JPS63299192A - Manufacture of superconducting printed substrate - Google Patents

Manufacture of superconducting printed substrate

Info

Publication number
JPS63299192A
JPS63299192A JP62133085A JP13308587A JPS63299192A JP S63299192 A JPS63299192 A JP S63299192A JP 62133085 A JP62133085 A JP 62133085A JP 13308587 A JP13308587 A JP 13308587A JP S63299192 A JPS63299192 A JP S63299192A
Authority
JP
Japan
Prior art keywords
substrate
ceramic
copper oxide
circuit
yttrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133085A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛士 長谷川
Mitsuhiro Inoue
光弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP62133085A priority Critical patent/JPS63299192A/en
Publication of JPS63299192A publication Critical patent/JPS63299192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To simplify manufacturing steps by flame-spraying ceramic superconducting substance powder on a ceramic substrate heated to a specific temperature to form a circuit pattern of the substance. CONSTITUTION:A stainless steel masking plate 2 in which its circuit pattern section is scooped out is brought into contact with the circuit forming face of an alumina substrate 1 to heat the substrate to 500 to 1200 deg.C, and yttrium- barium-copper oxide powder is flame sprayed by a plasma flame spraying machine on the substrate in a state held at its temperature to form a flame- sprayed layer 3 of the yttrium-barium-copper oxide. Then, this is gradually cooled to a room temperature, and the plate is removed. Thus, the steps are simplified, the bondability of the circuit to the substrate is improved, and the dimensional accuracy can be further improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導物質により回路を形成したプリント基板
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a printed circuit board having a circuit formed of a superconducting material.

〔従来の技術〕[Conventional technology]

プリント基板は紙基材フェノール樹脂積層板、ガラス布
基材エポキシ樹脂積層板、ガラス布基材ポリイミド樹脂
積層板などのプラスチック基板、゛アルミナ、べIJ 
IJア、炭化けい素、窒化アルミニウム、ステアタイト
、ガラスセラミックスなどのセラミックス基板、あるい
はアルミニウム、鉄などの金属板の表面に絶縁層を設け
たメタルベース、メタルコア基板が主に用いられている
。これらの基板上に形成される導体層としては銅、ニッ
ケル、パラジウム、モリブデン、タングステン、金、銀
などの金属あるいは合金が用いられている。
Printed circuit boards include plastic substrates such as paper-based phenolic resin laminates, glass cloth-based epoxy resin laminates, glass cloth-based polyimide resin laminates, alumina, and base IJ.
Ceramic substrates such as IJA, silicon carbide, aluminum nitride, steatite, and glass ceramics, or metal bases and metal core substrates in which an insulating layer is provided on the surface of a metal plate such as aluminum or iron are mainly used. Metals or alloys such as copper, nickel, palladium, molybdenum, tungsten, gold, and silver are used for the conductor layers formed on these substrates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが最近では、電子機器の高性能化の進歩が著しく
、特に部品の高密度実装を可能にするために部品から発
生する熱をいかに放散するか、あるいは導体回路のもつ
抵抗による発熱をいかに低く押さえるかが大きな問題と
なってぃる。また、コンピュータなどでは信号伝送のよ
り高速化の要求が強(、特に導体回路のもつ抵抗による
信号遅延の占める割合が大きい。したがって導体層の低
抵抗化への期待は非常に大きなものである。
However, in recent years, there has been significant progress in improving the performance of electronic devices, and in particular how to dissipate the heat generated by components to enable high-density mounting of components, or how to suppress heat generation due to the resistance of conductor circuits. That is a big problem. In addition, there is a strong demand for faster signal transmission in computers, etc. (In particular, the resistance of conductor circuits accounts for a large proportion of signal delays.Therefore, there are great expectations for lower resistance in conductor layers.

