JPS62250689A - Manufacture of insulating substrate - Google Patents
Manufacture of insulating substrateInfo
- Publication number
- JPS62250689A JPS62250689A JP9413986A JP9413986A JPS62250689A JP S62250689 A JPS62250689 A JP S62250689A JP 9413986 A JP9413986 A JP 9413986A JP 9413986 A JP9413986 A JP 9413986A JP S62250689 A JPS62250689 A JP S62250689A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- layer
- metal plate
- insulating substrate
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000010410 layer Substances 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- 239000000919 ceramic Substances 0.000 claims description 38
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 239000012790 adhesive layer Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000009719 polyimide resin Substances 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱伝導性にすぐn、耐熱性のあるメタルコアI
P3縁基板の製造方法に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a metal core I with excellent thermal conductivity and heat resistance.
The present invention relates to a method of manufacturing a P3 edge substrate.
(従来の技術)
従来、プリント配線板としてはフェノ−/L−樹脂積層
板、エポキシ樹脂積層板が多く用いられてきた。しかし
、最近、電子機器の高性能化、小型化に伴い、部品の高
密度実装化が望まれ、それによって生ずる熱の篩密度発
生をいかに処理するかということが問題になりてきた。(Prior Art) Conventionally, phenol/L-resin laminates and epoxy resin laminates have been widely used as printed wiring boards. However, in recent years, as electronic devices have become more sophisticated and more compact, there has been a desire for higher density packaging of components, and the problem has become how to deal with the resulting heat sieve density.
これに対して、従来の有機質系基板は熱伝導性が悪いた
め、熱放散性に欠け、また耐熱性に乏しいなどのために
、關密度実装化は困難であった。そのため、熱伝導性に
すぐれた基板として、アルミナ、窒化アルミ、炭化ケイ
素などのセラミック基板、あるいは金属板を芯としてそ
の表面に絶縁層を設けたメタルコア基板などが注目さn
ている。特にメタルコア基板は、セラミック基板に比べ
て安価であり、加工性にもすぐれ、さらに熱伝導率の大
きなアルミなどの金属を芯としているので、熱放散性が
大きめことなどから注目されており、盛んに用いられる
ようになってきた。そのための性能向上の研究開発も活
発に行われている。On the other hand, conventional organic substrates have poor thermal conductivity, lack heat dissipation properties, and lack heat resistance, making it difficult to implement high-density packaging. Therefore, as substrates with excellent thermal conductivity, ceramic substrates such as alumina, aluminum nitride, and silicon carbide, and metal core substrates with a metal plate as the core and an insulating layer on the surface are attracting attention.
ing. In particular, metal core substrates are attracting attention because they are cheaper than ceramic substrates, have excellent workability, and have a high heat dissipation property due to their core being made of metal such as aluminum, which has high thermal conductivity. It has come to be used for. Research and development to improve performance for this purpose is actively being conducted.
(発明が解決しようとする問題点)
一般的なメタルコア基板は、アルミなどの金楕板の表面
に50μ〜100μの厚さのガラス/エポキシ樹脂層の
絶縁層を設け、さらにその上に回路を形成する鋼箔を張
りつけたものである。すなわち、回路と直接に接してい
るのは熱伝導性の悪い樹脂層である。したがって回路に
発生した熱を工、熱伝導性の悪い樹脂層を介して芯であ
る金属板に伝わることになる。そのために、金属芯の熱
伝導性を十分に活かすことができず、十分な熱放散性は
得られない。(Problems to be Solved by the Invention) A typical metal core board has an insulating layer of glass/epoxy resin with a thickness of 50μ to 100μ on the surface of a metal elliptical plate made of aluminum or the like, and a circuit is further formed on top of that. It is made of steel foil pasted onto it. That is, what is in direct contact with the circuit is a resin layer with poor thermal conductivity. Therefore, the heat generated in the circuit is transferred to the core metal plate through the resin layer, which has poor thermal conductivity. Therefore, the thermal conductivity of the metal core cannot be fully utilized, and sufficient heat dissipation cannot be obtained.
このようなことからこnを改良するために樹脂層を用い
ずに、芯となる金属板の表面にアルミナなどのセラミッ
クを溶射してセラミックの絶縁層を設けようとする考え
力がある。このようにすると、熱の伝導は樹脂に比べて
十分に熱伝導率の旨いセラミック層を通して金属芯に伝
わるため、大きな熱放散効果が得られる。しかし、この
ような基板においては次のような欠点がある。For this reason, there is an idea to improve this by spraying ceramic such as alumina on the surface of the core metal plate to provide a ceramic insulating layer, without using a resin layer. In this way, heat is conducted to the metal core through the ceramic layer, which has a sufficiently higher thermal conductivity than resin, so that a large heat dissipation effect can be obtained. However, such a substrate has the following drawbacks.
