JPS5927212B2 - plasma reactor - Google Patents

plasma reactor

Info

Publication number
JPS5927212B2
JPS5927212B2 JP54123371A JP12337179A JPS5927212B2 JP S5927212 B2 JPS5927212 B2 JP S5927212B2 JP 54123371 A JP54123371 A JP 54123371A JP 12337179 A JP12337179 A JP 12337179A JP S5927212 B2 JPS5927212 B2 JP S5927212B2
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
electrodes
static magnetic
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123371A
Other languages
Japanese (ja)
Other versions
JPS5645761A (en
Inventor
東彦 阿部
匡彦 伝田
勝弘 平田
繁治 木下
夏朗 坪内
曠嗣 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP54123371A priority Critical patent/JPS5927212B2/en
Publication of JPS5645761A publication Critical patent/JPS5645761A/en
Publication of JPS5927212B2 publication Critical patent/JPS5927212B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は平行平板電極形プラズマ反応装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a parallel plate electrode type plasma reactor.

第1図は従来の平行平板電極形プラズマ反応装置を示す
模式断面図で、図において、1はチャンバ、2はチャン
バ1内を排気する排気口、3は上部電極、4は下部電極
、5は上部電極3の内部通路を経てチャンバ1内へ送給
する反応ガスを導入する反応ガス導入口、6は反応ガス
噴出子L7は下部電極4上に置かれた被加工物、8は上
部および下部電極3および4間に高周波電圧を印加する
高周波電源である。
FIG. 1 is a schematic sectional view showing a conventional parallel plate electrode plasma reactor. In the figure, 1 is a chamber, 2 is an exhaust port for exhausting the inside of the chamber 1, 3 is an upper electrode, 4 is a lower electrode, and 5 is a 6 is a reaction gas inlet for introducing a reaction gas to be fed into the chamber 1 through the internal passage of the upper electrode 3; 6 is a reaction gas ejector L7 is a workpiece placed on the lower electrode 4; 8 is an upper and lower part; This is a high frequency power source that applies a high frequency voltage between electrodes 3 and 4.

この装置は排気口2から図示しない真空ポンプを用いて
チャンバ1内部を所定の低圧になるように排気し、次に
所要のプラズマ反応に応じた反応ガスを反応ガス導入口
5から反応ガス噴出孔6を通じてチャンバ1内へ導入し
、高周板電源8を動作させて、上部および下部電極3お
よび4間に高周波電圧を印加して、両電極間にプラズマ
を発生させる。
This device evacuates the inside of the chamber 1 to a predetermined low pressure using a vacuum pump (not shown) from an exhaust port 2, and then injects a reaction gas corresponding to the required plasma reaction from a reaction gas inlet 5 into a reaction gas injection hole. 6 into the chamber 1, the high frequency plate power supply 8 is operated, a high frequency voltage is applied between the upper and lower electrodes 3 and 4, and plasma is generated between the two electrodes.

この装置はプラズマエッチング。プラズマデポジション
などに用いられるが、プラズマエッチングにおいては被
加工物7の材質によつて反応ガスを変える。例えば、被
加工物7がケイ素SiまたはSi化合物の場合はCF4
・C3F3もしくはC4F3またはこれらと酸素O2と
の混合ガスが主として用いられる。アルミニウムAιま
たはAt合金のエッチングにはcct4、Bct3、ト
リクロロエチレンなどの無機または有機のガスが用いら
れる。また、SiまたはSi化合物のデポジションの場
合にはSiH4、SiH4+NH3、SiN4+N2な
どのガスが用いられる。そして、プラズマの発生条件は
両電極3および4の間隔、上記使用ガスのガス圧力。印
加高周波の周波数などできまり、その条件は高周波放電
に対するパツシエンの法則として知られている。さて、
例えばSiO2膜をエツチングする場合、エツチング反
応に前駆する主要反応種はCFラXyジカル訃よびCx
Fyイオンと考えられている。
This device uses plasma etching. It is used for plasma deposition, etc., and in plasma etching, the reaction gas is changed depending on the material of the workpiece 7. For example, if the workpiece 7 is silicon Si or a Si compound, CF4
- C3F3 or C4F3 or a mixed gas of these and oxygen O2 is mainly used. Inorganic or organic gas such as CCT4, BCT3, trichlorethylene, etc. is used for etching aluminum Aι or At alloy. Further, in the case of depositing Si or a Si compound, gases such as SiH4, SiH4+NH3, and SiN4+N2 are used. The plasma generation conditions are the distance between the electrodes 3 and 4, and the gas pressure of the gas used. It is determined by the frequency of the applied high-frequency wave, and this condition is known as Patsien's law for high-frequency discharge. Now,
For example, when etching a SiO2 film, the main reactive species that precede the etching reaction are CF, Xy radicals and Cx.
It is thought to be Fy ion.

