JP3095565B2 - Plasma chemical vapor deposition equipment - Google Patents

Plasma chemical vapor deposition equipment

Info

Publication number
JP3095565B2
JP3095565B2 JP05010761A JP1076193A JP3095565B2 JP 3095565 B2 JP3095565 B2 JP 3095565B2 JP 05010761 A JP05010761 A JP 05010761A JP 1076193 A JP1076193 A JP 1076193A JP 3095565 B2 JP3095565 B2 JP 3095565B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
frequency power
reaction vessel
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05010761A
Other languages
Japanese (ja)
Other versions
JPH06224132A (en
Inventor
正義 村田
良昭 竹内
和孝 宇田
大一 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05010761A priority Critical patent/JP3095565B2/en
Publication of JPH06224132A publication Critical patent/JPH06224132A/en
Application granted granted Critical
Publication of JP3095565B2 publication Critical patent/JP3095565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
太陽電池、薄膜半導体、光センサの半導体保護膜など各
種電子デバイスに使用される大面積薄膜の製造に適した
プラズマ化学蒸着(プラズマCVD)装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma-enhanced chemical vapor deposition (plasma CVD) apparatus suitable for producing large-area thin films used for various electronic devices such as amorphous silicon solar cells, thin film semiconductors, and semiconductor protective films for optical sensors. .

【0002】[0002]

【従来の技術】大面積のアモルファスシリコン薄膜を製
造するために、従来より用いられているプラズマCVD
装置の構成を図8を参照して説明する。この技術的手段
は、例えば特願昭61−106314号などに開示され
ているように公知である。
2. Description of the Related Art Conventionally, plasma CVD is used to produce a large-area amorphous silicon thin film.
The configuration of the device will be described with reference to FIG. This technical means is known as disclosed in, for example, Japanese Patent Application No. 61-106314.

【0003】反応容器1内には、グロー放電プラズマを
発生させるための電極2,3が平行に配置されている。
これら電極2,3には、低周波電源4から、例えば60
Hzの商用周波数の電力が供給される。なお、電源とし
ては、直流電源や高周波電源を用いることもできる。反
応容器1の周囲には、これを囲むようにコイル5が巻か
れており、交流電源6から交流電力が供給される。反応
容器1内には、図示しないボンベから反応ガス導入管7
を通して、例えばモノシランとアルゴンとの混合ガスが
供給される。反応容器1内のガスは排気管8を通して真
空ポンプ9により排気される。基板10は、電極2,3
が形成する放電空間の外側に、電極2,3の面と直交す
るように適宜の手段で支持される。
In a reaction vessel 1, electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel.
These electrodes 2 and 3 are connected to the low frequency power supply 4 by, for example, 60
Hz commercial frequency power is supplied. Note that a DC power supply or a high-frequency power supply can be used as the power supply. A coil 5 is wound around the reaction vessel 1 so as to surround it, and AC power is supplied from an AC power supply 6. A reaction gas introduction pipe 7 is provided in the reaction vessel 1 from a cylinder (not shown).
, A mixed gas of, for example, monosilane and argon is supplied. The gas in the reaction vessel 1 is exhausted by a vacuum pump 9 through an exhaust pipe 8. The substrate 10 has electrodes 2 and 3
Are supported by appropriate means outside the discharge space formed by the electrodes so as to be orthogonal to the surfaces of the electrodes 2 and 3.

【0004】この装置を用い、以下のようにして薄膜を
製造する。真空ポンプ9を駆動して反応容器1内を排気
する。反応ガス導入管7を通して、例えばモノシランと
アルゴンとの混合ガスを供給し、反応容器1内の圧力を
0.05〜0.5Torrに保ち、低周波電源4から電
極2,3に電圧を印加すると、グロー放電プラズマが発
生する。コイル5に、例えば100Hzの交流電圧を印
加し、電極2,3間に発生する電界Eと直交する方向に
磁界Bを発生させる。この磁界における磁束密度は10
ガウス程度でよい。
[0004] Using this apparatus, a thin film is manufactured as follows. The inside of the reaction vessel 1 is evacuated by driving the vacuum pump 9. When a mixed gas of, for example, monosilane and argon is supplied through the reaction gas introduction pipe 7, the pressure in the reaction vessel 1 is maintained at 0.05 to 0.5 Torr, and a voltage is applied from the low frequency power supply 4 to the electrodes 2 and 3. Then, glow discharge plasma is generated. An AC voltage of, for example, 100 Hz is applied to the coil 5 to generate a magnetic field B in a direction orthogonal to an electric field E generated between the electrodes 2 and 3. The magnetic flux density in this magnetic field is 10
It may be about Gaussian.