第1は溶射により得られたセラミック層には気孔が存在
し、絶縁層の耐電圧特性が不十分である点である。すな
わち、セラミック絶縁層の耐電圧が劣り、しかもその下
は導電性の金属であるためである。第2はセラミック層
と金属芯の密着性の問題である。金属にセラミックを溶
射した場合9、その密層、結付はセラミックの溶融物が
高速で金属粗面に突きささる、いわゆるアンカー効果に
よるものである。したがって化学的な結曾力は得られず
、さらに金−とセラミックは熱膨張率も異なるために、
熱衝撃に耐え得るような密着力を工得られにくい。The first problem is that the ceramic layer obtained by thermal spraying has pores, and the dielectric strength of the insulating layer is insufficient. That is, this is because the ceramic insulating layer has poor withstand voltage, and the layer underneath is a conductive metal. The second problem is the adhesion between the ceramic layer and the metal core. When ceramic is thermally sprayed on metal9, the dense layer and bond are due to the so-called anchor effect, in which the molten ceramic hits the rough metal surface at high speed. Therefore, chemical condensation cannot be obtained, and gold and ceramic have different coefficients of thermal expansion, so
It is difficult to develop adhesion that can withstand thermal shock.
これらの欠点については、セラミック溶射後、セラミッ
ク層に樹脂を浸透させて気孔を封孔するなどの方法が考
えられているが、十分な効果は得られず、また、王権も
煩雑なものとなりてしまう。To address these shortcomings, methods such as sealing the pores by infiltrating the ceramic layer with resin after ceramic spraying have been considered, but these methods have not been sufficiently effective and have complicated royal authority. Put it away.
本発明は、これらの欠点を改良し、熱放散性にすぐれ、
しかも特性、S産性にすぐれたメタルコア基板の製造方
法を提供するものである。The present invention improves these drawbacks and provides excellent heat dissipation.
Furthermore, the present invention provides a method for manufacturing a metal core substrate with excellent characteristics and S productivity.
(問題点を解決するための手段)
すなわち、本発明は金属板Aにセラミックをl@射して
絶縁層を形成し、該セラミック層と金属板Bを接着剤層
を介して一体化後、金属板Aをセラミック層から剥離す
ることを特徴とするものである。(Means for Solving the Problems) That is, the present invention injects ceramic onto a metal plate A to form an insulating layer, and after integrating the ceramic layer and metal plate B via an adhesive layer, This method is characterized by peeling the metal plate A from the ceramic layer.
本発明においてセラミックを溶射する金属板Aとしては
、鉄、銅、アルミ、ニッケル、ステンレスなどの金属板
を用いることができる。In the present invention, a metal plate made of iron, copper, aluminum, nickel, stainless steel, or the like can be used as the metal plate A on which ceramic is sprayed.
また、セラミックはその電気絶縁性、熱伝導率、溶射の
容易さなどからアルミナが最適であるが、その他に電気
絶縁性を有するスピネル、ムライト、ベリリア、シルコ
ニ1等を用いることができる。このセラミック層の厚み
は、30μ以上500μ以下の範咄にすることが好まし
い。30μ未満では溶射層が不均一になりやすく、熱放
散効果が十分でなく、500μ以上にするとコストアッ
プになるとともに、溶射層にクラック等の欠陥が発生し
ゃすくなるたぬである。Further, as the ceramic, alumina is most suitable due to its electrical insulation properties, thermal conductivity, ease of thermal spraying, etc., but other electrically insulating materials such as spinel, mullite, beryllia, and silconi 1 can also be used. The thickness of this ceramic layer is preferably in the range of 30 μm or more and 500 μm or less. If it is less than 30μ, the sprayed layer tends to be non-uniform and the heat dissipation effect is insufficient.If it is more than 500μ, the cost increases and defects such as cracks are more likely to occur in the sprayed layer.
溶射法としてはガラス浴射、プラズマ#射、水プラズマ
溶射、減圧プラズマ浴刺法などが通用できる。Examples of thermal spraying methods that can be used include glass bath spraying, plasma spraying, water plasma spraying, and reduced pressure plasma bathing.
