配線板として用いられる銅張積層板にも
種々の要求が厳しくなってきている。すなわち、チップ
等の部品をプリント配線板に表面実装する場合、その接
続信頼性の点から熱膨張係数の整合が問題になる。例え
ば最近広く用いられるようになってきた薄型の表面実装
タイプのTSOP(Thin Small Outline Package)の熱
膨張係数は、約5×10-6/℃である。ところがプリン
ト配線板として一般に広く用いられているガラス布基材
エポキシ樹脂銅張積層板等の繊維強化プラスチック系の
基板の熱膨張係数は、約15〜17×10-6/℃であ
り、実装される部品のそれに比べて非常に高い。そのた
めこのように熱膨張係数が低い部品を熱膨張係数の高い
プリント配線板に表面実装した場合、その大きな熱膨張
係数差によって、その接続部のはんだにクラックが発生
し易く、実用に耐える接続信頼性を確保することができ
ない。チップ部品との接続信頼性を向上させるために
は、実装される部品に近い熱膨張係数、すなわち低熱膨
張係数を有する基板が必要になってくる。
2. Description of the Related Art In recent years, as electronic devices have become smaller and higher in density, components mounted on printed wiring boards have shifted from conventional insertion types to surface mounting types. Also, the surface mounting method is becoming mainstream. Accordingly, various demands have been made on copper-clad laminates used as printed wiring boards. That is, when components such as chips are surface-mounted on a printed wiring board, matching of thermal expansion coefficients becomes a problem from the viewpoint of connection reliability. For example, the thermal expansion coefficient of a thin surface-mount type TSOP (Thin Small Outline Package), which has recently become widely used, is about 5 × 10 −6 / ° C. However, the thermal expansion coefficient of a fiber reinforced plastic substrate such as a glass cloth base epoxy resin copper-clad laminate generally widely used as a printed wiring board is about 15 to 17 × 10 −6 / ° C. It is very high compared to that of parts. Therefore, when components with a low coefficient of thermal expansion are surface-mounted on a printed wiring board with a high coefficient of thermal expansion, cracks are likely to occur in the solder at the connection due to the large difference in coefficient of thermal expansion. Nature cannot be secured. In order to improve the connection reliability with the chip component, a substrate having a thermal expansion coefficient close to the component to be mounted, that is, a substrate having a low thermal expansion coefficient is required.

【0003】[0003]

【発明が解決しようとする課題】熱膨張係数の低い基板
材料としては、上記の有機系基板とは異なったアルミナ
や窒化アルミニウム等のセラミック基板、インバーや4
2合金等の低熱膨張金属をコアとして用いた金属コア基
板が利用されている。ところがこれらについてみると、
セラミック基板は非常に硬質なため有機系基板と同様な
ドリル穴あけや切断等の機械加工ができない、有機系基
板に比べ重いために軽量化に不利である、靱性が乏しい
ために割れやすく取扱性が悪い、あるいは回路加工や多
層化の工程が煩雑でコスト高になる等の欠点がある。ま
た、低熱膨張金属を芯にした金属コア基板は、重量が重
く軽量化に対応できない、スルーホール形成時に金属芯
の穴内に絶縁被覆を施す必要がある等の欠点がある。し
たがって従来の加工性に優れた有機系基板で熱膨張係数
の低い基板の開発が望まれている。
As the substrate material having a low coefficient of thermal expansion, a ceramic substrate such as alumina or aluminum nitride, invar or 4 different from the above-mentioned organic substrate is used.
A metal core substrate using a low thermal expansion metal such as a two alloy as a core is used. However, looking at these,
Ceramic substrates are so hard that they cannot be machined by drilling or cutting like organic substrates, they are heavier than organic substrates, which is disadvantageous in weight reduction, and they have poor toughness and are easy to break due to poor toughness. There are drawbacks such as bad or complicated circuit processing and multi-layering steps, resulting in high cost. Further, a metal core substrate having a low thermal expansion metal as a core has disadvantages such as being heavy and unable to cope with a reduction in weight, and requiring an insulating coating inside a hole of the metal core when forming a through hole. Therefore, development of a conventional organic substrate having excellent workability and a low coefficient of thermal expansion is desired.