これらの主要反応種のプラズマ中の濃度並びに被加工物
7の表面近傍の濃度およびその分布がSiO2膜のエツ
チング速度及びSiO2膜と下地のSi基板との選択エ
ツチング性などに大きく影響する。そして、これは当然
、被加工物7の表面近傍の反応ガスの流速分布に大きく
依存する。そこで、第1図に示したような従来装置では
、これらの要因を制御するのに、反応ガス圧力〔対向電
極3訃よび4間のガス濃度〕、反応ガスの流し方、高周
波電力などの調整によつていたが、プラズマ状態を安定
に保つこと自体が容易でなく、上記のような調整はクリ
テイカルで、実際上要因制御は不可能であつた。従つて
、エツチング特性の改良に必要な上述の主要反応種の人
為的制御は不可能であつた。この発明は以上のような点
に鑑みてなされたもので、平行平板電極面に平行な方向
に静磁場を形成し、この磁場を制御することによつてプ
ラズマ状態を制御できる平行平板電極形プラズマ反応装
置を提供することを目的としている。
The concentration of these main reactive species in the plasma and the concentration and distribution near the surface of the workpiece 7 greatly influence the etching rate of the SiO2 film and the selective etching properties between the SiO2 film and the underlying Si substrate. Naturally, this greatly depends on the flow velocity distribution of the reactive gas near the surface of the workpiece 7. Therefore, in the conventional device shown in Fig. 1, in order to control these factors, it is necessary to adjust the reaction gas pressure [gas concentration between the opposing electrodes 3 and 4], the way the reaction gas flows, and the high-frequency power. However, it is not easy to maintain a stable plasma state, and the above-mentioned adjustment is critical, and it is practically impossible to control the factors. Therefore, artificial control of the above-mentioned main reactive species necessary for improving etching properties was not possible. This invention was made in view of the above points, and it is a parallel plate electrode type plasma that can control the plasma state by forming a static magnetic field in a direction parallel to the plane of the parallel plate electrodes and controlling this magnetic field. The purpose is to provide a reactor.

第2図はこの発明の一実施例を示す模式断面図で、第1
図の従来例と同一部分は同一符号で示し、その説明を省
略する。
FIG. 2 is a schematic sectional view showing one embodiment of the present invention.
The same parts as in the conventional example in the figure are indicated by the same reference numerals, and the explanation thereof will be omitted.

