JPH0781002A - Laminates - Google Patents

Laminates

Info

Publication number
JPH0781002A
JPH0781002A JP23214393A JP23214393A JPH0781002A JP H0781002 A JPH0781002 A JP H0781002A JP 23214393 A JP23214393 A JP 23214393A JP 23214393 A JP23214393 A JP 23214393A JP H0781002 A JPH0781002 A JP H0781002A
Authority
JP
Japan
Prior art keywords
aramid fiber
thermal expansion
resin
substrate
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23214393A
Other languages
Japanese (ja)
Inventor
Tokuo Okano
徳雄 岡野
Masami Arai
正美 新井
Koji Nishimura
厚司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23214393A priority Critical patent/JPH0781002A/en
Publication of JPH0781002A publication Critical patent/JPH0781002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a base plate having low coefficient of thermal expansion and excellent connection reliability when it mounts parts on its surface by improving heat resistance of an aramid fiber unwoven fablic base laminates at its moisture absorption. CONSTITUTION:An aramid fiber unwoven fabric base laminates consists of an aramid fiber unwoven fabric obtained by adhering a web with a solvent soluble adhesive and a matrix resin. For the solvent soluble adhesive, a solvent solution of an epoxy resin is most suitable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気用積層板に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric laminate.

【0002】[0002]

【従来の技術】最近、電子機器の小型化、高密度化が進
むにつれて、プリント配線板に実装される部品は従来の
挿入型から面付け型に移行しており、プリント配線板へ
の実装方式も表面実装方式が主流になりつつある。した
がってプリント配線板として用いられる銅張積層板にも
種々の要求が厳しくなってきている。
2. Description of the Related Art Recently, as electronic devices have become smaller and higher in density, the components mounted on a printed wiring board have been changed from a conventional insertion type to an imposition type. The surface mounting method is becoming mainstream. Therefore, various requirements are becoming severe for copper clad laminates used as printed wiring boards.

【0003】すなわち、チツプ等の部品をプリント配線
板に表面実装する場合、その接続信頼性の点から熱膨張
係数の整合が問題になる。たとえば最近広く用いられる
ようになってきた薄型の表面実装タイプのTSOP(T
hin Small Outline Packag
e)の熱膨張係数は、約5×10-6/℃である。ところ
がプリント配線板として一般に広く用いられているガラ
ス布基材エポキシ樹脂銅張積層板などの繊維強化プラス
チック系の基板の熱膨張係数は、約15〜17×10-6
/℃であり、実装される部品のそれに比べて非常に高
い。
That is, when components such as chips are surface-mounted on a printed wiring board, the matching of thermal expansion coefficients becomes a problem from the viewpoint of connection reliability. For example, a thin surface mount type TSOP (T) has been widely used recently.
hin Small Outline Packag
The coefficient of thermal expansion of e) is about 5 × 10 −6 / ° C. However, the coefficient of thermal expansion of a fiber-reinforced plastic substrate, such as a glass cloth-based epoxy resin copper-clad laminate, which is widely used as a printed wiring board, is about 15 to 17 × 10 −6.
/ ° C, which is much higher than that of mounted components.

【0004】そのためにこのように熱膨張係数が低い部
品を熱膨張係数の高いプリント配線板に表面実装した場
合、その大きな熱膨張係数差によって、その接続部のは
んだにクラックが発生しやすく、実用に耐える接続信頼
性を確保することができない。チップ部品との接続信頼
性を向上させるためには、実装される部品に近い熱膨張
係数、すなわち低熱膨張係数を有する基板が必要になっ
てくる。
Therefore, when such a component having a low coefficient of thermal expansion is surface-mounted on a printed wiring board having a high coefficient of thermal expansion, cracks are likely to occur in the solder at the connecting portion due to the large difference in the coefficient of thermal expansion. It is not possible to secure the connection reliability to withstand. In order to improve the connection reliability with the chip component, a substrate having a thermal expansion coefficient close to that of the mounted component, that is, a low thermal expansion coefficient is required.

【0005】熱膨張係数が低い基板材料としては、上記
の有機系基板とは異なったアルミナや窒化アルミニウム
などのセラミック基板、インバーや42合金などの低熱
膨張金属をコアとして用いた金属コア基板が利用されて
いる。ところがこれらについてみると、セラミック基板
は非常に硬質であるため、有機系基板と同様なドリル穴
明けや切断などの機械加工ができない、大型の基板がで
きない、有機系基板に比べて重いために軽量化に不利で
ある。
As a substrate material having a low coefficient of thermal expansion, a ceramic substrate such as alumina or aluminum nitride, which is different from the above organic substrates, or a metal core substrate using a low thermal expansion metal such as Invar or 42 alloy as a core is used. Has been done. However, looking at these, since the ceramic substrate is extremely hard, it cannot be machined like drilling and cutting like the organic substrate, it cannot be a large substrate, and it is lighter because it is heavier than the organic substrate. Is disadvantageous to conversion.