【0005】反応ガス導入管7から供給されたガスのう
ちモノシランガスは電極2,3間に生じるグロー放電プ
ラズマによって分解される。この結果、ラジカルSiが
発生し、基板10表面に付着して薄膜を形成する。
[0005] Among the gases supplied from the reaction gas introduction pipe 7, a monosilane gas is decomposed by glow discharge plasma generated between the electrodes 2 and 3. As a result, radical Si is generated and adheres to the surface of the substrate 10 to form a thin film.

【0006】アルゴンイオンなどの荷電粒子は、電極
2,3間で電界Eによるクーロン力F 1 =qEと、ロー
レンツ力F2 =q(V・B)(ここで、Vは荷電粒子の
速度)とによっていわゆるE・Bドリフト運動を起こ
す。荷電粒子は、E・Bドリフトにより初速を与えられ
た状態で、電極2,3と直交する方向に飛び出し、基板
10に向けて飛んでいく。しかし、電極2,3間に生じ
る電界の影響が小さい放電空間では、コイル5により生
じた磁界Bによるサイクロトロン運動により、Larm
or軌道を描いて飛んでいく。したがって、アルゴンイ
オンなどの荷電粒子が基板10を直撃することは少な
い。
[0006] Charged particles such as argon ions are
Coulomb force F due to electric field E between 2 and 3 1= QE and low
Lenz force FTwo= Q (V · B) (where V is the charged particle
So-called EB drift motion
You. Charged particles are given initial velocity by EB drift
In the direction perpendicular to the electrodes 2 and 3
Flying toward 10. However, between the electrodes 2 and 3
In the discharge space where the influence of the electric field is small,
Larm by the cyclotron motion by the magnetic field B
or orbit and fly. Therefore,
It is unlikely that charged particles such as on will hit the substrate 10 directly.
No.

【0007】電気的に中性であるラジカルSiは、磁界
Bの影響を受けず、上記荷電粒子群の軌道からそれて基
板10に至り、その表面に非晶質薄膜を形成する。ラジ
カルSiはLarmor軌道を飛んでいく荷電粒子と衝
突するため、電極2,3の前方だけでなく、左または右
に広がった形で非晶質薄膜が形成される。しかも、磁界
Bを交流電源6により変動させているので、基板10の
表面に非晶質薄膜を均一に形成することが可能となる。
なお、電極2,3の長さは、反応容器1の長さの許すか
ぎり長くしても何ら問題がないので、基板10が長尺の
ものであっても、その表面に均一な非晶質薄膜を形成す
ることが可能となる。
The electrically neutral radical Si is not affected by the magnetic field B, deviates from the trajectory of the charged particle group, reaches the substrate 10, and forms an amorphous thin film on its surface. Since the radical Si collides with the charged particles flying in the Larmor orbit, an amorphous thin film is formed not only in front of the electrodes 2 and 3 but also spread to the left or right. In addition, since the magnetic field B is changed by the AC power supply 6, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10.
Note that there is no problem if the length of the electrodes 2 and 3 is as long as the length of the reaction vessel 1 allows, so that even if the substrate 10 is long, a uniform amorphous A thin film can be formed.

【0008】[0008]

【発明が解決しようとする課題】上記の従来の装置で
は、グロー放電プラズマを発生させる電極間の放電電界
Eと直交する方向に磁界Bを発生させることにより、大
面積の成膜形成を容易に可能としている。しかし、次の
ような問題がある。
In the above conventional apparatus, a magnetic field B is generated in a direction orthogonal to a discharge electric field E between electrodes for generating glow discharge plasma, so that a large area film can be easily formed. It is possible. However, there are the following problems.