【0004】低熱膨張の有機系基板としては以前から石
英繊維やアラミド繊維等の低熱膨張基材用いたものが検
討されている。しかし、石英繊維は、機械加工性が極め
て悪くしかも高価であるため実用化には至っていない。
一方、アラミド繊維は、石英繊維と同様に機械加工性が
悪く、しかも樹脂との接着性が低く、吸湿し易いために
吸湿時の絶縁特性や寸法安定性の低下の問題がある。最
近、アラミド繊維の機械加工性を改良するために、クロ
スに代わって不織布が使われはじめている。クロスに比
べて機械加工性は、改善されるが、樹脂との接着性や吸
湿時の特性劣化の問題点は依然として解決されない。こ
のようなことから、アラミド繊維不織布も広く用いられ
るには至っていない。その解決方法として、特開昭63
−209836号公報にみられるように予めカップリン
グ剤で処理したアラミド繊維不織布に樹脂を含浸する方
法、あるいはアラミド繊維の表面を酸、アルカリ処理や
プラズマ処理で活性化して樹脂との反応性を改良する方
法等が提案されているが、実用に耐え得るまでに十分な
樹脂との接着性は得られていないのが現状である。
As a low thermal expansion organic substrate, a substrate using a low thermal expansion base material such as quartz fiber or aramid fiber has been studied. However, quartz fibers have not been put to practical use because of their extremely poor machinability and high cost.
On the other hand, aramid fibers have poor machinability like quartz fibers, have low adhesiveness to resin, and are apt to absorb moisture. Recently, nonwoven fabrics have begun to replace cloth in order to improve the machinability of aramid fibers. Although the machinability is improved as compared with the cloth, the problems of adhesiveness to resin and deterioration of characteristics at the time of moisture absorption are still not solved. For these reasons, aramid fiber nonwoven fabrics have not been widely used. As a solution, Japanese Patent Application Laid-Open
A method of impregnating a resin into an aramid fiber non-woven fabric previously treated with a coupling agent as described in JP-A-209836, or improving the reactivity with the resin by activating the surface of the aramid fiber with an acid, alkali treatment or plasma treatment However, at present, sufficient adhesiveness with a resin has not been obtained until practical use is possible.

【0005】本発明は、かかる状況に鑑みなされたもの
で、アラミド繊維不織布を基材に用いた吸湿時の耐熱性
を改良し、熱膨張係数が低く、部品を表面実装した場合
の接続信頼性に優れる基板を提供するものである。
The present invention has been made in view of such circumstances, and has improved heat resistance during moisture absorption using an aramid fiber nonwoven fabric as a base material, has a low coefficient of thermal expansion, and has connection reliability when a component is surface-mounted. The purpose of the present invention is to provide an excellent substrate.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、アラ
ミド繊維不織布に熱硬化性樹脂を含浸、乾燥してプリプ
レグとしこれを熱圧成形するアラミド繊維不織布基材積
層板の製造法において、熱圧成形後の板厚を樹脂含浸前
のアラミド繊維不織布の厚みの合計の70%以下にする
ことを特徴とするものである。アラミド繊維不織布は、
圧力を負荷することでその厚みが圧力を負荷していない
状態の厚みの70%以下好ましくは50%以下になるも
のを使用する。すなわち密度が低くフェルト状の不織布
を用いる。アラミド繊維の体積含有率は熱膨張係数を低
く抑えるために40%以上が好ましい。さらにアラミド
繊維の体積含有率を50%以上にすれば、熱膨張係数は
1×10-5/℃以下になり、通常のガラス繊維を用いた
積層板では得られない搭載部品との高い接続信頼性が得
られるのでより好ましい。アラミド繊維不織布に含浸す
る樹脂としては、エポキシ樹脂、ポリイミド樹脂フェノ
ール樹脂、ビニルエステル樹脂、シリコーン樹脂、メラ
ミン樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂や
ポリサルフォン、ポリエーテルイミド、ポリエーテルエ
ーテルケトン、ポリフェニレンオキサイド等の熱可塑性
樹脂を用いることもできるが、これらの中では、エポキ
シ樹脂がアラミド繊維との接着性やその他の電気特性の
点から最も適している。
That is, the present invention relates to a method for producing an aramid fiber nonwoven fabric substrate laminate in which a thermosetting resin is impregnated into an aramid fiber nonwoven fabric, dried to form a prepreg, and hot-press molded. The thickness of the sheet after molding is set to be 70% or less of the total thickness of the aramid fiber nonwoven fabric before resin impregnation. Aramid fiber non-woven fabric
A material whose thickness is 70% or less, preferably 50% or less, of the thickness when no pressure is applied by applying pressure is used. That is, a felt-like nonwoven fabric having a low density is used. The volume content of the aramid fiber is preferably at least 40% in order to keep the coefficient of thermal expansion low. Further, when the volume content of aramid fiber is set to 50% or more, the coefficient of thermal expansion becomes 1 × 10 −5 / ° C. or less, and high connection reliability with mounting parts that cannot be obtained with a laminate using ordinary glass fiber. It is more preferable since the property can be obtained. Examples of the resin to be impregnated into the aramid fiber nonwoven fabric include a thermosetting resin such as an epoxy resin, a polyimide resin, a phenol resin, a vinyl ester resin, a silicone resin, a melamine resin, and an unsaturated polyester resin, polysulfone, polyetherimide, polyetheretherketone, Although a thermoplastic resin such as polyphenylene oxide can be used, among these, an epoxy resin is most suitable in terms of adhesiveness to aramid fiber and other electrical characteristics.

