JPS6329584B2 - - Google Patents

Info

Publication number
JPS6329584B2
JPS6329584B2 JP55166175A JP16617580A JPS6329584B2 JP S6329584 B2 JPS6329584 B2 JP S6329584B2 JP 55166175 A JP55166175 A JP 55166175A JP 16617580 A JP16617580 A JP 16617580A JP S6329584 B2 JPS6329584 B2 JP S6329584B2
Authority
JP
Japan
Prior art keywords
plasma
substrate
ions
magnetic field
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55166175A
Other languages
Japanese (ja)
Other versions
JPS5791734A (en
Inventor
Juji Furumura
Yasuhisa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16617580A priority Critical patent/JPS5791734A/en
Publication of JPS5791734A publication Critical patent/JPS5791734A/en
Publication of JPS6329584B2 publication Critical patent/JPS6329584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors

Description

【発明の詳細な説明】 本発明は主に半導体装置の製造に利用される堆
積法に関するもので、特にプラズマ化した原料ガ
スの流れを磁界によつて偏向し、基板上に堆積さ
せる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deposition method mainly used in the manufacture of semiconductor devices, and in particular to a method of deflecting a flow of raw material gas turned into plasma by a magnetic field and depositing it on a substrate. It is.

半導体装置の製造に於て、基板上に新たな物質
を堆積する方法の一つに化学気相成長法(以下
CVD法と略記)とよばれる方法がある。これは
気相の原料物質を供給し、熱分解を伴う化学反応
の結果生じた物質を基板上に堆積させるものであ
るが、その化学反応を十分制御しながら促進させ
るためには基板やその近傍領域の高温化は避けら
れなかつた。また、一方高温化を避けて反応を促
進する手段として、原料ガスをプラズマ化して供
給することも考えられているが、反応の制御が困
難であることや再現性が不十分であることなどの
ため、解決されるべき多くの問題も残されてい
る。
In the manufacture of semiconductor devices, chemical vapor deposition (hereinafter referred to as chemical vapor deposition) is one of the methods for depositing new materials on a substrate.
There is a method called CVD method (abbreviated as CVD method). This involves supplying a gas phase raw material and depositing the resulting material on the substrate through a chemical reaction that involves thermal decomposition. High temperatures in the area were unavoidable. On the other hand, as a means to avoid high temperatures and accelerate the reaction, it has been considered to supply the raw material gas in the form of plasma, but there are problems such as difficulty in controlling the reaction and insufficient reproducibility. Therefore, many problems remain to be resolved.

本発明は原料ガスをプラズマ化して行なうもの
であるが、此等の先行技術とは異なり、MHD発
電の原理を利用して原料物質の供給をおこなう新
規な化学的堆積法を提示するものである。
The present invention converts raw material gas into plasma, but unlike these prior art techniques, it presents a new chemical deposition method that utilizes the principle of MHD power generation to supply raw materials. .

MHD発電の原理は簡単に言うと、プラズマガ
スを磁界中に流し、ローレンツ力によつて陰陽の
イオンを分離し、起電力を発生させるものである
が、本発明もこの原理を利用したものであつて、
原料ガスをプラズマ状態に変換した後、該プラズ
マを略定方向に略定速度で磁界中を移動させ、ロ
ーレンツ力によつて前記プラズマイオンを基板表
面に到達せしめ、該基板表面に於て前記イオンの
電荷を中和させることによつて生じた原子或は原
子団を該基板上に堆積させることを特徴としてい
る。
Simply put, the principle of MHD power generation is to flow plasma gas into a magnetic field and separate negative and positive ions using the Lorentz force to generate an electromotive force. The present invention also utilizes this principle. It's hot,
After converting the raw material gas into a plasma state, the plasma is moved in a magnetic field in a substantially constant direction at a substantially constant speed, and the plasma ions are caused to reach the substrate surface by the Lorentz force, and the ions are The method is characterized in that atoms or atomic groups generated by neutralizing the charges of are deposited on the substrate.