【0006】靱性が乏しいために割れやすく取り扱いが
悪い、あるいは回路加工や多層化の工程が煩雑でコスト
高になるなどの欠点がある。また、低熱膨張金属を芯に
した金属コア基板は、重量が重く軽量化に対応出来な
い、スルーホール形成時に金属芯の穴内に絶縁被覆を施
す必要があるなどの欠点がある。したがって従来の加工
性に優れた有機系基板で熱膨張係数の低い基板の開発が
望まれている。
[0007] There are drawbacks such that it is liable to crack due to poor toughness and handling is difficult, or the process of circuit processing and multilayering is complicated and the cost is high. Further, the metal core substrate having a low thermal expansion metal as a core has drawbacks that it is heavy and cannot cope with weight reduction, and it is necessary to provide an insulating coating in the hole of the metal core when forming the through hole. Therefore, it has been desired to develop a conventional organic substrate excellent in workability and having a low coefficient of thermal expansion.

【0007】低熱膨張の有機系基板としては以前から石
英繊維やアラミド繊維などの低熱膨張基材を用いたもの
が提案されている。しかし、石英繊維は、機械加工性が
極めて悪く、しかも高価であるため、実用化には至って
ない。
As an organic substrate having a low thermal expansion, a substrate using a low thermal expansion base material such as quartz fiber or aramid fiber has been proposed. However, quartz fibers have not been put to practical use because they have extremely poor machinability and are expensive.

【0008】一方、アラミド繊維は、負の熱膨張係数を
持ちこれを用いたアラミド繊維不織布基材積層板の面方
向の熱膨張係数は、アラミド繊維の体積含有率が高いほ
ど低く、アラミド繊維の体積含有率が50%以上であれ
ば熱膨張係数は1×10-5/℃以下になり、通常のガラ
ス繊維を用いた積層板では得られない搭載部品との高い
接続信頼性が得られる。
On the other hand, aramid fiber has a negative coefficient of thermal expansion, and the coefficient of thermal expansion in the plane direction of the aramid fiber nonwoven fabric substrate laminate using the same is lower as the volume content of aramid fiber is higher. When the volume content is 50% or more, the coefficient of thermal expansion becomes 1 × 10 −5 / ° C. or less, and high connection reliability with mounted components, which cannot be obtained by a laminated plate using ordinary glass fibers, can be obtained.

【0009】従来のアラミド繊維不織布としては、その
繊維の集合体であるウエッブを水性エマルション接着剤
によって結合したもの、ウエッブ中に熱軟化性の樹脂ま
たは繊維を混入し、加熱してそれらを溶融させて結合し
たもの、これらの組合わせによってウエッブを結合した
ものが知られている。
As a conventional aramid fiber nonwoven fabric, a web, which is an aggregate of the fibers, is bonded by an aqueous emulsion adhesive, and a thermosoftening resin or fiber is mixed in the web and heated to melt them. It is known that the webs are joined together and the webs are joined together by these combinations.

【0010】[0010]

【発明が解決しようとする課題】ところが、水性エマル
ション接着剤はアラミド繊維との接着力が弱い。そのた
めアラミド繊維不織布基材積層板を吸湿後にはんだ槽に
浸漬するなどの耐熱性試験を行うと接着剤とアラミド繊
維との界面で剥離が生じ、そこが起点となってふくれを
発生しやすいという欠点ががある。熱軟化性の樹脂また
は繊維を混入し、加熱してそれらを溶融させたものも、
耐熱性に劣る。すなわちアラミド繊維不織布基材積層板
の最大の欠点は吸湿時の耐熱性が劣っていることであ
る。
However, the water-based emulsion adhesive has a weak adhesive force with the aramid fiber. Therefore, when a heat resistance test such as immersing the aramid fiber non-woven fabric substrate in a solder bath after absorbing moisture, peeling occurs at the interface between the adhesive and the aramid fiber, which is a starting point and easily causes blisters. There is The one that heat-softening resin or fiber is mixed and heated to melt them,
Inferior heat resistance. That is, the greatest drawback of the aramid fiber non-woven fabric substrate laminate is that it has poor heat resistance when absorbing moisture.