【0007】[0007]

【作用】アラミド繊維は、負の熱膨張係数をもつ。一方
樹脂の熱膨張係数は正である。したがってアラミド繊維
不織布基材積層板の面方向の熱膨張係数は、アラミド繊
維の体積含有率が高いほど低くなる。アラミド繊維の体
積含有率が50%以上であれば熱膨張係数は1×10-5
/℃以下になり、通常のガラス繊維を用いた積層板では
得られない搭載部品との高い接続信頼性が得られる。し
かし、アラミド繊維不織布基材積層板の最大の欠点は吸
湿時のはんだ耐熱性に劣ることである。これには、先に
述べた優れた特長である面方向の低い熱膨張係数が原因
として作用している。従来のアラミド繊維不織布基材積
層板は板厚方向にアラミド繊維が均一に分散していな
い。つまり不織布と不織布の間には樹脂の体積比率の高
い層が存在している。不織布のあるアラミド繊維体積比
率が高い層の熱膨張係数に比較しアラミド繊維体積比率
の低い層の熱膨張係数は遥かに高い。熱膨張係数の高い
層と低い層とが交互に重なっているのが従来のアラミド
繊維不織布基材積層板である。はんだ耐熱試験等による
急激な温度変化が生じた場合、これらの層の界面には大
きな熱応力が発生する。それが吸湿した状態で行われた
場合には急激に膨張する水蒸気がその熱応力が発生した
界面を板厚方向に引き剥がし、膨れとなってしまう。
The aramid fiber has a negative coefficient of thermal expansion. On the other hand, the thermal expansion coefficient of the resin is positive. Therefore, the thermal expansion coefficient in the surface direction of the aramid fiber nonwoven fabric base laminate decreases as the volume content of the aramid fibers increases. If the volume content of the aramid fiber is 50% or more, the thermal expansion coefficient is 1 × 10 −5.
/ ° C or lower, and high connection reliability with a mounted component that cannot be obtained with a laminate using ordinary glass fibers can be obtained. However, the biggest drawback of the aramid fiber nonwoven fabric base laminate is that it is inferior in solder heat resistance when absorbing moisture. This is attributed to the above-mentioned excellent feature, that is, a low coefficient of thermal expansion in the plane direction. In the conventional aramid fiber nonwoven fabric base laminate, aramid fibers are not uniformly dispersed in the thickness direction. That is, a layer having a high volume ratio of the resin exists between the nonwoven fabrics. The thermal expansion coefficient of a layer having a low aramid fiber volume ratio is much higher than that of a layer having a non-woven fabric having a high aramid fiber volume ratio. A layer having a high thermal expansion coefficient and a layer having a low thermal expansion alternately overlap each other in a conventional aramid fiber nonwoven fabric base laminate. When a rapid temperature change occurs due to a solder heat test or the like, a large thermal stress is generated at the interface between these layers. If it is performed in a state where moisture is absorbed, the water vapor which expands rapidly peels off the interface where the thermal stress is generated in the plate thickness direction, resulting in swelling.

