JPS6221211A - Plasma-treating device - Google Patents

Plasma-treating device

Info

Publication number
JPS6221211A
JPS6221211A JP16050985A JP16050985A JPS6221211A JP S6221211 A JPS6221211 A JP S6221211A JP 16050985 A JP16050985 A JP 16050985A JP 16050985 A JP16050985 A JP 16050985A JP S6221211 A JPS6221211 A JP S6221211A
Authority
JP
Japan
Prior art keywords
plasma
center
coils
magnetic field
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16050985A
Other languages
Japanese (ja)
Inventor
Hitoshi Kudo
均 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16050985A priority Critical patent/JPS6221211A/en
Publication of JPS6221211A publication Critical patent/JPS6221211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the step coverage when a film is formed by a method wherein at least a coil is provided outside a plasma-treating chamber by shifting the center of a magnetic field from the center of the plasma-treating chamber. CONSTITUTION:Electromagnetic coils 20A-20D are provided separately on the circumference of a chamber 2 in addition to the electromagnetic coil 1 to satisfy the electronic cyclotron resonant condition heretofore in use. To be more precise, the center 3 of the plasma treating chamber 2 is not coincided with the center 24 of the coils 20A-20D. If one of the coils 20A-20D is operated, the magnetic field is inclined in the plasma treating chamber 2. Practically, the coils are set in such a manner that a current is applied to the coils periodically and successively and that the incidence angle of the ions can be changed in the range of + or -20 deg.-45 deg. or thereabout in the vicinity of the wafer. According to this constitution, the step coverage can be improved when the films are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子などに用いる各種薄膜の堆積やエ
ツチングに使われるプラズマ装置に関し、特にKCR(
電子サイクロトロン共鳴: ElectronCycl
otron Regonancl ) f用いたXOR
プラズマ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma apparatus used for depositing and etching various thin films used in semiconductor devices, etc.
Electron cyclotron resonance: ElectronCycle
XOR using otron Regonacl) f
This relates to plasma equipment.

従来の技術 半導体素子の微細化、高密度化に伴い、浅い接合を形成
する必要が生じプロセスの低温化が進められている。例
えばこれまで常圧CvD(chemical vapo
ur deposition )やLP(Low pr
essure ) OV Dで600〜700℃程度で
使っていたものから、プラズマCvDで200〜300
°C程度に膜形成する方法が用いられ始めている。この
様な要請からECRプラズマ全用いる薄膜形成法は、常
温で膜質よく形成できる方法として注目されている。〔
セミコンダクター ワールド(Sem1conduct
or Wor14 ) 1986 +IP73〜 伊丹
ら°’ICOR技術による薄膜生成技術”〕 第4図はこの従来の1cORプラズマ装置を示すもので
、1はマグネットコイル、2はプラズマ室、3は半導体
基板、4は試料台、6はシャッター、6はプラズマ流、
7は反応用ガス導入管、8はプラズマ発生用ガス導入管
、9はXCRイオン源、10はマイクロ波、11はデポ
ジション室、12は冷却水である。
BACKGROUND OF THE INVENTION As semiconductor devices become smaller and more densely packed, it becomes necessary to form shallower junctions, and processes are becoming lower in temperature. For example, until now atmospheric pressure CVD (chemical vapor
ur position) and LP (Low pr
essure) From what was used at 600 to 700℃ in OVD, to 200 to 300℃ in plasma CvD.
A method of forming a film at a temperature of about °C is beginning to be used. In response to these demands, a thin film forming method using all ECR plasma is attracting attention as a method that can form films of good quality at room temperature. [
Semiconductor World (Sem1conduct)
or Wor14) 1986 +IP73 ~ Itami et al. 'Thin film production technology using ICOR technology'] Figure 4 shows this conventional 1cOR plasma device, where 1 is a magnet coil, 2 is a plasma chamber, 3 is a semiconductor substrate, and 4 is a Sample stage, 6 is shutter, 6 is plasma flow,
7 is a reaction gas introduction tube, 8 is a plasma generation gas introduction tube, 9 is an XCR ion source, 10 is a microwave, 11 is a deposition chamber, and 12 is cooling water.