図において、9aおよび9bはチヤンバ1の両側に設け
られ、上部電極3および下部電極4の間にその電極面に
平行な静磁場を発生する制御静磁場発生用コイルである
。図に一点鎖線で示したHはこの静磁場である。この実
施例装置を用いて、被加工物7にプラズマ反応処理を施
すには、従来例と同様に、下部電極4上に被加工物7を
載置し、チヤンバ1内を排気口2を通じて排気し、チヤ
ンバ1内の圧力を10−2T0rr以下になるようにす
る。次にプラズマ反応に所要の反応ガスを反応ガス導入
口5からチヤンバ1内へ導入し、チヤンバ1内の圧力を
所定の値、例えば0.1〜1.0T0rrに保つ。チヤ
ンバ1内の圧力が十分安定してから、高周波電源8を動
作させて、上部および下部電極3および4間に所定の周
波数および電力、例えば13MHz11000Wの高周
波電力を供給する。この高周波電力の供給によつて、両
電極3訃よび4間にプラズマが発生する。次に、制御静
磁場発生用コイル9a}よび9bに電流を流し、両電極
3}よび4の電極面に平行な静磁場Hを発生させる。そ
して、この静磁場Hの強度、すなわち磁束密度はコイル
9a訃よび9bに流す電流によつて容易に調整できる。
この平行静磁場Hの印加によつて両電極3}よび4間の
プラズマを安定化することができ、更にこの静磁場Hの
強度を調整することによつて、電極間のプラズマ状態ふ
・よび電極表面近傍のプラズマ状態の制御が可能であり
、プラズマ反応に寄与する主要反応種の濃度卦よび分布
並びに反応種の種類の制御が可能である。これは静磁場
Hがプラズマに作用して、プラズマの空間的分布の制御
を行い、各種の衝突過程に寄与する電子やイオンなどの
荷電粒子の運動を制御するためである。例えば、前述の
SiO2膜をC3F8またはC4F8ガスを用いてプラ
ズマエツチングする場合、CxFyラジカルやCFイオ
ンの濃度やエネルギーを制御Xyできる。
In the figure, reference numerals 9a and 9b are control static magnetic field generating coils that are provided on both sides of the chamber 1 and generate a static magnetic field parallel to the electrode surface between the upper electrode 3 and the lower electrode 4. H shown by a dashed line in the figure is this static magnetic field. In order to perform plasma reaction treatment on the workpiece 7 using this embodiment apparatus, the workpiece 7 is placed on the lower electrode 4 and the inside of the chamber 1 is evacuated through the exhaust port 2, as in the conventional example. Then, the pressure inside the chamber 1 is made to be 10-2T0rr or less. Next, a reaction gas required for the plasma reaction is introduced into the chamber 1 from the reaction gas inlet 5, and the pressure inside the chamber 1 is maintained at a predetermined value, for example, 0.1 to 1.0T0rr. After the pressure within the chamber 1 is sufficiently stabilized, the high frequency power supply 8 is operated to supply high frequency power of a predetermined frequency and power, for example, 13 MHz, 11000 W, between the upper and lower electrodes 3 and 4. By supplying this high frequency power, plasma is generated between both electrodes 3 and 4. Next, a current is passed through the control static magnetic field generating coils 9a} and 9b to generate a static magnetic field H parallel to the electrode surfaces of both electrodes 3} and 4. The strength of the static magnetic field H, that is, the magnetic flux density, can be easily adjusted by adjusting the current flowing through the coils 9a and 9b.
By applying this parallel static magnetic field H, the plasma between the electrodes 3 and 4 can be stabilized, and by adjusting the strength of this static magnetic field H, the plasma state between the electrodes can be adjusted. It is possible to control the plasma state near the electrode surface, and it is also possible to control the concentration and distribution of the main reactive species that contribute to the plasma reaction, as well as the types of reactive species. This is because the static magnetic field H acts on the plasma, controls the spatial distribution of the plasma, and controls the movement of charged particles such as electrons and ions that contribute to various collision processes. For example, when plasma etching the aforementioned SiO2 film using C3F8 or C4F8 gas, the concentration and energy of CxFy radicals and CF ions can be controlled.

第3図はこの発明の他の実施例を示す模式断面図で、こ
の実施例では制御静磁場発生用コイル9a訃よび9bを
チヤンバ1内の下部電極の近傍に設け、下部電極4の表
面近傍にのみ制御静磁場を有効に形成されるようにした
他は第2図の実施例と同じである。
FIG. 3 is a schematic sectional view showing another embodiment of the present invention. In this embodiment, control static magnetic field generating coils 9a and 9b are provided near the lower electrode in the chamber 1, and near the surface of the lower electrode 4. This embodiment is the same as the embodiment shown in FIG. 2, except that the control static magnetic field is effectively formed only in the region where the control static magnetic field is generated.

な訃、以上主としてブラズマエツチングについて説明し
たがプラズマ化学的気相成長(プラズマCVD)による
各種無機質膜および有機質膜の生成およびその膜質の制
御にもこの発明は適用できる。
Although plasma etching has been mainly described above, the present invention can also be applied to the production of various inorganic and organic films by plasma chemical vapor deposition (plasma CVD) and the control of their film quality.

以上詳述したように、この発明になるブラズマ反応装置
では高周波電極間にその対向面に平行な静磁場を供給す
るようにしたので、プラズマ状態の制御が可能であり、
プラズマ反応に寄与する主要反応種の濃度および分布並
びに反応種の種類の制御が可能となり、プラズマ反応の
調整が容易にできる。
As detailed above, in the plasma reactor according to the present invention, since a static magnetic field parallel to the opposing surfaces of the high-frequency electrodes is supplied between the high-frequency electrodes, the plasma state can be controlled.
It becomes possible to control the concentration and distribution of the main reactive species that contribute to the plasma reaction, as well as the types of reactive species, making it easy to adjust the plasma reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の平行平板電極形プラズマ反応装置を示す
模式断面図、第2図はこの発明の一実施例を示す模式断
面図、第3図はこの発明の他の実施例を示す模式断面図
である。 図に卦いて、1はチヤンバ、2は排気口、3は上部電極
、4は下部電極、5は反応ガス導入口、7は被加工物、
8は高周波電源、9a}よび9bは制御静磁場発生用コ
イル、Hは静磁場である。
Fig. 1 is a schematic sectional view showing a conventional parallel plate electrode type plasma reactor, Fig. 2 is a schematic sectional view showing one embodiment of the present invention, and Fig. 3 is a schematic sectional view showing another embodiment of the invention. It is a diagram. In the figure, 1 is a chamber, 2 is an exhaust port, 3 is an upper electrode, 4 is a lower electrode, 5 is a reaction gas inlet, 7 is a workpiece,
8 is a high frequency power supply, 9a} and 9b are control static magnetic field generating coils, and H is a static magnetic field.