【0011】本発明は、このアラミド繊維不織布基材積
層板の最大の欠点である吸湿時の耐熱性を改良するもの
であり、それによって熱膨張係数が低く、部品を表面実
装した場合、その接続信頼性に優れる基板を提供するも
のである。
The present invention is to improve the heat resistance when absorbing moisture, which is the greatest drawback of this aramid fiber non-woven fabric substrate, whereby the coefficient of thermal expansion is low, and when parts are surface-mounted, their connection is improved. It is intended to provide a substrate having excellent reliability.

【0012】[0012]

【課題を解決するための手段】本発明は、ウエッブを溶
剤可溶性接着剤によって接着して得られたアラミド繊維
不織布と、マトリックス樹脂とからなるアラミド繊維不
織布基材積層板である。
The present invention is an aramid fiber non-woven fabric base laminate comprising a matrix resin and an aramid fiber non-woven fabric obtained by adhering a web with a solvent-soluble adhesive.

【0013】アラミド繊維ウエッブの接着に使用する溶
剤可溶性接着剤としてはエポキシ樹脂、ポリイミド樹
脂、フェノール樹脂、ビニルエステル樹脂、シリコー
ン、メラミン樹脂、不飽和ポリエステル樹脂などの熱硬
化性樹脂の溶剤溶液を用いることができるが、これらの
中では、エポキシ樹脂溶剤溶液がアラミド繊維との接着
性や耐湿耐熱性の点から最も適している。溶剤として
は、一般的に使用されている有機溶剤を各樹脂に応じて
適宜選択すれば良い。
As the solvent-soluble adhesive used for bonding the aramid fiber web, a solvent solution of thermosetting resin such as epoxy resin, polyimide resin, phenol resin, vinyl ester resin, silicone, melamine resin, unsaturated polyester resin is used. However, among these, the epoxy resin solvent solution is the most suitable from the viewpoint of the adhesiveness with the aramid fiber and the resistance to moisture and heat. As the solvent, a generally used organic solvent may be appropriately selected according to each resin.

【0014】例えばエポキシ樹脂に対してはアセトン、
メチルエチルケトン、トルエン、キシレン、メチルイソ
ブチルケトン、酢酸エチル、エチレングリコールモノメ
チルエーテル、N,N−ジメチルホルムアルデヒド、
N,N−ジメチルアセトアミド、メタノール、エタノー
ルなどを単独又は混合溶剤として用いる。
For example, acetone is used for epoxy resin,
Methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformaldehyde,
N, N-dimethylacetamide, methanol, ethanol or the like is used alone or as a mixed solvent.

【0015】これらの接着剤の乾燥後の付着量としては
繊維に対して5〜20vol%が好ましい。なぜなら付
着量が5vol%以下では十分な不織布強度が得られ
ず、20vol%以上では後の樹脂含浸工程及びプレス
工程での樹脂含浸性が損なわれボイドが発性する恐れが
生じるからである。
The amount of adhesion of these adhesives after drying is preferably 5 to 20 vol% with respect to the fibers. This is because if the adhesion amount is 5 vol% or less, sufficient nonwoven fabric strength cannot be obtained, and if it is 20 vol% or more, the resin impregnation property in the subsequent resin impregnation step and pressing step is impaired, and voids may occur.

【0016】アラミド繊維不織布に含浸するマトリック
ス樹脂としては、エポキシ樹脂、ポリイミド樹脂、フェ
ノール樹脂、ビニルエステル樹脂、シリコーン樹脂、メ
ラミン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹
脂やポリサルフォン、ポリエーテルイミド、ポリエンテ
ルエーテルケトン、ポリフェニレンオキサイドなどの熱
可塑性樹脂を用いることができるが、これらの中では、
エポキシ樹脂がアラミド繊維との接着性やその他の電気
特性の点から最も適している。
The matrix resin to be impregnated into the aramid fiber nonwoven fabric is a thermosetting resin such as epoxy resin, polyimide resin, phenol resin, vinyl ester resin, silicone resin, melamine resin, unsaturated polyester resin, polysulfone, polyetherimide, Although thermoplastic resins such as polyene ether ether ketone and polyphenylene oxide can be used, among these,
Epoxy resin is most suitable in terms of adhesion to aramid fiber and other electrical properties.

【0017】アラミド繊維不織布基材積層板のアラミド
繊維の体積含有率は熱膨張係数を低く抑えるために40
%以上が好ましい。さらにアラミド繊維の体積含有率を
50%以上にすれば、熱膨張係数は1×10-5/℃以下
になり、通常のガラス繊維を用いた積層板では得られな
い搭載部品との高い接続信頼性が得られるのでより好ま
しい。
The volume content of the aramid fiber in the aramid fiber nonwoven fabric substrate laminate is 40 in order to keep the thermal expansion coefficient low.
% Or more is preferable. Furthermore, if the volume content of aramid fiber is 50% or more, the coefficient of thermal expansion will be 1 × 10 -5 / ° C or less, and high connection reliability with mounted components that cannot be obtained with a laminated board using ordinary glass fibers. It is more preferable because the property is obtained.