【0009】大面積の成膜を行う場合、電極として長
尺のものを用いる必要がある。長尺の電極を用いて安定
したプラズマを発生させるには、その電源の周波数は可
能な限り低いほうが容易であるため、数10Hz〜数1
00Hzの電源が用いられている。しかし、周波数が低
くなり、半周期の間のイオン移動距離が電極間隔を越え
るような条件の下では、直流放電の場合と同様に、プラ
ズマを維持するために、イオン衝突によって陰極より放
出された二次電子が本質的な役割を担うことになる。そ
のため電極に膜が付着して絶縁されると、その部分では
放電が起こらないようになる。この場合、電極表面を常
にクリーンに保つ必要がある。そのため、電極を頻繁に
交換したり頻繁に清掃するなどの煩雑な作業が必要とな
り、コスト高の要因の一つとなっている。
When a large area film is formed, it is necessary to use a long electrode as the electrode. In order to generate stable plasma using a long electrode, the frequency of the power source is preferably as low as possible.
A power supply of 00 Hz is used. However, under the condition that the frequency becomes low and the ion movement distance during the half cycle exceeds the electrode interval, as in the case of the DC discharge, the ions are emitted from the cathode by ion collision to maintain the plasma. Secondary electrons will play an essential role. Therefore, if a film adheres to the electrode and is insulated, no discharge occurs in that portion. In this case, it is necessary to keep the electrode surface clean at all times. Therefore, complicated operations such as frequent replacement and frequent cleaning of the electrodes are required, which is one of the factors of high cost.

【0010】上記の欠点を補うために、プラズマ発
生源に、例えば13.56MHzの高周波電源を用いる
と、放電維持に対する電極放出二次電子は本質的なもの
でなくなり、電極上に膜などの絶縁物が存在していて
も、電極間にはグロー放電が形成される。しかしなが
ら、長尺の電極を用いる場合には、高周波による表皮効
果により電流の大部分が表面(約0.01mm)を流れる
ため、電気抵抗が増加する。例えば、電極の長さが約1
m以上になると、電極上に電位分布が現れて一様なプラ
ズマが発生しなくなる。これを分布定数回路で考える
と、図9に示すようになる。図9において、xは電極の
長さ方向の距離を示している。すなわち、電極の単位長
さ当りの抵抗Rが放電部分のインピーダンスZ1
2 ,…,Zn に比べて無視出来ないほど大きくなって
くると、電極内に電位分布が現れる。したがって、高周
波電源を用いる場合には基板中央部とその周辺部では膜
厚が大幅に異なる。このため、大面積の成膜を行うこと
は非常に困難であり、実際上これまでは実現できなかっ
た。
If a high frequency power source of, for example, 13.56 MHz is used as a plasma source to compensate for the above-mentioned disadvantage, the secondary electrons emitted from the electrode for sustaining the discharge are not essential, and an insulating film such as a film is formed on the electrode. Even if an object exists, a glow discharge is formed between the electrodes. However, when a long electrode is used, most of the current flows on the surface (approximately 0.01 mm) due to the skin effect due to the high frequency, so that the electric resistance increases. For example, if the electrode length is about 1
When it is more than m, a potential distribution appears on the electrode and uniform plasma is not generated. Considering this with a distributed constant circuit, the result is as shown in FIG. In FIG. 9, x represents the distance in the length direction of the electrode. That is, the resistance R per unit length of the electrode is the impedance Z 1 ,
Z 2, ..., and becomes larger as the non-negligible compared to the Z n, potential distribution appears in the electrode. Therefore, when a high-frequency power supply is used, the film thickness is significantly different between the central portion of the substrate and the peripheral portion. For this reason, it is very difficult to form a large-area film, and it has not been practically possible to date.