このような要求に適した材料として超電導物質が考えら
れる。超電導物質とは、ある臨界温度以下になると電気
抵抗がゼロになる物質で、最近特番ζセラミックス系超
電導物質の開発が目ざましく、従来はランタン−バリウ
ム−銅酸化物、ランタン−ストロンチウム−銅酸化物な
どが臨界温度30〜40にで液体ヘリウム(沸点4K)
、液体水素(沸点20K)中で超電導となるものとして
知られている。ところが、最近イツトリウム−バリウム
−銅酸化物あるいはイットリウム−ストロンチウム−銅
酸化物が臨界温度80〜90Kをもつことが知られ、液
体窒素(沸点77K)中で使用することができるために
非常に注目されている。これらの超電導物質をプリント
基板の導体回路として使用すれば現在、問題となってい
る導体層の電気抵抗による信号伝送の遅延あるいは抵抗
による発熱を解決することが可能である。
Superconducting materials can be considered as materials suitable for such requirements. A superconducting material is a material whose electrical resistance becomes zero below a certain critical temperature.Recently, the development of special ζ ceramic-based superconducting materials has been remarkable, and in the past, lanthanum-barium-copper oxide and lanthanum-strontium-copper oxide were used. Liquid helium (boiling point 4K) has a critical temperature of 30 to 40
, is known to become superconducting in liquid hydrogen (boiling point 20K). However, recently it has been known that yttrium-barium-copper oxide or yttrium-strontium-copper oxide has a critical temperature of 80 to 90 K, and it has attracted much attention because it can be used in liquid nitrogen (boiling point 77 K). ing. If these superconducting materials are used as conductor circuits on printed circuit boards, it is possible to solve the current problems of signal transmission delays due to the electrical resistance of conductor layers and heat generation due to resistance.

このような超電導物質を用いて基板上に導体回路を形成
する方法は、一般には、セラミックス基板の焼成前又は
焼成後にセラミックス基板表面に超電導物質粉にバイン
ダーを加えたペーストを回路パターンに印刷し、これを
焼成する方法が考えられる。しかしながら、このような
方法では焼成工程を経るために種々の問題点がある。ま
ず第1に回路の寸法精度の問題である。
A method of forming a conductor circuit on a substrate using such a superconducting material generally involves printing a paste of superconducting material powder and a binder on the surface of the ceramic substrate in a circuit pattern before or after firing the ceramic substrate, and One possible method is to bake this. However, this method has various problems due to the firing process. The first problem is the dimensional accuracy of the circuit.

すなわち、焼成工程においてセラミックス基板あるいは
回路部分は収縮する。そのためにこれを考慮して回路パ
ターンを形成しなければならず、また、焼成時の温度、
時間等の管理も正確に行わなければならず工程が煩雑で
ある。また、焼成時の収縮により導体回路にクラック等
の発生する恐れがあり、信頼性も問題となる。さらにこ
のような熱履歴によりセラミックス基板と導体層との間
に応力が残っているため、密着性が低下し、液体窒素中
などの極低温状態にさらしたとき容易に剥離が起こる恐
れがある。
That is, the ceramic substrate or circuit portion shrinks during the firing process. Therefore, the circuit pattern must be formed with this in mind, and the temperature during firing must be adjusted accordingly.
The process is complicated because time management must be performed accurately. In addition, there is a risk that cracks may occur in the conductor circuit due to shrinkage during firing, and reliability also becomes a problem. Furthermore, since stress remains between the ceramic substrate and the conductor layer due to such thermal history, adhesion may deteriorate and peeling may easily occur when exposed to cryogenic conditions such as in liquid nitrogen.

本発明はこれらの欠点を改良し、製造工程が非常に簡単
で、しかも寸法精度、密着性にすぐ−れた、セラミック
ス系超電導物質を導体回路層に用いたプリント基板を提
供するものである。
The present invention improves these drawbacks and provides a printed circuit board using a ceramic superconducting material in the conductive circuit layer, which has a very simple manufacturing process and has excellent dimensional accuracy and adhesion.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、セラミックス系超電導物質粉を50
0℃以上、1200℃以下に加熱したセラミックス基板
上に溶射することによりセラミックス系超電導物質の回
路パターンを形成することを特徴とするものである。
That is, in the present invention, ceramic superconducting material powder is
This method is characterized in that a circuit pattern of a ceramic superconducting material is formed by thermal spraying onto a ceramic substrate heated to a temperature of 0° C. or higher and 1200° C. or lower.