発明が解決しようとする問題点 この方法は第4図に示す様に、2.45 GHzのマイ
クロ波10に対して876GでECR条件が満たされる
ため、コイル1の磁石でプラズマ室内で磁場を形成しE
CR条件をつくる。磁場は一様ではなく、両端に行くに
従って弱くなるので、電子およびイオンは、この磁場の
弱い方向に加速される。KCRプラズマの場合には、1
0〜20 ay程度のイオンがウェハ3に入射するため
膜質が良くなるものと解釈されている。ところがこの利
点が逆に欠点となって、ステップカバレジの点では悪い
結果をもたらしている。微細化、高密度化に伴いステッ
プカバレジはますます要求される項目であるため、この
ままでは使えない。
Problems to be Solved by the Invention This method, as shown in Figure 4, satisfies the ECR condition at 876G for the 2.45 GHz microwave 10, so the magnet of the coil 1 forms a magnetic field in the plasma chamber. ShiE
Create CR conditions. Since the magnetic field is not uniform and becomes weaker toward both ends, electrons and ions are accelerated in the direction of the weaker magnetic field. In the case of KCR plasma, 1
It is interpreted that the film quality is improved because ions of about 0 to 20 ay are incident on the wafer 3. However, this advantage turns into a disadvantage, resulting in poor step coverage. Step coverage is increasingly required as miniaturization and density increases, so it cannot be used as is.

本発明は、これまで説明した様に常温で質の良い膜全形
成できるKCRプラズマで、ステップカバレシヲ改善す
る事を目的としている。
As explained above, the present invention aims to improve step coverage using KCR plasma, which can form a high-quality film at room temperature.

、問題点を解決するための手段 ステップカバレジが悪い原因は、ウェハに対しイオンが
垂直に入射するからである。従って一定周期でイオンを
ある角度を持たせて入射させればよい。
The reason for poor step coverage is that ions are incident perpendicularly to the wafer. Therefore, it is sufficient to make the ions incident at a certain angle at a certain period.

そのた−めには、磁場を一定周期で変化させればよい。To do this, it is sufficient to change the magnetic field at regular intervals.

変化させる磁場は、ECR条件に影響しない様にする必
要があるので、たとえばプラズマの取り出し口付近に磁
界をまげるためにコイルを設置する。すなわち、少くと
も1つのマグネット貴イルがプラズマ室外に中心を形成
するように構成する。
Since it is necessary that the magnetic field to be changed does not affect the ECR conditions, a coil is installed near the plasma extraction port to bend the magnetic field, for example. That is, at least one magnet is configured so that its center is formed outside the plasma chamber.

作用 こうすることにより、ウェハに入射するイオンの入射角
を一定の範囲で振らせることができ、膜形成時のステッ
プカバレジを向上させることができる。
By doing so, the incident angle of ions incident on the wafer can be varied within a certain range, and step coverage during film formation can be improved.

実施例 第1図に本発明の実施例を示す。構成上は、′第4図に
示す従来の装置とほとんど同じであるが従来のEOR条
件を満足するだめのマグネットコイル1に加えて磁場を
変化させるためのマグネットコイル20’i)設置する
。ただし磁場の中心はプラズマ室2の中心とはずらして
マグネットコイル2oを設ける。この様子を第2図に示
す。
Embodiment FIG. 1 shows an embodiment of the present invention. The structure is almost the same as the conventional device shown in FIG. 4, but in addition to the magnet coil 1 that satisfies the conventional EOR condition, a magnet coil 20 for changing the magnetic field is installed. However, the center of the magnetic field is offset from the center of the plasma chamber 2, and the magnet coil 2o is provided. This situation is shown in FIG.