【0018】[0018]

【作用】溶剤可溶性接着剤の乾燥硬化後のアラミド繊維
との接着力は水性エマルション接着剤のそれより強く、
同時に硬化後の接着剤自身の耐湿耐熱性も水性エマルシ
ョン接着剤より優れている。そのため本発明のアラミド
繊維不織布基材積層板の吸湿時の耐耐熱性は従来のアラ
ミド繊維不織布基材積層板の吸湿時の耐耐熱性より優
れ、ガラスエポキシ積層板と同等となる。
[Function] The adhesive strength between the solvent-soluble adhesive and the aramid fiber after drying and curing is stronger than that of the aqueous emulsion adhesive,
At the same time, the moisture resistance and heat resistance of the adhesive itself after curing are superior to those of the water-based emulsion adhesive. Therefore, the heat resistance of the aramid fiber nonwoven fabric substrate laminate of the present invention when absorbing moisture is superior to the heat resistance of the conventional aramid fiber nonwoven fabric substrate laminate when absorbing moisture, and is equivalent to that of the glass epoxy laminate plate.

【0019】[0019]

【実施例】アラミド繊維(帝人株式会社製のテクノーラ
を使用)ウエッブをエポキシ樹脂メチルエチルケトンと
メチルイソブチルケトンの混合溶剤に浸漬し、乾燥硬化
させてアラミド繊維不織布(坪量:82g/m2 )を得
た。なお、接着剤エポキシ樹脂の硬化後の重量はアラミ
ド繊維の重量に対して、10%とした。このアラミド繊
維不織布にエポキシ樹脂を含浸乾燥し、プリプレグとし
た。このプリプレグを4枚重ねてプレス成形し、アラミ
ド繊維不織布基材積層板を得た。この積層板の板厚は
0.4mmであり、アラミド繊維体積含有率は50%で
あり、面方向の熱膨張係数は6×10-6/℃であった。
この積層板を、煮沸処理後、260℃のはんだ槽に、3
0秒浸漬してはんだ耐熱性を調べた。その結果、煮沸処
理5時間でも異常がなかった。
Example: An aramid fiber nonwoven fabric (basis weight: 82 g / m 2 ) was obtained by immersing a web of aramid fiber (using Technora manufactured by Teijin Limited) in a mixed solvent of epoxy resin methyl ethyl ketone and methyl isobutyl ketone and drying and curing. It was The weight of the adhesive epoxy resin after curing was 10% of the weight of the aramid fiber. This aramid fiber nonwoven fabric was impregnated with an epoxy resin and dried to obtain a prepreg. Four prepregs were stacked and press-molded to obtain an aramid fiber nonwoven fabric substrate laminate. The thickness of this laminate was 0.4 mm, the aramid fiber volume content was 50%, and the thermal expansion coefficient in the plane direction was 6 × 10 −6 / ° C.
After boiling this laminated plate, place it in a solder bath at 260 ° C for 3
The solder heat resistance was examined by immersing for 0 seconds. As a result, there was no abnormality even after 5 hours of boiling treatment.

【0020】比較例 同じアラミド繊維ウエッブをエポキシ樹脂のエマルショ
ン液に浸漬し、乾燥、硬化させアラミド繊維不織布を得
た。接着剤であるエポキシ樹脂の硬化後の重量はアラミ
ド繊維の重量に対して10%であり、坪量は82g/m
2であった。
Comparative Example The same aramid fiber web was dipped in an emulsion of an epoxy resin, dried and cured to obtain an aramid fiber nonwoven fabric. The weight of the epoxy resin as an adhesive after curing is 10% of the weight of the aramid fiber, and the basis weight is 82 g / m.
Was 2 .

【0021】以下実施例と同様にして、アラミド繊維不
織布基材積層板を得た。この積層板の板厚は0.4mm
であり、アラミド繊維体積含有率は50%であり、面方
向の熱膨張係数は銅はくなしの状態で6×10-6/℃で
あった。この積層板を、煮沸処理後、260℃のはんだ
槽に、30秒浸漬してはんだ耐熱性を調べた。その結
果、煮沸処理1時間で、260℃はんだ槽に浸漬すると
直ちに膨れを発生した。
A aramid fiber non-woven fabric substrate laminate was obtained in the same manner as in the following examples. The thickness of this laminate is 0.4 mm
The aramid fiber volume content was 50%, and the coefficient of thermal expansion in the plane direction was 6 × 10 −6 / ° C. in the state without copper flakes. After the boiling treatment, this laminated plate was immersed in a solder bath at 260 ° C. for 30 seconds to examine the solder heat resistance. As a result, swelling occurred immediately when immersed in a solder bath at 260 ° C. for 1 hour of boiling treatment.