図面は本発明の一実施例を模式的に表わした図
面である。堆積層としてシリコン層を形成する場
合を例にとつて説明すると、まず原料ガスである
モノシラン(以下SiH4と記す)は図の右方から
反応管1内に供給される。この時の圧力はプラズ
マ化が可能な圧力、即ち0.0001〜10Torrの範囲
内に設定される。反応管に導入されたSiH4は略
定速度で図の左方に移動しながら、まずプラズマ
発生領域でプラズマ化される。プラズマ発生方式
は通常用いられるものが全て利用可能であるが、
図に示されたものは反応管に巻かれたコイル2に
高周波電流を流してプラズマを励起する方式のも
のである。
The drawings schematically represent an embodiment of the present invention. Taking the case of forming a silicon layer as a deposited layer as an example, first, monosilane (hereinafter referred to as SiH 4 ) as a raw material gas is supplied into the reaction tube 1 from the right side of the figure. The pressure at this time is set to a pressure that allows plasma formation, that is, within a range of 0.0001 to 10 Torr. SiH 4 introduced into the reaction tube moves to the left in the figure at a nearly constant rate and is first turned into plasma in the plasma generation region. All commonly used plasma generation methods can be used, but
The one shown in the figure is of a type in which a high frequency current is passed through a coil 2 wound around a reaction tube to excite plasma.

SiH4はプラズマ化するとSiH4 +、SiH3 +
SiH2 +のような形の陽イオンと、陰イオンに相当
するものとしての電子とになるが、このプラズマ
は更に速度Vで左方に移動し、磁界領域3に入
る。この領域では、プラズマの移動方向と直交す
る方向の磁界中を荷電粒子が移動するわけである
から、イオンにはローレンツ力が働き、図のよう
に紙面の表から裏に向う磁場の下では陽イオンは
下方に、陰イオンは上方に曲げられて流れる。
When SiH 4 becomes plasma, it becomes SiH 4 + , SiH 3 + ,
This plasma, which now contains positive ions such as SiH 2 + and electrons corresponding to negative ions, moves further to the left at a velocity V and enters the magnetic field region 3. In this region, charged particles move in a magnetic field perpendicular to the direction of plasma movement, so the Lorentz force acts on the ions, and as shown in the figure, under the magnetic field moving from the front to the back of the paper, the charged particles move positively. Ions flow downward, and anions flow upward.

その結果磁界領域内に設けられた下方の電極4
には陽イオンが到達し、上方の電極5には陰イオ
ンが到達し、両電極間に起電力(以下これを
MHD起電力と表現する)が生ずる。この状態で
両電極を導体で接続すると電流が流れ、電荷が中
和される過程を経てイオンは原子或は原子団にな
つて電極表面に沈積する。この時、電極上に導電
性基板(図示せず)を載せておくと、その基板表
面に堆積が起こることになる。
As a result, the lower electrode 4 is placed in the magnetic field region.
Cations reach the upper electrode 5, anions reach the upper electrode 5, and an electromotive force (hereinafter referred to as this) is generated between the two electrodes.
(expressed as MHD electromotive force) is generated. When both electrodes are connected with a conductor in this state, a current flows, and through the process of neutralizing the charges, the ions become atoms or atomic groups and are deposited on the electrode surface. At this time, if a conductive substrate (not shown) is placed on the electrode, deposition will occur on the surface of the substrate.

上記の例に即していえば、ローレンツ力によつ
て進路を変えられた例えばSiH4 +イオンは基板に
ゆるやかに衝突したところで電荷を失うと共に、
SiとH2ガスに分解し、Siは基板上に堆積する。
この反応は熱分解に近いものであるが、熱エネル
ギーよりも大きいある一定の運動エネルギーをも
つた原料イオンが強制的に供給されることや、活
性なイオンが関与した固体表面での反応であるこ
となどから通常のCVD法よりも低い基板温度で
堆積が可能である。
Continuing with the above example, for example, a SiH 4 + ion whose course has been changed by the Lorentz force loses its charge when it gently collides with the substrate, and
It decomposes into Si and H2 gas, and Si is deposited on the substrate.
This reaction is similar to thermal decomposition, but raw material ions with a certain kinetic energy greater than thermal energy are forcibly supplied, and active ions are involved in the reaction on the solid surface. For this reason, deposition can be performed at lower substrate temperatures than with conventional CVD methods.