第2図aは従来のやり方でプラズマ室2の中心3と磁場
コイル1の中心4(従って磁場の中心)とが一致してい
る。第2図すは本実施例の装置の方法で、プラズマ室2
のまわりをいくつかに分割し、それぞれ別々に4個のマ
グネットコイル2oム〜20D’ii形成する。すなわ
ち、プラズマ室2の中心3と各コイル20人〜20Dの
中心24は一致しない。この様な構成にどれか1つの磁
石(コイル)を働かすことによりプラズマ室内で磁界が
傾斜を持つ事になる。この様子を第3図に示す。
In FIG. 2a, the center 3 of the plasma chamber 2 and the center 4 of the magnetic field coil 1 (and thus the center of the magnetic field) coincide in a conventional manner. FIG. 2 shows the plasma chamber 2 according to the method of the apparatus of this embodiment.
Divide the area around it into several parts, and form four magnet coils of 2 ohm to 20 d'ii each separately. That is, the center 3 of the plasma chamber 2 and the center 24 of each coil 20 to 20D do not coincide. By operating any one magnet (coil) in such a configuration, the magnetic field will have a gradient in the plasma chamber. This situation is shown in FIG.

第3図はプラズマ室の取り出し口付近で、プラズマ室中
心を距離0(ゼロ)として磁界の分布を示したものであ
る。第3図aは従来例でプラズマ室の中心と磁場コイル
の中心が一致しているためプラズマ室中心で磁界が強い
。第3図すは本実施例の方法でプラズマ室の中心と磁場
コイルの中心がずれているためプラズマ室の特定の方向
に磁界が強い。実線と破線は対向したマグネットコイル
のどちらに、電流を流すかの違いである。
FIG. 3 shows the distribution of the magnetic field near the outlet of the plasma chamber, with the distance from the center of the plasma chamber being 0 (zero). FIG. 3a shows a conventional example in which the center of the plasma chamber and the center of the magnetic field coil coincide, so the magnetic field is strong at the center of the plasma chamber. FIG. 3 shows that in the method of this embodiment, the center of the plasma chamber and the center of the magnetic field coil are shifted from each other, so the magnetic field is strong in a specific direction of the plasma chamber. The solid line and the broken line indicate the difference in which of the opposing magnet coils the current is passed through.

実際に用いる場合には、磁場を変化させるためのマグネ
ットコイルは、周期的に順を追って電流を流す事になる
。このマグネットコイルの強さは、ウェハ近傍でイオン
が±20〜±45°程度入射角度が変わる様に設定する
事が望ましい。
In actual use, the magnetic coil for changing the magnetic field will pass current in sequence periodically. The strength of this magnet coil is preferably set so that the incident angle of ions changes by about ±20 to ±45° near the wafer.

なお、IIR条件を満足させるために構成するマグネッ
トコイルに対してもたとえば第3図のコイル2oム〜2
0Dのごとく本発明のマグネットコイル配置を用いる事
が可能で、この場合には同時に外周のコイルに通電する
事になる。この様にする事によってプラズマ室中心の磁
場が弱くなりプラズマは中心に向って動くためプラズマ
閉じ込めの効果が高くなる。
In addition, for the magnet coil configured to satisfy the IIR condition, for example, the coil 2 ohm to 2 ohm in FIG.
It is possible to use the magnet coil arrangement of the present invention as in 0D, and in this case, the outer circumferential coils are energized at the same time. By doing this, the magnetic field at the center of the plasma chamber becomes weaker and the plasma moves toward the center, increasing the effectiveness of plasma confinement.

また、本発明は堆積の場合を例に説明したが、エツチン
グの場合にも適用可能である。エツチングの場合には、
特定のコイルのみ通電する事によ。
Furthermore, although the present invention has been described using the case of deposition as an example, it is also applicable to the case of etching. In the case of etching,
By energizing only specific coils.

り科目に傾いた断面形状をつくる事ができる。It is possible to create a cross-sectional shape that is tilted to the subject.