セラミックス系超電導物質粉としてはLITl、o4、
Ba (pb 11 Bi ) On 、 PbMo@
8@、La@84、 ランタンーバ、リウA−M酸化物
、ランタンーストロンチウムーー酸化物、ランタン−カ
ルシウム−銅酸化物、イツトリウム−バリウム−銅酸化
物、イットリウム−ストロンチウム−銅酸化物などが使
用できるが、中でもイツトリウム−バリウム−銅酸化物
、またはイットリウム−ストロンチウム−銅酸化物が臨
界温度が高く(80〜90 K)、寒剤として安価な液
体窒素を使用できるために好適である。
Ceramic superconducting material powders include LITl, o4,
Ba (pb 11 Bi) On, PbMo@
8@, La@84, lanthanum, liu A-M oxide, lanthanum-strontium-copper oxide, lanthanum-calcium-copper oxide, yttrium-barium-copper oxide, yttrium-strontium-copper oxide, etc. are used. Among them, yttrium-barium-copper oxide or yttrium-strontium-copper oxide is suitable because it has a high critical temperature (80 to 90 K) and can use inexpensive liquid nitrogen as a cryogen.

セラミックス系超電導物質粉を溶射するセラミックス基
板はコスト、電気特性などの点がら最も一般的に用いら
れているアルミナが好適であるが、その他にスピネル、
ムライト、チタニア、ジルコニア、ベリリア、窒化アル
ミニウム、炭化けい素、ステアタイト、ガラスセラミッ
クス1、チタン酸バリウム、ジルコン−チタン酸鉛など
が用いられる。
For ceramic substrates on which ceramic superconducting material powder is thermally sprayed, alumina is the most commonly used material in terms of cost and electrical properties, but other materials include spinel,
Mullite, titania, zirconia, beryllia, aluminum nitride, silicon carbide, steatite, glass ceramics 1, barium titanate, zircon-lead titanate, etc. are used.

セラミックス系超電導物質粉の溶射はガス溶射法、プラ
ズマ溶射法、減圧プラズマ溶射法、水プラズマ溶射法、
爆発溶射法など一般のセラミック溶射に用いられる溶射
法が適用できる。
Thermal spraying of ceramic superconducting material powder can be done by gas spraying, plasma spraying, reduced pressure plasma spraying, water plasma spraying,
Thermal spraying methods used for general ceramic spraying, such as explosive thermal spraying, can be applied.

なお、セラミック冬系超電導物質粉を溶射して回路パタ
ーンを形成するには、肢溶射体であるセラミックス基板
の回路パターンを形成する部分以外の部分にマスキング
を施す必要がある。□このマスキングは、アルミニウム
、銅、鉄、ステンレスなどの金属板に回路パターンと同
形状の穴をあけたマスキング板を被溶射体であるセラミ
ックス基板の表面に当接してその上から溶射する方法に
よる。
In addition, in order to form a circuit pattern by thermally spraying the ceramic winter superconducting material powder, it is necessary to mask the portions of the ceramic substrate, which is the limb thermally sprayed body, other than the portion where the circuit pattern is to be formed. □This masking method uses a masking plate made of a metal plate such as aluminum, copper, iron, stainless steel, etc., with holes made in the same shape as the circuit pattern, which is brought into contact with the surface of the ceramic substrate to be thermally sprayed, and then thermal spray is applied from above. .

また、セラミックス系超電導物質粉をセラミックス基板
に溶射するにあたり、セラミックス基板を高温に加熱し
ておくのはセラミックス系超電導物質溶射層の超電導効
果を発現させるためである。セラミックスを溶射した場
合、溶射されたセラミック溶射層は一般に非晶質化する
Furthermore, when spraying the ceramic superconducting material powder onto the ceramic substrate, the ceramic substrate is heated to a high temperature in order to develop the superconducting effect of the ceramic superconducting material sprayed layer. When ceramics are sprayed, the sprayed ceramic layer generally becomes amorphous.