プラズマ化によつてSi+の形でイオン化したも
のは電荷の中和だけでSiになつて沈積することを
考えると、本発明の方法では、陽イオンの形で原
料が供給される場合は、プラズマ化によつて酸化
された物質が電極上で還元され、堆積が進行する
と見ることができる。
Considering that ionization in the form of Si + due to plasma formation becomes Si and deposits only by neutralization of charge, in the method of the present invention, when the raw material is supplied in the form of cations, It can be seen that the substance oxidized by plasma formation is reduced on the electrode and the deposition progresses.

電荷の中和だけを考えると、図示の装置で単に
電極4,5を短絡するだけでも堆積起るのである
が、それだけでは堆積速度の厳密な制御が困難な
ので、本発明の実施例の一つでは定電流装置6に
よつてイオンの中和速度即ち堆積速度を一定に保
つように制御している。電荷を中和されたイオン
だけが基板上に堆積するのであるから、中和電流
を制御することによつて堆積速度が制御できるの
である。この場合の電流値としては、例えば毎秒
1nm程度の堆積速度を得たい場合には堆積物質の
種類によつて若干異なるが電流密度を1mA/cm2
程度に制御すればよい。
Considering only charge neutralization, deposition can occur simply by short-circuiting the electrodes 4 and 5 in the device shown in the figure, but since it is difficult to strictly control the deposition rate with just that, one of the embodiments of the present invention The constant current device 6 controls the neutralization rate, that is, the deposition rate of ions to be kept constant. Since only ions whose charges have been neutralized are deposited on the substrate, the deposition rate can be controlled by controlling the neutralization current. In this case, the current value is, for example,
If you want to obtain a deposition rate of about 1 nm, the current density should be set to 1 mA/cm 2 , although it varies slightly depending on the type of deposited material.
It should be controlled to a certain extent.

本発明をMHD発電とみなすと、起電力Vは荷
電粒子の速度vと磁場の強さBの積に比列する。
即ち V∝B・v であり、速度vが何らかの原因で乱れると堆積速
度が変動することになるので、中和電流を一定に
保つことはこの問題に対しても有効である。更
に、定電流制御は堆積の進行に伴つて基板表面の
状態が変化することにも対処し得るものである。
If the present invention is considered as MHD power generation, the electromotive force V is proportional to the product of the velocity v of the charged particles and the strength B of the magnetic field.
That is, V∝B·v, and if the velocity v is disturbed for some reason, the deposition rate will fluctuate, so keeping the neutralization current constant is also effective in solving this problem. Furthermore, constant current control can also deal with changes in the condition of the substrate surface as the deposition progresses.

上述の、電流による制御の他に電圧による制御
が効果を有する場合がある。本発明に使用する装
置のように、所定の圧力に減圧した状態でガス流
速を一定に保つ必要がある場合、排気装置の能力
によつては実現し得る流速の範囲に制約が生じ、
所望の流速が得られないことがある。既述したよ
うに、電極に現われるMHD起電力は流速に比例
する一方、堆積皮膜の特性は堆積時の衝突エネル
ギーによつて影響を受けるので、MHD起電力を
減殺或は助長する電圧を印加することによつて膜
の質を制御するのが電圧による制御の目的であ
る。
In addition to the above-mentioned control using current, control using voltage may be effective. When it is necessary to maintain a constant gas flow rate while reducing the pressure to a predetermined pressure, as in the device used in the present invention, the range of flow rates that can be realized is limited depending on the capacity of the exhaust device.
The desired flow rate may not be obtained. As mentioned above, while the MHD electromotive force appearing at the electrode is proportional to the flow velocity, the characteristics of the deposited film are affected by the collision energy during deposition, so a voltage that reduces or enhances the MHD electromotive force is applied. The purpose of the voltage control is to control the quality of the membrane.