Claims (1)

【特許請求の範囲】 1 所定の雰囲気に保持されたチャンバ内に互いに平行
に対向して配設された2つの電極間に高周波高電圧を印
加してプラズマを発生させ、上記2つの電極間に置かれ
た被加工物にプラズマ反応処理を施すものにおいて、上
記2つの電極間にそれらの対向面に平行な静磁場を供給
するようにしたことを特徴とするプラズマ反応装置。 2 供給静磁場はその磁束密度が可変であることを特徴
とする特許請求の範囲第1項記載のプラズマ反応装置。
[Claims] 1. Plasma is generated by applying a high frequency high voltage between two electrodes arranged parallel to each other and facing each other in a chamber maintained in a predetermined atmosphere, and plasma is generated between the two electrodes. A plasma reaction apparatus for subjecting a placed workpiece to plasma reaction treatment, characterized in that a static magnetic field is supplied between the two electrodes parallel to their opposing surfaces. 2. The plasma reaction apparatus according to claim 1, wherein the supplied static magnetic field has a variable magnetic flux density.
JP54123371A 1979-09-25 1979-09-25 plasma reactor Expired JPS5927212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54123371A JPS5927212B2 (en) 1979-09-25 1979-09-25 plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54123371A JPS5927212B2 (en) 1979-09-25 1979-09-25 plasma reactor

Publications (2)

Publication Number Publication Date
JPS5645761A JPS5645761A (en) 1981-04-25
JPS5927212B2 true JPS5927212B2 (en) 1984-07-04

Family

ID=14858920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54123371A Expired JPS5927212B2 (en) 1979-09-25 1979-09-25 plasma reactor

Country Status (1)

Country Link
JP (1) JPS5927212B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3280026D1 (en) * 1981-05-29 1989-12-21 Kanegafuchi Chemical Ind Process for preparing amorphous silicon semiconductor
US4422896A (en) * 1982-01-26 1983-12-27 Materials Research Corporation Magnetically enhanced plasma process and apparatus
JPS60231330A (en) * 1984-04-28 1985-11-16 Seiichiro Sogo Semiconductor material processing apparatus
JPS6186942A (en) * 1984-10-03 1986-05-02 Anelva Corp Discharge reaction apparatus using rotary magnetic field
JPS611025A (en) * 1985-03-07 1986-01-07 Toshiba Corp Plasma processing apparatus
JPS6221211A (en) * 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd Plasma-treating device
DE3750502T2 (en) * 1986-12-19 1995-01-12 Applied Materials Inc Plasma etching device with magnetic field amplification.
JPH0351971Y2 (en) * 1988-05-12 1991-11-08

Also Published As

Publication number Publication date
JPS5645761A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
US4948750A (en) Method and apparatus for producing semiconductor layers composed of amorphous silicon-germanium alloys through glow discharge technique, particularly for solar cells
US5626679A (en) Method and apparatus for preparing a silicon oxide film
US20010008798A1 (en) Plasma treatment system and method
US10950416B2 (en) Chamber seasoning to improve etch uniformity by reducing chemistry
JPS63274762A (en) Device for forming reaction vapor-deposited film
JPH03287774A (en) Plasma treating device
JPH02281734A (en) Treating method of surface by plasma
JPS5927212B2 (en) plasma reactor
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JP2001189308A (en) Device and method for plasma treatment
JP3595819B2 (en) Plasma CVD method and apparatus
KR20210121166A (en) Ion generation method and apparatus
JP2500765B2 (en) Plasma CVD equipment
JP2895981B2 (en) Silicon oxide film forming method
CN113767453B (en) Plasma processing apparatus and plasma processing method
JPS61181534A (en) Plasma treating device
JPH06177051A (en) Cvd device
JPH0294628A (en) Plasma generation apparatus
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor
JPH02253618A (en) Plasma treatment device
JPS5927213B2 (en) plasma reactor
JPH01168027A (en) Microwave plasma processor
JPH04100224A (en) Semiconductor manufacturing device and manufacture of semiconductor device
JPS62238364A (en) Thin film forming device
JPH0283921A (en) Plasma treatment device