【0022】[0022]

【発明の効果】以上述べてきたように本発明によればア
ラミド不織布を基材とする積層板において、これまで最
大の問題点であったはんだ耐熱性等の耐熱衝撃性、特に
吸湿時の特性を改良することができる。それによりアラ
ミド繊維のもつ低熱膨張係数という特徴を十分に生かす
ことができる。したがって、今後さらに進む半導体素子
パッケージの小型化、高密度化あるいはベアチップ化に
より要求される低熱膨張基板およびその製造方法として
本発明の積層板およびその製造方法は非常に有効であ
る。なお、本発明は、アラミド不織布単独の積層板のほ
か、織布と不織布とを併用するコンポジット積層板にも
適用できる。
As described above, according to the present invention, in the laminated board using the aramid nonwoven fabric as a base material, the thermal shock resistance such as solder heat resistance, which has been the biggest problem until now, especially the characteristics when absorbing moisture. Can be improved. This makes it possible to take full advantage of the low thermal expansion coefficient of aramid fibers. Therefore, the laminated plate and the manufacturing method thereof according to the present invention are very effective as a low thermal expansion substrate and a manufacturing method thereof required for further miniaturization, higher density or bare chip formation of semiconductor device packages which will be further advanced in the future. The present invention can be applied not only to a laminate of aramid non-woven fabric alone, but also to a composite laminate of both woven fabric and non-woven fabric.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウエッブを溶剤可溶性接着剤によって接
着して得られたアラミド繊維不織布と、マトリックス樹
脂とからなるアラミド繊維不織布基材積層板。
1. An aramid fiber non-woven substrate laminate comprising an aramid fiber non-woven fabric obtained by adhering a web with a solvent-soluble adhesive and a matrix resin.
【請求項2】 マトリックス樹脂が、エポキシ樹脂であ
る請求項1記載の積層板。
2. The laminate according to claim 1, wherein the matrix resin is an epoxy resin.
JP23214393A 1993-09-20 1993-09-20 Laminates Pending JPH0781002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214393A JPH0781002A (en) 1993-09-20 1993-09-20 Laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214393A JPH0781002A (en) 1993-09-20 1993-09-20 Laminates

Publications (1)

Publication Number Publication Date
JPH0781002A true JPH0781002A (en) 1995-03-28

Family

ID=16934673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214393A Pending JPH0781002A (en) 1993-09-20 1993-09-20 Laminates

Country Status (1)

Country Link
JP (1) JPH0781002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703564B2 (en) 2000-03-23 2004-03-09 Nec Corporation Printing wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703564B2 (en) 2000-03-23 2004-03-09 Nec Corporation Printing wiring board

Similar Documents

Publication Publication Date Title
JP3663210B2 (en) Resin impregnated laminate for wiring board applications
US5965245A (en) Prepreg for printed circuit board
CA2395080C (en) Multilayer printed board
US4407883A (en) Laminates for printed circuit boards
JP4992342B2 (en) Method for manufacturing printed wiring board
JP3648750B2 (en) Laminated board and multilayer printed circuit board
JPS62202585A (en) Wire net
JP3838250B2 (en) Laminated board and multilayer printed circuit board
US5176811A (en) Gold plating bath additives for copper circuitization on polyimide printed circuit boards
JP2956370B2 (en) Copper clad laminate and method for producing the same
JPH0781002A (en) Laminates
JP3071764B2 (en) Film with metal foil and method of manufacturing wiring board using the same
JP3227874B2 (en) Manufacturing method of laminated board
JPH0781001A (en) Laminates
JPH05261861A (en) Laminated sheet
JPH06237055A (en) Manufacture of circuit board
US4921748A (en) Fluorhectorite laminate printed circuit substrate
JPH04208597A (en) Multilayer printed circuit board
JPH0263821A (en) Laminated plate
JPH0771840B2 (en) Copper clad laminate and manufacturing method thereof
KR20200053566A (en) Printed circuit board and its manufacturing method
JPH01115627A (en) Copper plated laminated sheet
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JPH01194491A (en) Manufacture of copper-pressed metallic base substrate
JP2003017861A (en) Multilayer interconnection board and manufacturing method therefor