以上のような電流域は電圧による堆積速度の制
御に於て、単に中和電流を制御するだけでなく、
外部から加える電圧によつて中和電流を増加させ
る場合もあるが、その場合、外部から印加された
電圧はイオンを加速することになるので、後述す
るような非衝撃的という特長が弱められることに
なる。
The above current range is used not only to control the neutralization current when controlling the deposition rate by voltage, but also to control the neutralization current.
There are cases where the neutralization current is increased by applying an external voltage, but in that case, the externally applied voltage accelerates the ions, which weakens the non-impact feature as described below. become.

上記のように中和電流で堆積を進行させる場合
は基板表面の絶縁層で覆われた部分には堆積は起
らないので、選択成長が可能である。反対に、絶
縁層上に堆積させるには磁界を0.1〜1Hz程度の
交番磁界とすることによつて可能となる。即ち、
基板上にまず陽イオンを付着させ、次に磁場を反
転させて陰イオンを付着させると電荷が中和され
て堆積が進む。前記の例ではまずSiH4 +が、次い
で電子が基板上に到達し、Si層が成長するのであ
る。堆積させる物質が絶縁物である場合にも交番
磁界の印加によつて堆積を進行させることができ
る。
When the deposition proceeds with a neutralizing current as described above, selective growth is possible because no deposition occurs on the portion of the substrate surface covered with the insulating layer. On the other hand, deposition on an insulating layer is possible by setting the magnetic field to an alternating magnetic field of about 0.1 to 1 Hz. That is,
Cations are first deposited on the substrate, and then the magnetic field is reversed to deposit anions, which neutralizes the charge and progresses the deposition. In the above example, first SiH 4 + and then electrons reach the substrate and a Si layer grows. Even when the substance to be deposited is an insulator, the deposition can be progressed by applying an alternating magnetic field.

以上、本発明のプラズマ堆積法を説明したが、
次に本発明の特徴を述べる。
The plasma deposition method of the present invention has been explained above, but
Next, the features of the present invention will be described.

まず、電気的に堆積速度が制御できるので膜厚
の精度が良いことがあげられる。更に原料物質を
ローレンツ力で積極的に基板上に移送するから、
単に拡散のみに頼る場合に比べ堆積速度を大きく
することができるが、ローレンツ力は粒子に運動
エネルギーを与えないので、基板に衝突する速度
が低く、基板を損傷することが少ない。またこの
非衝撃性という特徴は不要の物質を電極からたた
き出すことがないという点で堆積層の汚染を減ら
す効果を有する。
First, since the deposition rate can be electrically controlled, the accuracy of the film thickness is good. Furthermore, since the raw material is actively transferred onto the substrate using Lorentz force,
Although the deposition rate can be increased compared to relying solely on diffusion, the Lorentz force does not impart kinetic energy to the particles, so they collide with the substrate at a low speed and are less likely to damage the substrate. Moreover, this non-impact characteristic has the effect of reducing contamination of the deposited layer in that unnecessary substances are not knocked out from the electrode.

また、本発明のように堆積速度を、流量から独
立した要素によつて制御しうる場合には流量を大
きく設定することによつて、より良好な皮膜を形
成することも可能である。これは、此種の化学的
成長法では流量が多いほど成長層中に入り込む不
純物量が減少する傾向があるという事実に基くも
のである。
Further, when the deposition rate can be controlled by an element independent of the flow rate as in the present invention, it is possible to form a better film by setting the flow rate large. This is based on the fact that in this type of chemical growth method, the higher the flow rate, the less the amount of impurities entering the growth layer tends to be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するための装置の一例を模
式的に示すものであつて、1は反応管、2はプラ
ズマ励起用コイル、3は磁界領域、4,5は電
極、6は定電流装置である。
The drawing schematically shows an example of an apparatus for carrying out the present invention, in which 1 is a reaction tube, 2 is a plasma excitation coil, 3 is a magnetic field region, 4 and 5 are electrodes, and 6 is a constant current device. It is.