【0011】上記,の方法では、50cm×50cm
以上の大面積のアモルファスシリコン薄膜を製造する
際、膜厚分布を±10%以下に維持し、かつ成膜速度を
1Å/sec以上に保つことは非常に困難であった。
In the above method, 50 cm × 50 cm
When manufacturing the above-described amorphous silicon thin film having a large area, it has been extremely difficult to maintain the film thickness distribution at ± 10% or less and maintain the film forming rate at 1 ° / sec or more.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0013】すなわち、反応容器と、同反応容器につな
がれた反応ガスの供給排出手段と、同反応容器に設けら
れた一対の電極と、同一対の電極間に設けられた基板ホ
ルダーと、同一対の電極に高周波電力を供給する高周波
電源とを有するプラズマ化学蒸着装置において、上記一
対の電極の一方が平板形電極であるとともに他方がいか
だ状に並べられた複数の長尺板電極よりなり、同複数の
長尺板電極の相互の間隔が、前記高周波電力と反応ガス
の供給流量・圧力に依存して変更可能に構成されている
プラズマ化学蒸着装置とした。 また、上述したいかだ状
に並べられた複数の長尺板電極の幅が、上述した一対の
電極間の幅より小さくされたプラズマ化学蒸着装置とし
た。 さらに、長尺板電極の幅が一対電極間の幅より小さ
くされていかだ状に並べられた、上述した複数の長尺板
電極の隣接して配置される長尺板電極の間隔が、同長尺
板電極の幅より大きくされたプラズマ化学蒸着装置とし
た。
[0013] That is, a reaction vessel, and the supply and discharge means of the reaction gas connected to the reaction vessel, a pair of electrodes provided in the reaction vessel, a substrate holder provided between the pair of electrodes, the pair squid in the electrode plasma chemical vapor deposition apparatus and a high frequency power supply for supplying high frequency power to the other with a flat plate-shaped electrode is one of the pair of electrodes
It becomes a plurality of elongated plate electrodes arranged in it like, the plurality of
The interval between the long plate electrodes is such that the high-frequency power and the reactive gas
Can be changed depending on the supply flow rate and pressure
A plasma chemical vapor deposition apparatus was used. Also the raft described above
The width of the plurality of long plate electrodes arranged in
A plasma chemical vapor deposition device smaller than the width between the electrodes
Was. Furthermore, the width of the long plate electrode is smaller than the width between the pair of electrodes.
A plurality of long plates as described above, arranged in a ragged shape
The distance between the long plates placed adjacent to the electrodes is the same
A plasma chemical vapor deposition device made larger than the width of the plate electrode
Was.

【0014】[0014]

【作用】上記手段において、反応容器内の基板ホルダー
にCVD対象の基板をセットする。そして複数の長尺板
電極の間隔を反応ガスの種類、流量、圧力、及び放電電
力に対応して最適にセットする。その後反応ガスの供給
排出手段により、反応容器内を所定の真空にして反応ガ
スを所定の流量で流しながら高周波電源から所定の放電
々力を供給し、電極間にグロー放電プラズマを発生させ
る。すると反応ガスが励起されて、CVD作用が促進さ
れ、基板上に急速に成膜される。
In the above means, a substrate to be CVD is set on a substrate holder in a reaction vessel. Then, the interval between the plurality of long plate electrodes is optimally set in accordance with the type, flow rate, pressure and discharge power of the reaction gas. Then, a predetermined discharge is supplied from a high-frequency power source while the reaction gas is flowed at a predetermined flow rate with a predetermined vacuum inside the reaction vessel by a reaction gas supply / discharge means, and a glow discharge plasma is generated between the electrodes. Then, the reaction gas is excited, the CVD action is promoted, and a film is rapidly formed on the substrate.

【0015】以上において、グロー放電用に高周波電源
を使ったので、グロー放電の発生が容易となり、かつ電
極への絶縁物の付着がなくなる。また長尺板電極の間隔
を最適にとることによって電界分布および反応ガスの流
れが均一化され、大きい面積の基板上に均一な蒸着がえ
られる。
In the above, since the high-frequency power supply is used for the glow discharge, the glow discharge is easily generated, and the insulator does not adhere to the electrodes. By optimizing the distance between the long plate electrodes, the electric field distribution and the flow of the reaction gas are made uniform, and uniform deposition can be obtained on a substrate having a large area.

【0016】[0016]

【実施例】本発明の一実施例を図1〜図7により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS.

【0017】図1、図2にて反応容器1の一方側には反
応ガス導入管7がつながれる。他方側には真空ポンプを
有する排気管8がつながれる。反応容器1の中央部には
ガス流れに直交して平板状の平板形電極14が配置られ
る。平板形電極14の中央に直交して電力供給棒15a
の一端が取付けられている。平板形電極14に対向して
複数の長尺板電極2−a〜2−dが所定の間隔Dをあけ
て一列に配置される。各長尺板電極2−a〜2−dは、
中央部で、間隔Dが変えられるように縦通材15に取付
けられている。
In FIG. 1 and FIG. 2, a reaction gas introduction pipe 7 is connected to one side of the reaction vessel 1. An exhaust pipe 8 having a vacuum pump is connected to the other side. At the center of the reaction vessel 1, a flat plate-shaped electrode 14 is disposed orthogonal to the gas flow. A power supply rod 15a perpendicular to the center of the flat electrode 14
Is attached at one end. A plurality of long plate electrodes 2-a to 2-d are arranged in a row facing the flat electrode 14 at a predetermined interval D. Each of the long plate electrodes 2-a to 2-d is
At the center, it is attached to the longitudinal member 15 so that the distance D can be changed.