これはセラミックス系超電導物質粉の溶射においても同
様であり、常温のセラミックス基板上に溶射しても起電
等性を示す結晶構造にならない、すなわち超電導性を発
現しない。これを超電導性を示す結晶構造にするには、
高温に加熱しその後徐冷処理することが必要である。と
ころが、常温のセラミックス基板上に超電導物質粉を溶
射して後、これを高温に加熱し徐冷処理すると加熱徐冷
処理によりセラミックス系超電導物質溶射層は再結晶化
し、超電導性を示すが、熱処理によりセラミックス基板
と超電導物質溶射層との熱膨張係数の差、密着性などに
より層間で剥離、クラック等の欠陥を生じやすい。そこ
で溶射にあたり、被溶射体であるセラミックス基板を高
温に加熱しておき、そこにセラミックス系超電導物質粉
を溶射して回路パターンを形成し、その後徐冷すること
により、溶射時に非晶質化したセラミックス系超電導物
質溶射層が再結晶化し超電導性を示すようになるのであ
る。また、この方法によれば溶射後に加熱、徐冷処理を
行う必要がな(工程的にも有利である。
This also applies to the thermal spraying of ceramic superconducting material powder, and even if it is sprayed onto a ceramic substrate at room temperature, it will not form a crystal structure exhibiting electromotive properties, that is, it will not exhibit superconductivity. In order to make this a crystal structure that exhibits superconductivity,
It is necessary to heat it to a high temperature and then slowly cool it. However, if superconducting material powder is thermally sprayed onto a ceramic substrate at room temperature and then heated to a high temperature and then slowly cooled, the ceramic superconducting material sprayed layer recrystallizes and exhibits superconductivity due to the heating and slow cooling process. Therefore, defects such as peeling and cracks are likely to occur between the layers due to the difference in thermal expansion coefficient and adhesion between the ceramic substrate and the superconducting material sprayed layer. Therefore, during thermal spraying, the ceramic substrate that is the object to be thermally sprayed is heated to a high temperature, and a circuit pattern is formed by thermally spraying ceramic superconducting material powder onto it, and then slowly cooled to form an amorphous material during thermal spraying. The ceramic superconducting material sprayed layer recrystallizes and exhibits superconductivity. Furthermore, according to this method, there is no need to perform heating or slow cooling treatment after thermal spraying (it is also advantageous in terms of process).

なお、溶射時のセラミックス基板の加熱温度を500℃
以上、1200℃以下と規定したのは、セラミックス基
板の加熱温度が500℃未満ではセラミックス系超電導
物質溶射層の再結晶化が起こりにくく、加熱温度が12
00℃を超えると徐冷時にセラミックス基板と溶射層の
熱膨張係数差などにより溶射層あるいはセラミックス基
板に剥離、クラックなどの欠陥が発生しやすくなるため
である。
The heating temperature of the ceramic substrate during thermal spraying was 500℃.
The reason why the heating temperature of the ceramic substrate is set to 1200°C or less is because recrystallization of the ceramic superconducting material spray layer is difficult to occur when the heating temperature of the ceramic substrate is less than 500°C.
This is because if the temperature exceeds 00° C., defects such as peeling and cracks are likely to occur in the sprayed layer or the ceramic substrate due to the difference in thermal expansion coefficient between the ceramic substrate and the sprayed layer during slow cooling.

〔作用〕[Effect]

本発明のごとく、セラミックス系超電導物質による回路
パターンをセラミックス基板上に形成するに当たり、セ
ラミックス系超電導物質粉を溶射してセラミックス基板
上に回路を形成する方法によれば工程が簡単であるとと
もに回路と基板との密着性が改良され、さらに寸法精度
が向上することにより微細回路パターンの形成が可能と
なる。
As in the present invention, when forming a circuit pattern using a ceramic superconducting material on a ceramic substrate, the process is simple and the circuit is formed by spraying ceramic superconducting material powder on the ceramic substrate. The improved adhesion to the substrate and further improved dimensional accuracy make it possible to form fine circuit patterns.

すなわち、セラミックス系超電導物質によるセラミック
ス基板への回路形成法には、溶射法の他にペースト塗布
−焼成する方法、OVD法、・PVD法がある。ペース
ト塗布−焼成する方法は、ペーストの塗布は容易ではあ
るが、焼成時の収縮のために寸法精度が出しにくい。ま
た、寸法精度を一定に管理するには焼成時の温度、時間
などの条件を非常に狭い範囲で管理しなければならず、
工程が煩雑となる。また、焼成時の収縮により回路パタ
ーンあるいはセラミックス基板にクラック等の欠陥が発
生する恐れがある。
That is, methods for forming a circuit on a ceramic substrate using a ceramic superconducting material include, in addition to the thermal spraying method, a paste application-baking method, an OVD method, and a PVD method. In the paste application-baking method, the paste is easily applied, but it is difficult to achieve dimensional accuracy due to shrinkage during firing. In addition, in order to maintain constant dimensional accuracy, conditions such as temperature and time during firing must be controlled within a very narrow range.
The process becomes complicated. Moreover, defects such as cracks may occur in the circuit pattern or the ceramic substrate due to shrinkage during firing.

OVD法、PVD法では成膜可能な超電導物質の種類に
制約があるとともに、成膜速度が遅く生産性は低いもの
である。
In the OVD method and the PVD method, there are restrictions on the types of superconducting materials that can be deposited, and the deposition rate is slow, resulting in low productivity.