Claims (1)

【特許請求の範囲】 1 原料ガスをプラズマ状態に変換した後、該プ
ラズマを略定方向に略定速度で磁界中を移動さ
せ、ローレンツ力によつて前記プラズマイオンを
基板表面に到達せしめ、該基板表面に於いて前記
イオンの電荷を中和させることによつて生じた原
子或いは原子団を前記基板上に堆積させることを
特徴とするプラズマ堆積法。 2 前記基板に電気的に接続された電極を通じて
電流を流すことにより、イオンの電荷を中和する
ことを特徴とする特許請求の範囲第1項に記載の
プラズマ堆積法。 3 前記磁界を交番磁界とすることにより、前記
基板表面に陽イオンおよび電子である場合を含む
蔭イオンを交互に到達せしめ、それによつて電荷
の中和を行うことを特徴とする特許請求の範囲第
1項に記載のプラズマ堆積法。
[Claims] 1. After converting the raw material gas into a plasma state, the plasma is moved in a magnetic field in a substantially constant direction at a substantially constant speed, and the plasma ions are caused to reach the substrate surface by the Lorentz force. A plasma deposition method characterized in that atoms or atomic groups generated by neutralizing the charge of the ions on the substrate surface are deposited on the substrate. 2. The plasma deposition method according to claim 1, wherein the charge of the ions is neutralized by passing a current through an electrode electrically connected to the substrate. 3 Claims characterized in that by making the magnetic field an alternating magnetic field, negative ions including positive ions and electrons are made to reach the surface of the substrate alternately, thereby neutralizing the charges. The plasma deposition method according to item 1.
JP16617580A 1980-11-26 1980-11-26 Plasma depositing method Granted JPS5791734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16617580A JPS5791734A (en) 1980-11-26 1980-11-26 Plasma depositing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16617580A JPS5791734A (en) 1980-11-26 1980-11-26 Plasma depositing method

Publications (2)

Publication Number Publication Date
JPS5791734A JPS5791734A (en) 1982-06-08
JPS6329584B2 true JPS6329584B2 (en) 1988-06-14

Family

ID=15826460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16617580A Granted JPS5791734A (en) 1980-11-26 1980-11-26 Plasma depositing method

Country Status (1)

Country Link
JP (1) JPS5791734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626310Y2 (en) * 1988-08-11 1994-07-20 狭山精密工業株式会社 Manual release mechanism for troubles in automatic ball stop mechanism of pachinko ball lifting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060691A (en) * 2002-01-11 2003-07-16 주식회사 래디언테크 apparatus for gas purifying

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778941A (en) * 1980-11-04 1982-05-17 Matsushita Electric Ind Co Ltd Method and apparatus for plasma deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778941A (en) * 1980-11-04 1982-05-17 Matsushita Electric Ind Co Ltd Method and apparatus for plasma deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626310Y2 (en) * 1988-08-11 1994-07-20 狭山精密工業株式会社 Manual release mechanism for troubles in automatic ball stop mechanism of pachinko ball lifting device

Also Published As

Publication number Publication date
JPS5791734A (en) 1982-06-08

Similar Documents

Publication Publication Date Title
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
JP2687966B2 (en) Method for manufacturing semiconductor device
JPS61218134A (en) Device and method for forming thin film
US5108778A (en) Surface treatment method
JPH05275345A (en) Plasma cvd method and its device
JPS6329584B2 (en)
JPH06251894A (en) Atmospheric pressure discharge device
JPH0421781A (en) Plasma cvd device
JPH09283373A (en) Silicon oxide film electret
JPH0521983B2 (en)
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
JP2895981B2 (en) Silicon oxide film forming method
JPS6273622A (en) Formation of amorphous semiconductor film
CA1341184C (en) Method and apparatus for the plasma etching substrate cleaning or deposition of materials by d.c. glow discharge
JP3007579B2 (en) Manufacturing method of silicon thin film
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPS63301518A (en) Formation of deposited film
JPS60218826A (en) Formation of thin film
JP2628529B2 (en) Plasma CVD equipment
JPS6091646A (en) Plasma vapor growth
JPS5966045A (en) Surface modifying device
JPH05109631A (en) Method for manufacturing amorphous silicon alloy film
JPS61283112A (en) Forming method for amorphous semiconductor film
JPS62263236A (en) Formation of amorphous thin film and its system