【0018】13.56MHzの高周波電源13からイ
ンピーダンス整合装置12を経て、電力供給線16,1
7が縦通材15と電力供給棒15aにつながれる。図中
11は導入端子である。
From a 13.56 MHz high frequency power supply 13 through an impedance matching device 12, power supply lines 16, 1
7 is connected to the longitudinal member 15 and the power supply rod 15a. In the figure, reference numeral 11 denotes an introduction terminal.

【0019】平板形電極14の近傍には、CVD対象の
基板10が、図示しない基板ホルダーにより電極面に平
行にセットされる。
In the vicinity of the flat electrode 14, a substrate 10 to be subjected to CVD is set in parallel with the electrode surface by a substrate holder (not shown).

【0020】以上において、平板形電極14と複数の長
尺板電極2−a〜2−d間には高周波電源13から、イ
ンピーダンス整合器12を介して、高周波電力が供給さ
れる。
As described above, high-frequency power is supplied from the high-frequency power supply 13 through the impedance matching unit 12 between the flat-plate electrode 14 and the plurality of long-plate electrodes 2-a to 2-d.

【0021】他方、反応容器1内には、図示しない反応
ガス供給装置より反応ガス導入管7を通して、例えばモ
ノシランが供給される。反応容器1内のガスは排気管8
を通して、真空ポンプ9により排出される。
On the other hand, for example, monosilane is supplied into the reaction vessel 1 through a reaction gas introduction pipe 7 from a reaction gas supply device (not shown). The gas in the reaction vessel 1 is exhaust gas 8
And is discharged by the vacuum pump 9.

【0022】この装置を用い、以下に示すようにして薄
膜を製造する。真空ポンプ9を駆動して反応容器1内を
排気する。反応ガス導入管7を通して、例えばモノシラ
ンを100cc/分程度の流量で供給し、反応容器1内の
圧力を、例えば0.5Torrに保つ。そして高周波電
源13からインピーダンス整合器12及び電力供給線1
6,17などを介して、複数の長尺板電極2−a,2−
b,2−c,2−d及び接地された平板形電極14に電
力を供給すると、その電極間にはグロー放電プラズマが
発生する。グロー放電プラズマが発生すると、モノシラ
ンガスは分解されて、ラジカル種が発生し、基板14表
面にアモルファスシリコン(a−Si)が形成される。
Using this apparatus, a thin film is manufactured as described below. The inside of the reaction vessel 1 is evacuated by driving the vacuum pump 9. For example, monosilane is supplied at a flow rate of about 100 cc / min through the reaction gas introduction pipe 7, and the pressure in the reaction vessel 1 is maintained at, for example, 0.5 Torr. Then, from the high frequency power supply 13 to the impedance matching unit 12 and the power supply line 1
6, 17, etc., a plurality of long plate electrodes 2-a, 2-
When power is supplied to b, 2-c, 2-d and the grounded flat electrode 14, a glow discharge plasma is generated between the electrodes. When glow discharge plasma is generated, the monosilane gas is decomposed, radical species are generated, and amorphous silicon (a-Si) is formed on the surface of the substrate 14.

【0023】このとき、基板10の大きさ、電力、反応
ガスの流量、圧力に応じて、複数の長尺板電極2−a、
2−b、2−c、2−d間の距離Dを最適に調整するこ
とにより、反応ガスの流れ及び電界が均一化され、大き
い面積の基板14上に、急速にかつ均一に膜が形成され
る。
At this time, depending on the size of the substrate 10 , the power, the flow rate of the reaction gas, and the pressure, a plurality of long plate electrodes 2-a,
By optimally adjusting the distance D between 2-b, 2-c, and 2-d, the flow of the reaction gas and the electric field are made uniform, and a film is rapidly and uniformly formed on the substrate 14 having a large area. Is done.