セラミックM射層と芯となる金属板2を一体化するため
の接着剤層としては、接着剤層の均一な厚みの確保およ
びIM滑強度の抱着性の点から、ガラス繊維あるいはケ
プラー穢維にエポキシ樹脂またはポリイミド樹脂を含浸
させたプリプレグを用い、熱圧成形することにより接層
することが望ましい。このようにすることによって電気
絶縁性にすぐれ、しかも均一な厚みをもった接着剤層を
介してセラミック層と芯となる金属板全一体化すること
かできるために、従来のセラミック溶射基板でを工間趙
であった耐電圧など信頼のでざるものを得ることができ
るのである。As the adhesive layer for integrating the ceramic magnetic layer and the core metal plate 2, glass fiber or Keplerian fiber is used from the viewpoint of ensuring uniform thickness of the adhesive layer and adhesion of IM sliding strength. It is desirable to use a prepreg impregnated with an epoxy resin or a polyimide resin, and to attach the layers by hot-pressing molding. By doing this, the ceramic layer and the core metal plate can be completely integrated through an adhesive layer with excellent electrical insulation properties and a uniform thickness, which makes it possible to completely integrate the ceramic layer and the core metal plate. It is possible to obtain unreliable things such as withstand voltage, which was previously unknown to Kouma.
なお、セラミック溶射層と接着剤層との@層性は、セラ
ミック溶射層の表面が粗面でしかも気孔が存在すること
により接涜tikI積が大きいことから、極めて強固で
あり、それに比べ℃セラミック溶射ノ―と金属板Aとの
密着性は、低いため、接着作菓俊に金植板Aをセラミッ
ク溶射層から剥離することは、容易に可能である。さら
に剥虚を容易にするためには、金属板Aの溶射前のサン
ドブラスト処理などの粗面化処理を行わないか、または
ご(軽く行うか、あるいは離型処理を施す等の手段が可
能である。The layer properties between the ceramic sprayed layer and the adhesive layer are extremely strong because the surface of the ceramic sprayed layer is rough and has pores, so the tikI product is large. Since the adhesion between the thermal spray nozzle and the metal plate A is low, it is possible to easily separate the metal planting plate A from the ceramic thermal spray layer without adhesion. In order to further facilitate the flaking, it is possible to either not perform surface roughening treatment such as sandblasting before thermal spraying of metal plate A, or to roughen it lightly, or to perform mold release treatment. be.
このように金属板Aを剥辱した側のセラミック層表面は
、金属板Aの表面状態を転写した面であるために、平滑
性に丁ぐ几、そのままメッキ、印刷法などにより導体回
路を形成することが可能である。Since the surface of the ceramic layer on the side where metal plate A has been abraded in this way is a surface that has transferred the surface condition of metal plate A, conductor circuits can be formed by plating, printing, etc. to ensure smoothness. It is possible to do so.
なお、芯となる金属板Bは、アルミ、鉄、銅、ステンレ
ス、ニッケルなどを用いることができる。Note that the metal plate B serving as the core can be made of aluminum, iron, copper, stainless steel, nickel, or the like.
(作用)
本発明では、従来の溶射基板のように芯となる金属板に
直接セラミックを溶射するのてはなく、セラミック溶射
層と芯となる金属板を接着剤層を用いて接着することに
より、強固な密層性を得ることができる。さらにセラミ
ック溶射層の表面は粗面てあり、しかも気孔が存在する
ために、接着面積が大きく、接着剤層が溶射層の内部ま
で浸透していくためにいっそう6着性が高まるのである
。(Function) In the present invention, instead of spraying ceramic directly onto the core metal plate as in conventional thermal sprayed substrates, the ceramic sprayed layer and the core metal plate are bonded together using an adhesive layer. , it is possible to obtain strong compactness. Furthermore, since the surface of the ceramic sprayed layer is rough and has pores, the adhesion area is large and the adhesive layer penetrates into the interior of the sprayed layer, further increasing the adhesion.
また、このようにして得たメタルコア基板の表面は最初
の工程でセラミックを溶射する金属板への表面を転写し
たものであるために、従来の方法で得られる溶射基板に
比べて、非常に平滑な血となる。そのためにメッキ、あ
るいは印刷法などにより、そのままで微細な導体回路パ
ターンを形成することが可能である。In addition, the surface of the metal core substrate obtained in this way is a transfer of the surface of the metal plate on which ceramic is sprayed in the first process, so it is extremely smooth compared to the thermal sprayed substrate obtained by conventional methods. It becomes blood. Therefore, it is possible to form a fine conductor circuit pattern as it is by plating or printing.