これらの方法に比べて溶射法は成膜速度が大き(生産性
にすぐれる。また、セラミックス系の高温で溶融する物
質であれば全て溶射が可能であり使用できる材料の範囲
も広い。密着性についても高温で溶融させた溶射材料を
高速で被溶射体に衝突させて固化させるものであるため
に、高速の衝突によるアンカー効果で高い密着強度が得
られる。
Compared to these methods, thermal spraying has a faster film formation rate (higher productivity).Also, any material that melts at high temperatures, such as ceramics, can be thermally sprayed, and a wide range of materials can be used.Adhesion Also, since the thermal spray material melted at high temperature is solidified by colliding with the object to be thermally sprayed at high speed, high adhesion strength can be obtained due to the anchor effect caused by the high speed collision.

さらに本発明のごとく、溶射にあたり被溶射体であるセ
ラミックス基板を高温に加熱しておくことにより、セラ
ミックス系超電導物質粉の溶射、すなわち超電導回路層
の形成と溶射により非晶質化した溶射層の再結晶化、す
なわち超電導性の発現を一工程で行うことができ、生産
性は大きく向上する。
Furthermore, as in the present invention, by heating the ceramic substrate, which is the object to be thermally sprayed, to a high temperature during thermal spraying, the ceramic superconducting material powder can be thermally sprayed, that is, the superconducting circuit layer can be formed, and the thermal sprayed layer that has become amorphous by thermal spraying can be formed. Recrystallization, that is, development of superconductivity, can be performed in one step, greatly improving productivity.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図はアルミナ基板1の回路形成面に、回路パターン
部分をくり抜いたステンレス製のマスキング板2を当接
したところを示す断面図である。このようにマスキング
板によりマスキングしたアルミナ基板を1000℃に加
熱し、その温度に保持した状態で該マスキングしたアル
ミナ基板上にイツトリウム−バリウム−銅酸化物の粉末
をプラズマ溶射機により溶射してイツトリウム−バリウ
ム−銅酸化物の溶射53を形成した。次にこれを徐冷し
て室温まで冷却してマスキング板を取りはずし、第2図
に示す断面構造を有するプリント基板を得た。
FIG. 1 is a sectional view showing a state where a stainless steel masking plate 2 with a circuit pattern cut out is brought into contact with the circuit forming surface of an alumina substrate 1. The alumina substrate masked with the masking plate is heated to 1000°C, and while the temperature is maintained, yttrium-barium-copper oxide powder is sprayed onto the masked alumina substrate using a plasma spraying machine. A thermal spray 53 of barium-copper oxide was formed. Next, this was slowly cooled to room temperature, and the masking plate was removed to obtain a printed circuit board having the cross-sectional structure shown in FIG.

このプリント基板を液体窒素中に入れたところ、イツト
リウム−バリウム−銅酸化物で形成した回路には電流が
流れ、超電導性を示した。
When this printed circuit board was placed in liquid nitrogen, current flowed through the circuit made of yttrium-barium-copper oxide, and it exhibited superconductivity.

また、溶射によ、り形成したイツトリウム−バリウム−
銅酸化物層とアルミナ基板との密着性は良好であり、液
体窒素中に浸漬後も剥離、クラック等の異常はまったく
認められなかった。
In addition, yttrium-barium- formed by thermal spraying
The adhesion between the copper oxide layer and the alumina substrate was good, and no abnormalities such as peeling or cracking were observed even after immersion in liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

以上、述べてきたように、本発明の方法によればセラミ
ックス基板上にセラミックス系超電導物質の回路をもつ
プリント基板を容易に得ることができる。特に本発明で
は、回路の形成は溶射により行うため基板と回路の密着
性にすぐれるとともに、ペースト塗布−焼成する方法あ
るいはスパッタリング法などよりも工程が簡単であり生
産性も格段にすぐれる。
As described above, according to the method of the present invention, a printed circuit board having a circuit made of a ceramic superconducting material on a ceramic substrate can be easily obtained. In particular, in the present invention, since the circuit is formed by thermal spraying, the adhesion between the substrate and the circuit is excellent, and the process is simpler and the productivity is much higher than that of the paste application-baking method or the sputtering method.