【0024】なお、基板10の大きさは平板電極14よ
りも少し短く(図1、R=20〜50mm)した方がよ
い。また長尺板電極2−a〜2−dの最外径寸法は平板
電極14の外径寸法にほぼ等しくする。また各長尺板電
極の幅は平板電極14と長尺板電極間の間隔より小さく
した方がよい。
The size of the substrate 10 is preferably slightly shorter than that of the flat electrode 14 (FIG. 1, R = 20 to 50 mm). The outermost diameter of the long plate electrodes 2-a to 2-d is made substantially equal to the outer diameter of the flat electrode 14. The width of each long plate electrode is preferably smaller than the distance between the flat plate electrode 14 and the long plate electrode.

【0025】本実施例による実験例を以下に説明する。 (a)基板 ・基板材料:ガラス ・基板温度:200℃ ・基板面積:20cm×20cm (b)反応ガス ・モノシランガス流量:100cc/分 ・反応容器圧力:0.05〜0.15Torr (c)電極 ・平板形電極:40cm×40cm ・平板形電極と長尺板電極間の距離:4cm ・長尺板電極の長さ及び幅:それぞれ40cm及び2cm ・長尺板電極間の距離:0.5cm〜5cm ・高周波電力:10W〜100W ・周波数:13.56MHz 上記の構成でアモルファスシリコンを膜を形成した結果
を図3〜図6に示す。
An experimental example according to this embodiment will be described below. (A) Substrate ・ Substrate material: glass ・ Substrate temperature: 200 ° C. ・ Substrate area: 20 cm × 20 cm (b) Reaction gas ・ Monosilane gas flow rate: 100 cc / min ・ Reaction vessel pressure: 0.05 to 0.15 Torr (c) Electrode・ Plate electrode: 40cm × 40cm ・ Distance between flat electrode and long plate electrode: 4cm ・ Length and width of long plate electrode: 40cm and 2cm, respectively ・ Distance between long plate electrodes: 0.5cm ~ 5 cm High-frequency power: 10 W to 100 W Frequency: 13.56 MHz The results of forming a film of amorphous silicon with the above configuration are shown in FIGS.

【0026】図3は、形成されるa−Si膜々厚分布の
長尺板電極間距離Dに対する依存性を示すデータであ
る。同上電極間距離を最適に調整すれば膜厚分布が±5
%以内になることを示している。なお、膜厚分布±5%
になる成膜では、成膜速度は1Å/sec程度であっ
た。
FIG. 3 is data showing the dependence of the thickness distribution of the formed a-Si film on the distance D between the long plate electrodes. Adjusting the distance between electrodes optimally results in a film thickness distribution of ± 5
%. The film thickness distribution ± 5%
In the film formation, the film formation rate was about 1 ° / sec.

【0027】図4〜図6は、それぞれ、長尺板電極間の
距離D=25mm,35mmおよび45mmにおいて、
形成されるa−Si膜々厚分布の高周波電力に対する依
存性を示すデータである。a−Si膜形成に用いる高周
波電力に応じて、長尺板電極間距離Dを最適値に調整す
れば、膜厚分布が±5%以内になることを示している。
なお、図6の膜厚分布±5%になる成膜では成膜速度3
Å/sec であった。
FIGS. 4 to 6 show that the distance D between the long plate electrodes is 25 mm , 35 mm and 45 mm , respectively.
It is data showing the dependency of the thickness distribution of the formed a-Si film on the high frequency power. This shows that if the distance D between the long plate electrodes is adjusted to an optimum value according to the high frequency power used for forming the a-Si film, the film thickness distribution will be within ± 5%.
In the case of the film thickness distribution shown in FIG.
Å / sec.

【0028】図3〜図6において、膜厚分布に最適値が
存在することは、図7に示すように、反応ガスの流れ
が、平板形電極14と長尺板電極2−a〜2−dの間で
不均一であること、及びそのガスを分解させる高周波電
力の値に超過あるいは不足が存在することによる。すな
わち、図3では、長尺板電極間距離D=25mmより長い
側では、反応ガス量が多いので電力供給量の多い基板中
央部が厚くなる。
In FIGS. 3 to 6, the existence of an optimum value in the film thickness distribution means that the flow of the reaction gas is controlled by the flat electrode 14 and the elongated plate electrodes 2-a to 2-a as shown in FIG. due to the non-uniformity between d and the excess or deficiency in the value of the high frequency power that causes the gas to decompose. That is, in FIG. 3, on the side longer than the long plate electrode distance D = 25 mm, the amount of the reaction gas is large, so that the central portion of the substrate where the power supply is large becomes thick.