このようにして得られたメタルコア基板は、導体回路の
下は熱伝導性にすぐれたセラミック層であるために、熱
放散性、耐熱性にすぐれたものである。The metal core substrate thus obtained has excellent heat dissipation and heat resistance because it has a ceramic layer with excellent thermal conductivity under the conductor circuit.
(実施例)
厚さ2市のステンレス板10片面に、プラズマ溶射装置
を用いてアルミナを溶射して、厚さ約100μのアルミ
ナ溶射層2を形成した。次に第1図のごと(、アルミナ
溶射層2を形成したステンレス板1のアルミナ溶射層2
と厚さ1鰭のアルミ板4の間にエポキシ樹脂含浸ガラス
クロスプリプレグS<a形時厚み50μ)を配貨し、こ
れを熱圧成形して一体化した。(Example) Alumina was sprayed onto one side of a stainless steel plate 10 with a thickness of 2 mm using a plasma spraying device to form an alumina sprayed layer 2 with a thickness of about 100 μm. Next, as shown in Fig. 1 (alumina sprayed layer 2
An epoxy resin-impregnated glass cloth prepreg S<thickness of 50 μm in a shape) was placed between the aluminum plate 4 having a thickness of 1 fin, and was integrally formed by hot pressure molding.
樹脂硬化完了後、これを冷却し、ステンレス板1をアル
ミナ溶射層2から引きはがした。アルミナ溶射層2はエ
ポキシ柚脂によりアルミ板4と強固に接着しているため
、ステンレス板1は調べらでこじあけることにより簡単
に引きはがすごとができた。After the resin was cured, it was cooled and the stainless steel plate 1 was peeled off from the alumina sprayed layer 2. Since the alumina sprayed layer 2 was firmly adhered to the aluminum plate 4 by epoxy resin, the stainless steel plate 1 could be easily peeled off by prying it open with a probe.
このようにして得た基板は、第2図のようにアルミナ溶
射層2の表面が最初にアルミナを溶射したステンレス板
1の表面状態を転写し【いるため、平滑であり、このま
まの状態で無電解鋼メツキーエツチング処理により回路
の形成が可能であった。また、回路の真下は従来のメタ
ルコア基板とは異なり、熱伝導性にすぐnたアルミナ溶
射層2であるため、その熱放散性は非常にすぐれたもの
であった。さらにアルミナ溶射層2は、ガラスエポキシ
樹脂接着層5により芯となるアルミ板4と強固に接着し
ているため、耐熱性、耐熱衝撃性も良好であり、中間に
劇延圧にすぐれたガラスエポキシ層が存在するために、
耐電圧特性も良好なものであった。The substrate obtained in this way is smooth because the surface of the alumina sprayed layer 2 transfers the surface condition of the stainless steel plate 1 on which alumina was first sprayed, as shown in FIG. It was possible to form a circuit using electrolytic steel metski etching treatment. In addition, unlike conventional metal core substrates, the alumina sprayed layer 2 with excellent thermal conductivity was directly below the circuit, so its heat dissipation properties were very good. Furthermore, since the alumina sprayed layer 2 is firmly adhered to the core aluminum plate 4 by the glass epoxy resin adhesive layer 5, it has good heat resistance and thermal shock resistance. Due to the existence of layers,
The withstand voltage characteristics were also good.
(発明の効果)
本発明の方法によれば、熱放散性、耐熱性にすぐれ、し
かも信頼性の商いメタルコア基板を簡単な工程で安価に
i産することができる。これによって、さらに部品の基
板への^密度実装化が可能となり、電子部品の小型化へ
の効果を工、極めて大きなものである。(Effects of the Invention) According to the method of the present invention, a metal core substrate with excellent heat dissipation properties, heat resistance, and reliability can be produced at low cost through a simple process. This makes it possible to more densely package components onto the board, which has an extremely large effect on the miniaturization of electronic components.