このようにして得られる超電導物質を回路とするプリン
ト基板は、信号伝送の損失が少なく、電気抵抗による回
路の発熱が極めて小さいため、高速コンピュータなどの
高速性、高密度化を要求される用途に極めて有用である
Printed circuit boards with circuits made of superconducting materials obtained in this way have little loss in signal transmission and extremely little heat generation due to electrical resistance, so they are suitable for applications that require high speed and high density, such as high-speed computers. Extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、回路パターン部分をくり抜いたマスキング板
をアルミ九基板上に当接したところを示す断面図、第2
図は本発明により得られた超電導プリント基板の断面図
である。 符号の説明 1・・・アルミナ基板   2・・・マスキング板3・
・・イツトリウム−バリウム−銅酸化物溶射層1 アル
ミナ基板 第2図
Figure 1 is a cross-sectional view showing the masking plate with the circuit pattern cut out and brought into contact with the aluminum 9 board, Figure 2
The figure is a sectional view of a superconducting printed circuit board obtained according to the present invention. Explanation of symbols 1... Alumina substrate 2... Masking plate 3.
...Yttrium-barium-copper oxide sprayed layer 1 Alumina substrate Fig. 2

Claims (1)

【特許請求の範囲】 1、回路パターン以外の部分にマスキングを施し、50
0℃以上1200℃以下に加熱したセラミックス系超電
導物質粉を溶射して回路パターンを形成することを特徴
とする超電導プリント基板の製造方法。 2、セラミックス系超電導物質粉がイットリウム−バリ
ウム−銅酸化物又はイットリウム−ストロンチウム−銅
酸化物からなるものであることを特徴とする特許請求の
範囲第1項記載の超電導プリント基板の製造方法。 3、セラミック板がアルミナを主成分とするものである
ことを特徴とする特許請求の範囲第1項記載の超電導プ
リント基板の製造方法。
[Claims] 1. Parts other than the circuit pattern are masked,
A method for manufacturing a superconducting printed circuit board, which comprises forming a circuit pattern by thermally spraying ceramic superconducting material powder heated to 0° C. or more and 1200° C. or less. 2. The method for manufacturing a superconducting printed circuit board according to claim 1, wherein the ceramic superconducting material powder is composed of yttrium-barium-copper oxide or yttrium-strontium-copper oxide. 3. The method for manufacturing a superconducting printed circuit board according to claim 1, wherein the ceramic plate is mainly composed of alumina.
JP62133085A 1987-05-28 1987-05-28 Manufacture of superconducting printed substrate Pending JPS63299192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133085A JPS63299192A (en) 1987-05-28 1987-05-28 Manufacture of superconducting printed substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133085A JPS63299192A (en) 1987-05-28 1987-05-28 Manufacture of superconducting printed substrate

Publications (1)

Publication Number Publication Date
JPS63299192A true JPS63299192A (en) 1988-12-06

Family

ID=15096501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133085A Pending JPS63299192A (en) 1987-05-28 1987-05-28 Manufacture of superconducting printed substrate

Country Status (1)

Country Link
JP (1) JPS63299192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316187A (en) * 1989-01-24 1991-01-24 Fujitsu Ltd Patterning of superconducting thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316187A (en) * 1989-01-24 1991-01-24 Fujitsu Ltd Patterning of superconducting thin film

Similar Documents

Publication Publication Date Title
US4777060A (en) Method for making a composite substrate for electronic semiconductor parts
JPH0697616A (en) Material for flexible circuit board
US6033764A (en) Bumped substrate assembly
JPH0920580A (en) Method of metallization of ferrite using surface reduction
JPS63299192A (en) Manufacture of superconducting printed substrate
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPS63299193A (en) Manufacture of superconducting printed substrate
JPS63299195A (en) Manufacture of superconducting printed substrate
JPS63299194A (en) Manufacture of superconducting printed substrate
US5040292A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JPH01209790A (en) Manufacture of superconducting printed circuit substrate
JPS6156637B2 (en)
JPH01209789A (en) Manufacture of superconducting printed circuit substrate
JP2599458B2 (en) Hollow circuit board
JP2652958B2 (en) Manufacturing method of printed wiring board
JPH029457B2 (en)
JPH04345838A (en) Wiring board
JPS59184586A (en) Circuit board for placing semiconductor element
JPH01165147A (en) Ceramic substrate
JPH02299289A (en) Circuit board and manufacture thereof
JPH02125728A (en) Composite base and its manufacture
Onyshkevych Low expansion porcelain-coated copper-clad invar substrates
JPS6346597B2 (en)
JPH02263630A (en) Multi-layered circuit substrate