【0029】また、D=25mmより短い側では、基板中
央部にて反応ガス量が不足しているので、その基板中央
部が薄くなる。
On the side shorter than D = 25 mm, the central portion of the substrate becomes thin because the amount of reactive gas is insufficient at the central portion of the substrate.

【0030】図4〜図6では、それぞれ、最適な膜厚分
布に対応の電力値より大きい側で、反応ガス不足のた
め、基板中央部が薄くなり、同上電力値より小さい側で
は、反応ガス量が多いので基板中央部が膜厚は厚くな
る。
In FIGS. 4 to 6, the center of the substrate becomes thinner due to the shortage of the reactive gas on the side larger than the power value corresponding to the optimum film thickness distribution, and the reactive gas on the side smaller than the above power value. Since the amount is large, the film thickness becomes large at the central portion of the substrate.

【0031】以上の実験結果より明らかのように、本実
施例の装置によれば、使用条件に合わせて、すなわち、
反応ガスの流量・圧力及び高周波電力に合わせて、予
め、長尺板電極間隔を最適な値に設定できるので、大面
積でしかも高速成膜条件で、均一膜厚分布のa−Si膜
形成が可能である。
As is clear from the above experimental results, according to the apparatus of the present embodiment, in accordance with the use conditions,
In accordance with the flow rate and pressure of the reaction gas and the high-frequency power, the distance between the electrodes of the long plate can be set to an optimum value in advance, so that an a-Si film having a uniform film thickness distribution can be formed under a large area and high-speed film forming condition. It is possible.

【0032】[0032]

【発明の効果】以上詳述したように、本発明のプラズマ
CVD装置を用いれば、大面積の基板に、均一にかつ高
速で薄膜形成ができるようになった。したがって、アモ
ルファスシリコン太陽電池、薄膜トランジスタ、光セン
サ及び半導体保護膜などの分野における産業上の価値は
著しく大きい。
As described in detail above, the use of the plasma CVD apparatus of the present invention makes it possible to form a thin film uniformly and at high speed on a large-area substrate. Therefore, the industrial value in fields such as amorphous silicon solar cells, thin film transistors, optical sensors, and semiconductor protective films is remarkably large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るプラズマCVD装置の
構成図である。
FIG. 1 is a configuration diagram of a plasma CVD apparatus according to one embodiment of the present invention.

【図2】同実施例の平板形電極と複数の長尺板電極部の
斜視図である。
FIG. 2 is a perspective view of a flat electrode and a plurality of long plate electrode portions of the embodiment.

【図3】同実施例の作用説明図である。FIG. 3 is an operation explanatory view of the embodiment.

【図4】同実施例の作用説明図である。FIG. 4 is an operation explanatory view of the embodiment.

【図5】同実施例の作用説明図である。FIG. 5 is an operation explanatory view of the embodiment.

【図6】同実施例の作用説明図である。FIG. 6 is an operation explanatory view of the embodiment.

【図7】同実施例の作用説明図である。FIG. 7 is an operation explanatory view of the embodiment.

【図8】従来例の構成図である。FIG. 8 is a configuration diagram of a conventional example.

【図9】同従来例の作用説明図である。FIG. 9 is an operation explanatory view of the conventional example.

【符号の説明】[Explanation of symbols]