【0008】本発明は、この欠点を改良するものであ
る。すなわち本発明のアラミド繊維不織布基材積層板は
板厚方向にアラミド繊維が均一に分散しているため板厚
方向に熱膨張係数の高い層と低い層とが交互に重なって
いることはなく、どの層でも面方向の熱膨張係数は同一
である。そのため従来のアラミド繊維不織布基材積層板
にあった大きな熱応力が発生する界面が存在しない。ま
た不織布の密度が低いため、樹脂含浸時に繊維と樹脂の
ぬれ性もが向上するものと思われる。よって吸湿時のは
んだ耐熱性が大幅に改善されている。本発明の方法にお
いて熱圧成形後の板厚を樹脂含浸前のアラミド繊維不織
布の厚みの合計の70%以下好ましくは50%以下にす
るのは、アラミド繊維を板厚方向に均一に分散すること
が目的であり、この方法によってアラミド繊維を板厚方
向に均一に分散することができる。以下、実施例を挙げ
て本発明を説明する。
The present invention addresses this drawback. That is, the aramid fiber nonwoven fabric base laminate of the present invention has a layer having a high coefficient of thermal expansion and a layer having a low thermal expansion coefficient in the thickness direction alternately because the aramid fibers are uniformly dispersed in the thickness direction, All layers have the same thermal expansion coefficient in the plane direction. For this reason, there is no interface where a large thermal stress is generated unlike the conventional aramid fiber nonwoven fabric base laminate. In addition, since the density of the nonwoven fabric is low, it is considered that the wettability between the fiber and the resin is improved during the resin impregnation. Therefore, the solder heat resistance during moisture absorption is significantly improved. In the method of the present invention, the plate thickness after hot pressing is made 70% or less, preferably 50% or less of the total thickness of the aramid fiber non-woven fabric before resin impregnation, because the aramid fibers are uniformly dispersed in the plate thickness direction. The purpose of this method is to uniformly disperse aramid fibers in the thickness direction. Hereinafter, the present invention will be described with reference to examples.

【0009】[0009]

【実施例】【Example】

実施例1 アラミド繊維として帝人(株)製テクノーラを用いて、
厚さ0.3mm坪量75g/m2 のアラミド繊維不織布
を作製した。これにエポキシ樹脂を含浸乾燥し、塗工布
を作製し、さらにこれを4枚重ねて両面に厚さ35μm
の銅箔を置いてプレス成形し、アラミド繊維不織布基材
積層板を得た。この積層板の板厚は0.4mm(銅箔除
く)であり、もとの不織布の厚みの合計の約33%の板
厚となった。この積層板のアラミド繊維体積含有率は5
0%であり、面方向の熱膨張係数は銅箔なしの状態で8
×10-6/℃であった。断面観察の結果、アラミド繊維
が板厚方向に均一に分散していることが分かった。この
積層板の銅箔をエッチング除去後のはんだ耐熱試験結果
は表1に示すように良好であり、煮沸5時間後の260
℃はんだ槽に30秒浸漬した後も異常は見られなかっ
た。
Example 1 Using Teijin's Technora as an aramid fiber,
Thickness 0.3mm, grammage 75g / m 2 Was prepared. This was impregnated with epoxy resin and dried to produce a coated cloth.
Was placed and press-molded to obtain an aramid fiber nonwoven fabric base laminate. The thickness of this laminated board was 0.4 mm (excluding copper foil), which was about 33% of the total thickness of the original nonwoven fabric. The aramid fiber volume content of this laminate is 5
0%, and the coefficient of thermal expansion in the plane direction was 8 without copper foil.
× 10 -6 / ° C. As a result of cross-section observation, it was found that the aramid fibers were uniformly dispersed in the thickness direction. The results of the soldering heat test after the copper foil of the laminate was removed by etching were good as shown in Table 1, and the 260 ° C after 5 hours of boiling was good.
No abnormality was observed after immersion in the solder bath for 30 seconds.