第1図は本発明の実施例の接着層形成時の積層構成図、
第2図は得られたメタルコア絶縁基板の断面模式圀であ
る。
符号の説明
1 ステンレス板 2 アルミナl@刺層嶺看層
81図
尭2図FIG. 1 is a lamination configuration diagram when forming an adhesive layer according to an embodiment of the present invention;
FIG. 2 is a schematic cross-sectional view of the obtained metal core insulating substrate. Explanation of symbols 1 Stainless steel plate 2 Alumina l
Claims (1)
絶縁基板の製造において、 a、金属板Aにセラミックを溶射してセラミック層を形
成する第1工程、 b、該セラミック層と基板の芯となる金属板Bとの間に
接着剤層を介在させ、これらを 一体化する第2工程、 c、第1工程においてセラミックを溶射した金属板Aを
セラミック層から剥離する第3 工程、 からなることを特徴とする絶縁基板の製造方法。 2、電気絶縁性のセラミックがアルミナを主成分とする
ものである特許請求の範囲第1項記載の絶縁基板の製造
方法。 3、接着剤層がガラス繊維またはケプラー繊維にエポキ
シ樹脂を含浸したものである特許請求の範囲第1項記載
の絶縁基板の製造方法。 4、接着剤層がガラス繊維またはケプラー繊維にポリイ
ミド樹脂を含浸したものである特許請求の範囲第1項記
載の絶縁基板の製造方法。[Claims] 1. In the production of an insulating substrate in which an insulating layer made of ceramic is provided on the surface of a metal plate, a. a first step of thermally spraying ceramic onto the metal plate A to form a ceramic layer; b. A second step of interposing an adhesive layer between the ceramic layer and the metal plate B serving as the core of the substrate to integrate them; c. Peeling the metal plate A on which the ceramic was sprayed in the first step from the ceramic layer. 3. A method for manufacturing an insulating substrate, comprising the steps of: 2. The method for manufacturing an insulating substrate according to claim 1, wherein the electrically insulating ceramic is mainly composed of alumina. 3. The method for manufacturing an insulating substrate according to claim 1, wherein the adhesive layer is made of glass fiber or Kepler fiber impregnated with epoxy resin. 4. The method for manufacturing an insulating substrate according to claim 1, wherein the adhesive layer is made of glass fiber or Kepler fiber impregnated with polyimide resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9413986A JPH0654833B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing insulating substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9413986A JPH0654833B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing insulating substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62250689A true JPS62250689A (en) | 1987-10-31 |
JPH0654833B2 JPH0654833B2 (en) | 1994-07-20 |
Family
ID=14102052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9413986A Expired - Lifetime JPH0654833B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing insulating substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0654833B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05218603A (en) * | 1991-10-29 | 1993-08-27 | Internatl Business Mach Corp <Ibm> | Compensating-body interconnection structure and manufacture thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100209259B1 (en) * | 1996-04-25 | 1999-07-15 | 이해규 | Ic card and method for manufacture of the same |
-
1986
- 1986-04-23 JP JP9413986A patent/JPH0654833B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05218603A (en) * | 1991-10-29 | 1993-08-27 | Internatl Business Mach Corp <Ibm> | Compensating-body interconnection structure and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0654833B2 (en) | 1994-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4830691A (en) | Process for producing high-density wiring board | |
US5896271A (en) | Integrated circuit with a chip on dot and a heat sink | |
JPH0923065A (en) | Thin film multilayered wiring board and its manufacture | |
JP4691763B2 (en) | Method for manufacturing printed wiring board | |
JPS62250689A (en) | Manufacture of insulating substrate | |
JP2001156453A (en) | Forming method for embedded via at printed wiring board | |
JP4742409B2 (en) | Method for manufacturing printed wiring board | |
JPH01232796A (en) | Manufacture of metal core insulated board | |
JPH01194491A (en) | Manufacture of copper-pressed metallic base substrate | |
JPH01194384A (en) | Manufacture of copper-clad laminated plate | |
JPS63299195A (en) | Manufacture of superconducting printed substrate | |
JPH0655477B2 (en) | Method for manufacturing ceramic coat laminate | |
JPS6372192A (en) | Manufacture of circuit board | |
JPH01157589A (en) | Manufacture of metal base substrate | |
JP2000216546A (en) | Laminated board having bottomed via hole | |
JPH02253941A (en) | Preparation of ceramic coated laminated sheet | |
JP2006303387A (en) | Printed wiring board | |
JPH01290279A (en) | Wiring board and manufacture thereof | |
JPH0655478B2 (en) | Method for manufacturing ceramic coat laminate | |
JPS63219562A (en) | Manufacture of ceramic coat laminated sheet | |
JPH0455558B2 (en) | ||
JPS63299194A (en) | Manufacture of superconducting printed substrate | |
JPS62187035A (en) | Manufacture of ceramic-coated lamianted board | |
JPS63160829A (en) | Manufacture of ceramic-coated laminated board | |
JP3631028B2 (en) | Metal base circuit board and manufacturing method thereof |