発明の効果 以上のように本発明によれば、ウェハに入射するイオン
の入射角を一定範囲で振らせる事かで門るので、膜形成
の際のステップカバレジが向上する。
Effects of the Invention As described above, according to the present invention, since the incident angle of ions incident on the wafer is varied within a certain range, step coverage during film formation is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例のECRプラズマ装置の概要を
示す構成図、第2図aは従来のプラズマ室とコイルの配
置構成を説明するだめの図、第2図すは本実施例におけ
るプラズマ室とコイルの配置構成を説明するだめの図、
第3図a、bはそれぞれ従来例と本実施例のプラズマ室
の磁界の分布を示す図、第4図は従来の同装置を示す図
である。 1・・・・・・磁場コイル、2・・・・・・プラズマ室
、3・川・・基板、20人〜20D・・・・・・磁場コ
イル。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 マク7ツトコイル 第2図 (α) ZρCZUし 第3図 (ニラ (k)、)
FIG. 1 is a block diagram showing an outline of an ECR plasma device according to an embodiment of the present invention, FIG. A diagram explaining the arrangement of the plasma chamber and coils,
FIGS. 3a and 3b are diagrams showing the distribution of magnetic fields in the plasma chambers of the conventional example and this embodiment, respectively, and FIG. 4 is a diagram showing the same conventional apparatus. 1...Magnetic field coil, 2...Plasma chamber, 3. River...Substrate, 20 people ~ 20D...Magnetic field coil. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 7 Coil Fig. 2 (α) ZρCZU Fig. 3 (Chive (k),)

Claims (1)

【特許請求の範囲】[Claims] 電子サイクロトロン共鳴イオン源からプラズマを引き出
して堆積あるいはエッチングをする装置であって少なく
とも1つのマグネットコイルが、プラズマ室外に中心を
形成するように構成してなるプラズマ装置。
1. A plasma device for performing deposition or etching by extracting plasma from an electron cyclotron resonance ion source, the plasma device comprising at least one magnet coil centered outside a plasma chamber.
JP16050985A 1985-07-19 1985-07-19 Plasma-treating device Pending JPS6221211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16050985A JPS6221211A (en) 1985-07-19 1985-07-19 Plasma-treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16050985A JPS6221211A (en) 1985-07-19 1985-07-19 Plasma-treating device

Publications (1)

Publication Number Publication Date
JPS6221211A true JPS6221211A (en) 1987-01-29

Family

ID=15716485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16050985A Pending JPS6221211A (en) 1985-07-19 1985-07-19 Plasma-treating device

Country Status (1)

Country Link
JP (1) JPS6221211A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645761A (en) * 1979-09-25 1981-04-25 Mitsubishi Electric Corp Plasma reaction apparatus
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS58125820A (en) * 1982-01-22 1983-07-27 Toshiba Corp Electronic cyclotron resonance type discharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645761A (en) * 1979-09-25 1981-04-25 Mitsubishi Electric Corp Plasma reaction apparatus
JPS5779621A (en) * 1980-11-05 1982-05-18 Mitsubishi Electric Corp Plasma processing device
JPS58125820A (en) * 1982-01-22 1983-07-27 Toshiba Corp Electronic cyclotron resonance type discharger

Similar Documents

Publication Publication Date Title
US5505780A (en) High-density plasma-processing tool with toroidal magnetic field
EP0300447B1 (en) Method and apparatus for treating material by using plasma
US4960073A (en) Microwave plasma treatment apparatus
KR101920842B1 (en) Plasma source design
US5397962A (en) Source and method for generating high-density plasma with inductive power coupling
WO2001086697A2 (en) Inductive plasma loop enhancing magnetron sputtering
JPS61179872A (en) Apparatus and method for magnetron enhanced plasma auxiliarytype chemical vapor deposition
JP2837556B2 (en) Plasma reactor and substrate processing method using the same
JPS6221211A (en) Plasma-treating device
JPH05160073A (en) Plasma treatment device and method
JP2524461B2 (en) High density plasma processing equipment
JP3088504B2 (en) Microwave discharge reactor
JPH0231423A (en) Process of forming patterned dielectric layer
JPH0790632A (en) Electric discharge plasma treating device
CN112071734A (en) Insulating material window, manufacturing method thereof and inductively coupled plasma processing device
JPH0415921A (en) Method and apparatus for activating plasma
JPH01309974A (en) Microwave plasma film depositing device
JPH07245271A (en) Plasma source and plasma treatment device and plasma film-formation device
JPH0717147Y2 (en) Plasma processing device
JPH0340422A (en) Film formation device
JPH0452994Y2 (en)
JPH0317254A (en) Method and device for producing oxide thin film
JP2956395B2 (en) Magnetic field plasma processing equipment
JPH01205534A (en) Plasma treatment apparatus
JPS63219128A (en) Treatment apparatus