【0010】実施例2 厚さ0.15mm、その他の条件は実施例1と同じアラ
ミド繊維不織布を作製した。これにエポキシ樹脂を含浸
乾燥し、塗工布を作製し、さらにこれを4枚重ねて両面
に厚さ35μmの銅箔を置いてプレス成形し、アラミド
繊維不織布基材積層板を得た。この積層板の板厚は0.
4mm(銅箔除く)であり、もとの不織布の厚みの合計
の約67%の板厚となった。この積層板のアラミド繊維
体積含有率は50%であり、面方向の熱膨張係数は銅箔
なしの状態で8×10-6/℃であった。断面観察の結
果、板厚方向に均一に分散していることが分かった。こ
の積層板の銅箔をエッチング除去後のはんだ耐熱試験結
果を表1に示すように良好であり、煮沸3時間後の26
0℃はんだ槽に30秒浸漬した後も異常は見られなかっ
た。
Example 2 An aramid fiber non-woven fabric was prepared in the same manner as in Example 1 except that the thickness was 0.15 mm and other conditions were the same. This was impregnated and dried with an epoxy resin to prepare a coated cloth, and four of these were further laminated, and a 35-μm-thick copper foil was placed on both sides and press-molded to obtain an aramid fiber nonwoven substrate laminate. The thickness of this laminated board is 0.
4 mm (excluding the copper foil), which was about 67% of the total thickness of the original nonwoven fabric. The aramid fiber volume content of this laminate was 50%, and the thermal expansion coefficient in the plane direction was 8 × 10 −6 / ° C. without a copper foil. As a result of cross-sectional observation, it was found that the particles were uniformly dispersed in the thickness direction. The results of the soldering heat test after removing the copper foil of this laminated board by etching are good as shown in Table 1, and the results were 26 hours after boiling for 3 hours.
No abnormality was observed after immersion in the 0 ° C. solder bath for 30 seconds.

【0011】比較例1 厚さ0.1mm、その他の条件は実施例1と同じアラミ
ド繊維不織布を作製した。これにエポキシ樹脂を含浸乾
燥し、塗工布を作製し、さらにこれを4枚重ねて両面に
厚さ35μmの銅箔を置いてプレス成形し、アラミド繊
維不織布基材積層板を得た。この積層板の板厚は0.4
mm(銅箔除く)であり、もとの不織布の厚みの合計の
約100%の板厚となった。この積層板のアラミド繊維
体積含有率は50%であり、面方向の熱膨張係数は銅箔
なしの状態で8×10-6/℃であった。断面観察の結
果、アラミド繊維が多い層の間にアラミド繊維が少ない
比較的薄い層があり、板厚方向に均一に分散しているこ
とが分かった。この積層板の銅箔をエッチング除去後の
はんだ耐熱試験結果を表1に示す。煮沸1時間後に26
0℃はんだ槽に浸漬すると直ちに膨れを発生した。
Comparative Example 1 An aramid fiber nonwoven fabric was prepared in the same manner as in Example 1 except that the thickness was 0.1 mm and the other conditions were the same. This was impregnated and dried with an epoxy resin to prepare a coated cloth, and four of these were further laminated, and a 35-μm-thick copper foil was placed on both sides and press-molded to obtain an aramid fiber nonwoven fabric base laminate. The thickness of this laminate is 0.4
mm (excluding the copper foil), and the plate thickness was about 100% of the total thickness of the original nonwoven fabric. The aramid fiber volume content of this laminate was 50%, and the thermal expansion coefficient in the plane direction was 8 × 10 −6 / ° C. without a copper foil. As a result of the cross-sectional observation, it was found that there was a relatively thin layer having a small amount of aramid fibers between layers having many aramid fibers, and the layer was uniformly dispersed in the thickness direction. Table 1 shows the results of the soldering heat test after the copper foil of the laminate was removed by etching. 26 hours after boiling
Immediately upon immersion in a 0 ° C. solder bath, blistering occurred.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上述べてきたように、本発明によれば
アラミド不織布を基材とする積層板において、これまで
最大の問題点であったはんだ耐熱性等の耐熱衝撃性、特
に吸湿時の特性を改良することができる。それによりア
ラミド繊維のもつ低熱膨張係数という特長を十分に生か
すことができる。したがって、今後さらに進む半導体素
子パッケージの小型化、高密度化あるいはベアチップ化
により要求される低熱膨張基板として本発明の積層板及
びその製造方法は非常に有効である。
As described above, according to the present invention, in the laminate having the aramid non-woven fabric as the base material, the thermal shock resistance such as the solder heat resistance, which has been the biggest problem so far, and particularly when the moisture absorption is performed. Properties can be improved. Thereby, the feature of the low thermal expansion coefficient of the aramid fiber can be fully utilized. Therefore, the laminated board of the present invention and its manufacturing method are very effective as a low-thermal-expansion substrate required for further miniaturization, high-density, or bare chip of a semiconductor element package which will be further advanced in the future.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B29L 31:34 B29L 31:34 (72)発明者 山口 豊 茨城県下館市大字小川1500番地 日立化 成工業株式会社 下館研究所内 (56)参考文献 特開 平1−257388(JP,A) 特開 昭56−118852(JP,A) 特開 平2−67332(JP,A) 特開 平3−62994(JP,A) 特開 平5−251862(JP,A) 特開 平6−237055(JP,A) 特開 平8−224832(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 43/18 - 43/20 B29C 43/32 - 43/36 B29C 70/06 B32B 15/08 C08J 5/24 H05K 1/03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI B29L 31:34 B29L 31:34 (72) Inventor Yutaka Yamaguchi 1500 Oji Ogawa, Shimodate-shi, Ibaraki Pref. (56) References JP-A-1-257388 (JP, A) JP-A-56-118852 (JP, A) JP-A-2-67332 (JP, A) JP-A-3-62994 (JP, A) JP-A-5-251862 (JP, A) JP-A-6-237055 (JP, A) JP-A-8-224832 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 43 / 18-43/20 B29C 43/32-43/36 B29C 70/06 B32B 15/08 C08J 5/24 H05K 1/03