1 反応容器 2−a〜2−d 長尺板電極 7 反応ガス導入管 9 真空ポンプ 10 基板 13 高周波電源 14 平板形(接地)電極 15a 電力供給棒 REFERENCE SIGNS LIST 1 reaction vessel 2-a to 2-d long plate electrode 7 reaction gas introduction pipe 9 vacuum pump 10 substrate 13 high frequency power supply 14 flat plate (ground) electrode 15a power supply rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古城 大一 長崎市深堀町5丁目717番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 特開 平2−61078(JP,A) 特開 昭60−220935(JP,A) 特開 平4−171944(JP,A) 実開 平3−74663(JP,U) 実開 平4−654(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/50 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Daiichi Furushiro 5-7-17-1 Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (56) References JP-A-2-61078 (JP, A) JP-A-60-220935 (JP, A) JP-A-4-171944 (JP, A) JP-A-3-74663 (JP, U) JP-A-4-654 (JP, U) (58) Int.Cl. 7 , DB name) H01L 21/205 C23C 16/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応容器と、同反応容器につながれた反
応ガスの供給排出手段と、同反応容器に設けられた一対
の電極と、同一対の電極間に設けられた基板ホルダー
と、同一対の電極に高周波電力を供給する高周波電源と
を有するプラズマ化学蒸着装置において、上記一対の電
極の一方が平板形電極であるとともに、他方がいかだ状
に並べられた複数の長尺板電極よりなり、同複数の長尺
板電極の相互の間隔が、前記高周波電力と反応ガスの供
給流量・圧力に依存して変更可能に構成されていること
を特徴とするプラズマ化学蒸着装置。
And 1. A reaction vessel, and the supply and discharge means of the reaction gas connected to the reaction vessel, a pair of electrodes provided in the reaction vessel, a substrate holder provided between the pair of electrodes, the pair A high-frequency power supply for supplying high- frequency power to the electrodes, wherein one of the pair of electrodes is a plate-type electrode and the other is a raft.
Becomes a plurality of elongated plate electrodes arranged in, the plurality of elongated
The distance between the plate electrodes is such that the supply of the high-frequency power and the reaction gas is
A plasma chemical vapor deposition apparatus characterized in that the apparatus can be changed depending on a supply flow rate and a pressure .
【請求項2】 前記いかだ状に並べられた複数の長尺板2. A plurality of long plates arranged in a raft.
電極の幅を前記一対の電極間の幅より小さくしたことをThat the width of the electrode is smaller than the width between the pair of electrodes.
特徴とする請求項1記載のプラズマ化学蒸着装置。The plasma enhanced chemical vapor deposition apparatus according to claim 1, wherein:
【請求項3】 前記いかだ状に並べられた複数の長尺板
電極の隣接して配置される長尺板電極の間隔を同長尺板
電極の幅より大きくしたことを特徴とする請求項2記載
のプラズマ化学蒸着装置。
3. A plurality of long plates arranged in a raft.
Elongate plate placed adjacent to the electrode
3. The electrode according to claim 2, wherein the width is larger than the width of the electrode.
Plasma chemical vapor deposition equipment.
JP05010761A 1993-01-26 1993-01-26 Plasma chemical vapor deposition equipment Expired - Lifetime JP3095565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05010761A JP3095565B2 (en) 1993-01-26 1993-01-26 Plasma chemical vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05010761A JP3095565B2 (en) 1993-01-26 1993-01-26 Plasma chemical vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPH06224132A JPH06224132A (en) 1994-08-12
JP3095565B2 true JP3095565B2 (en) 2000-10-03

Family

ID=11759318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05010761A Expired - Lifetime JP3095565B2 (en) 1993-01-26 1993-01-26 Plasma chemical vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP3095565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123628A (en) * 2008-11-17 2010-06-03 Mitsubishi Heavy Ind Ltd Vacuum processing equipment

Also Published As

Publication number Publication date
JPH06224132A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
EP0280315A2 (en) Method of forming a diamond film
JPH0635323B2 (en) Surface treatment method
JPS5915982B2 (en) Electric discharge chemical reaction device
JP2989279B2 (en) Plasma CVD equipment
JP2785442B2 (en) Plasma CVD equipment
JPS62103372A (en) Apparatus for forming membrane by chemical vapor deposition using plasma and its use
US20200035456A1 (en) Magnetically enhanced and symmetrical radio frequency discharge apparatus for material processing
JP3345079B2 (en) Atmospheric pressure discharge device
JPH1012597A (en) Plasma-etching equipment and plasma etching method
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPH09252047A (en) Electrostatic attraction electrode
JPH04120277A (en) Plasma cvd device
JP3478561B2 (en) Sputter deposition method
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
JP3327618B2 (en) Plasma processing equipment
JPH10172793A (en) Plasma generator
JPH07118463B2 (en) Plasma CVD equipment
JP2660289B2 (en) Method and apparatus for forming transparent conductive film pattern
KR100469552B1 (en) System and method for surface treatment using plasma
JPH0576549B2 (en)
JPH0760798B2 (en) Method and apparatus for forming amorphous thin film
JPH06252098A (en) Surface treatment device
JPH04314864A (en) Method for plasma-cleaning substrate surface
JPH08176818A (en) Sputtering device
JPH10199860A (en) Method and apparatus for plasma treatment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13