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アラミド繊維不織布に樹脂を含浸、乾燥し
てプリプレグとしこれを複数枚重ねて熱圧成形するアラ
ミド繊維不織布基材積層板の製造法において、熱圧成形
後の板厚を樹脂含浸前のアラミド繊維不織布の厚みの合
計の70%以下にすることを特徴とする積層板の製造方
法。
An aramid fiber nonwoven fabric is impregnated with a resin, dried to form a prepreg, and a plurality of the prepregs are stacked and hot-pressed. A method for producing a laminate, characterized in that the total thickness is not more than 70% of the thickness of the aramid fiber nonwoven fabric.
【請求項2】樹脂がエポキシ樹脂である請求項1記載の
積層板の製造方法。
2. The method according to claim 1, wherein the resin is an epoxy resin.
【請求項3】アラミド繊維の体積含有率が40%以上で
ある請求項1記載の積層板の製造方法。
3. The method according to claim 1, wherein the volume content of the aramid fiber is 40% or more.
JP06238493A 1993-03-23 1993-03-23 Manufacturing method of laminated board Expired - Fee Related JP3227874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06238493A JP3227874B2 (en) 1993-03-23 1993-03-23 Manufacturing method of laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06238493A JP3227874B2 (en) 1993-03-23 1993-03-23 Manufacturing method of laminated board

Publications (2)

Publication Number Publication Date
JPH06270178A JPH06270178A (en) 1994-09-27
JP3227874B2 true JP3227874B2 (en) 2001-11-12

Family

ID=13198581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06238493A Expired - Fee Related JP3227874B2 (en) 1993-03-23 1993-03-23 Manufacturing method of laminated board

Country Status (1)

Country Link
JP (1) JP3227874B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301316A (en) * 1998-03-20 2001-06-27 阿尔斯特罗姆玻璃纤维有限公司 Base webs for printed circuit board production using the foam process and aramid fibers

Also Published As

Publication number Publication date
JPH06270178A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
US3700538A (en) Polyimide resin-fiberglass cloth laminates for printed circuit boards
EP1583405A2 (en) Circuitized substrate, method of making same, electrical assembly utilizing same, and information handling system utilizing same
EP0763562A2 (en) Prepreg for printed circuit board
KR20090108834A (en) Method of manufacturing insulating sheet and laminated plate clad with metal foil and printed circuit board and printed circuit board thereof using the same
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
JP2956370B2 (en) Copper clad laminate and method for producing the same
JP3227874B2 (en) Manufacturing method of laminated board
JP2503601B2 (en) Laminate
JPH04208597A (en) Multilayer printed circuit board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JPH05291711A (en) Board for high-frequency circuit use
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
EP0797378A2 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JPH0781001A (en) Laminates
JP3542612B2 (en) Metal clad laminate
JPH0781002A (en) Laminates
JP2894105B2 (en) Copper clad laminate and method for producing the same
JPS59109350A (en) Laminated board
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JPH0748460A (en) Laminated sheet
JPH01118539A (en) Preparation of copper-clad laminate
JP2002053682A (en) Method for producing prepreg, prepreg, printed circuit board and laminated board
JP2006316171A (en) Prepreg, laminated plate, and multi-ply laminated plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees