JPH0351971Y2 - - Google Patents

Info

Publication number
JPH0351971Y2
JPH0351971Y2 JP1988062572U JP6257288U JPH0351971Y2 JP H0351971 Y2 JPH0351971 Y2 JP H0351971Y2 JP 1988062572 U JP1988062572 U JP 1988062572U JP 6257288 U JP6257288 U JP 6257288U JP H0351971 Y2 JPH0351971 Y2 JP H0351971Y2
Authority
JP
Japan
Prior art keywords
electrode
plate electrode
flat plate
substrate
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1988062572U
Other languages
Japanese (ja)
Other versions
JPH01125530U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988062572U priority Critical patent/JPH0351971Y2/ja
Publication of JPH01125530U publication Critical patent/JPH01125530U/ja
Application granted granted Critical
Publication of JPH0351971Y2 publication Critical patent/JPH0351971Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、真空中でグロー放電によるガスを分
解し、基板表面に薄膜を堆積するプラズマCVD
(chemical vapor deposition)装置に関する。
[Detailed description of the invention] (Field of industrial application) This invention is a plasma CVD method that decomposes gas caused by glow discharge in a vacuum and deposits a thin film on the surface of a substrate.
(chemical vapor deposition) device.

(従来の技術と考案が解決しようとする問題点) プラズマCVD装置は、非晶質シリコン(以下
a−Siと略記する)膜及び窒化シリコン膜の作成
に用いられる。特に、プラズマCVD装置により
作成されたa−Siは、スパツタリング法やイオン
プレーテイング法等の他の成膜法により作成した
a−Siに較べて太陽電池材料としての特性が優れ
ており、また製造コストが安いという特徴を備え
ている。a−Si作成用のプラズマCVD装置にお
いて平行平板型プラズマCVD装置を使用するこ
とは、a−Siを大面積に均一に成膜でき、またガ
スの種類の異なつた複数の反応室を連結し、基板
あるいは基板ホルダを反応室間で移動させること
により、真空中で連続して多層膜を容易に作成す
ることができる利点を備えている。しかしなが
ら、後で詳述するように、従来の構造の平行平板
型プラズマCVD装置では、更にa−Siの製造コ
ストを安くしたり、a−Siを多量に生産すること
に限界があつた。
(Problems to be solved by conventional techniques and ideas) A plasma CVD apparatus is used to create an amorphous silicon (hereinafter abbreviated as a-Si) film and a silicon nitride film. In particular, a-Si produced by plasma CVD equipment has superior properties as a solar cell material compared to a-Si produced by other film-forming methods such as sputtering and ion plating. It is characterized by low cost. The use of parallel plate plasma CVD equipment in the plasma CVD equipment for a-Si production allows a-Si to be deposited uniformly over a large area, as well as connecting multiple reaction chambers with different types of gases. By moving the substrate or substrate holder between reaction chambers, it has the advantage that multilayer films can be easily created continuously in a vacuum. However, as will be described in detail later, in the parallel plate type plasma CVD apparatus having a conventional structure, there is a limit to further reducing the manufacturing cost of a-Si or producing a large amount of a-Si.

又、量産性を向上した方式に、2組のすだれ電
極を用いた方式が特開昭56−43724号公報及び実
開昭54−103165号公報に記載されている。しかし
ながら、この方式では、後で詳しく説明するよう
に、半導体ウエハのような比較的小さい基板に単
一膜を堆積する場合には有効であるが、太陽電池
用のa−Si等に要求されるような大面積基板に多
層膜を堆積する場合には適用できない。
Further, as a system that improves mass productivity, a system using two sets of interdigital electrodes is described in Japanese Patent Laid-Open No. 56-43724 and Japanese Utility Model Application No. 103165-1982. However, as will be explained in detail later, this method is effective when depositing a single film on a relatively small substrate such as a semiconductor wafer; It cannot be applied when depositing a multilayer film on such a large-area substrate.

第3図は従来の平行平板プラズマCVD装置の
構成を示した正面断面図である。ガス導入口1及
び真空排気口2を備え、真空にすることができる
反応室3の中に、平板電極4及び5が15mm〜100
mmの間隔をおいて平行に置される。
FIG. 3 is a front sectional view showing the configuration of a conventional parallel plate plasma CVD apparatus. In a reaction chamber 3 equipped with a gas inlet 1 and a vacuum exhaust port 2 and capable of being evacuated, flat plate electrodes 4 and 5 are installed with a diameter of 15 mm to 100 mm.
placed in parallel with a distance of mm.

平板電極5を接地し、平板電極4に直流又は交
流電圧を印加することにより、電極間ギヤツプ6
でグロー放電が起こる。印加電圧としては、一般
的に高周波、例えば13.56MHzを用いることが多
い。平板電極4には、電極の裏側でグロー放電が
起こることを防ぐ為に、放電防止シールド7が取
り付けられている。高周波を用いた場合、平板電
極4が、電子とイオンの易動度の違いにより、直
流的に負にバイアスされる。それ故、平板電極4
と5に到達するイオンのエネルギーは互いに異な
り、基板が平板電極4又は5に置かれる場合とで
は、生成する膜質や成膜速度が異なる。平板電極
5には高周波電圧が印加されず、従つて加熱機構
が取り付け易く、また連続装置にするときの移動
機構が簡単となるため、基板8は電極5の上に置
かれる。以下平板電極5を基板ホルダと呼ぶこと
にする。a−Siの成膜は、基板温度が150℃〜400
℃の間のときに行われるので、基板ホルダ5には
加熱ヒータ9が取り付けられる。なお、10は高
周波電源を示している。
By grounding the flat plate electrode 5 and applying a DC or AC voltage to the flat plate electrode 4, the inter-electrode gap 6 is
A glow discharge occurs. Generally, a high frequency, for example 13.56MHz, is often used as the applied voltage. A discharge prevention shield 7 is attached to the flat plate electrode 4 in order to prevent glow discharge from occurring on the back side of the electrode. When a high frequency is used, the plate electrode 4 is negatively biased in terms of direct current due to the difference in mobility between electrons and ions. Therefore, the flat electrode 4
The energies of the ions reaching the electrodes 4 and 5 are different from each other, and the quality of the film produced and the film formation rate are different depending on whether the substrate is placed on the flat electrode 4 or 5. The substrate 8 is placed on the electrode 5 because no high frequency voltage is applied to the flat plate electrode 5, and therefore the heating mechanism is easy to attach and the moving mechanism is simple when a continuous device is used. Hereinafter, the flat electrode 5 will be referred to as a substrate holder. For a-Si film formation, the substrate temperature is 150°C to 400°C.
Since the heating is carried out when the temperature is between 0.degree. and C., a heater 9 is attached to the substrate holder 5. Note that 10 indicates a high frequency power source.

第3図において、平板電極4が上に、基板ホル
ダ5が下に配置されているが、この配置は上下が
逆でも良い。逆にした場合、基板を基板ホルダに
取り付けるための治具を必要とするが、成膜面が
下に向くためゴミが付着しにくいという長所があ
る。
In FIG. 3, the flat electrode 4 is placed at the top and the substrate holder 5 is placed at the bottom, but this arrangement may be reversed. If it is reversed, a jig is required to attach the substrate to the substrate holder, but it has the advantage that dust is less likely to adhere because the film-forming surface faces downward.

このような第3図の平行平板型プラズCVD装
置では、その処理能力を増大させるのに平板電極
4及び基板ホルダ5の面積を大きくする必要があ
る。しかしながら、平板電極及び基板ホルダの面
積を大きくすると、熱ひずみにより組立精度を維
持することが困難になる。また、連続装置におい
て、基板ホルダの面積が大きくなり重量が重くな
ることは、基板ホルダを真空装置内で移動させる
ときや装置外での取扱いに困難な問題が生ずる。
また、第3図の構造のまま平板電極および基板ホ
ルダを大面積にすることは、反応室の高さは殆ど
変わらないが、反応室の横方向の大きさが大きく
なることになる。このような装置では、耐圧容器
としての特性を維持するため、反応室のコストが
高くなり、よつて装置コストに対する処理能力が
あまり改善できない。したがつて第1図の構造の
プラズマCVD装置では、装置の低コスト化と量
産性の点で限界がある。
In such a parallel plate type plasma CVD apparatus shown in FIG. 3, it is necessary to increase the area of the flat plate electrode 4 and the substrate holder 5 in order to increase its processing capacity. However, when the areas of the flat electrode and the substrate holder are increased, it becomes difficult to maintain assembly accuracy due to thermal strain. Furthermore, in a continuous device, the increased area and weight of the substrate holder makes it difficult to move the substrate holder within the vacuum device or handle it outside the device.
Further, if the planar electrode and substrate holder are made to have a large area while maintaining the structure shown in FIG. 3, the height of the reaction chamber will hardly change, but the lateral size of the reaction chamber will increase. In such an apparatus, the cost of the reaction chamber increases in order to maintain the characteristics as a pressure-resistant container, and therefore the throughput cannot be significantly improved relative to the apparatus cost. Therefore, the plasma CVD apparatus having the structure shown in FIG. 1 has limitations in terms of cost reduction and mass production of the apparatus.

一方、複数組のすだれ状電極を用いて量産性を
向上した方式が、特開昭56−43724号公報又は実
開昭54−103165号公報に述べられている。この方
式での加熱方法は、外部加熱にならざるを得な
い。しかしながら外部加熱では実用的な時間内に
均一な温度分布に達することができず、大面積へ
の成膜は不可能である。更にこのような加熱法上
の制約から、反応室は従来の平行平板型プラズマ
CVD装置で用いられているような金属容器を用
いることが出来ないため、石英ガラスの様な赤外
線透明材料で構成する必要がある。また、電極は
長い反応室の中で細長い構造をとつているので、
複数の反応室にわたる連続化が不可能である。こ
のことはクロスコンタミネーシヨンを発生させ、
実用的な多層膜の形成を不可能にする。また、上
記加熱方法上の制約から、例えば一辺が200mmの
正方形等のような大面積基板への堆積は非常に困
難となる。つまり、このような方式によるプラズ
マCVD装置では、半導体ウエハの様に比較的小
さい基板に単一膜を堆積する場合に適している
が、a−Si太陽電池のような大面積基板に多層膜
を堆積する場合には適用できない。
On the other hand, a system that improves mass productivity by using a plurality of sets of interdigital electrodes is described in Japanese Patent Application Laid-open No. 56-43724 or Japanese Utility Model Application No. 103165-1982. The heating method using this method has to be external heating. However, external heating cannot reach a uniform temperature distribution within a practical time, making it impossible to form a film over a large area. Furthermore, due to limitations in heating methods, the reaction chamber is not equipped with a conventional parallel plate plasma.
Since it is not possible to use a metal container like that used in CVD equipment, it must be constructed from an infrared transparent material such as quartz glass. In addition, since the electrode has an elongated structure inside a long reaction chamber,
Continuation across multiple reaction chambers is not possible. This causes cross-contamination and
Makes it impossible to form practical multilayer films. Furthermore, due to the limitations on the heating method described above, it is extremely difficult to deposit on a large-area substrate, such as a square with a side of 200 mm. In other words, plasma CVD equipment using this method is suitable for depositing a single film on a relatively small substrate such as a semiconductor wafer, but it is suitable for depositing a multilayer film on a large area substrate such as an a-Si solar cell. It cannot be applied when the method is deposited.

(考案の目的) 本考案の目的は、従来の平行平板型プラズマ
CVD装置を改良し、従来のものより更にa−Si
等を安価に製造でき、かつ量産性に優れたプラズ
マCVD装置を提供することにある。
(Purpose of the invention) The purpose of the invention is to
Improved CVD equipment to produce even more a-Si than conventional equipment.
The object of the present invention is to provide a plasma CVD device that can be manufactured at low cost and has excellent mass productivity.

プラズマ処理装置の提供を目的とする。 The purpose is to provide plasma processing equipment.

(問題点を解決するための手段) 上記問題を解決するために、本考案は、少なく
とも1つの金属製の反応室を有し、該反応室内に
互いに対向する複数の電極を備え、該複数の電極
の内、接地される側の電極上に載置した基板表面
に薄膜を生成するプラズマCVD装置において、
前記複数の電極が、第1の平板電極と、該第1の
平板電極の両側に対向して配置される第2の平板
電極とから成り、前記第1又は第2の平板電極の
どちらか一方に、直流又は交流電流が印加され、
他方が接地される関係にするとともに、前記接地
される側の第1又は第2の平板電極のいづれかが
複数の前記反応室間又は前記反応室と前記反応室
外の間を移動可能な構成にしている。
(Means for Solving the Problems) In order to solve the above problems, the present invention includes at least one metal reaction chamber, a plurality of electrodes facing each other in the reaction chamber, and a plurality of electrodes facing each other. In a plasma CVD device that generates a thin film on the surface of a substrate placed on the grounded electrode,
The plurality of electrodes are composed of a first flat plate electrode and a second flat plate electrode arranged opposite to each other on both sides of the first flat plate electrode, and either one of the first or second flat plate electrode A direct or alternating current is applied to the
The other is grounded, and either the first or second flat electrode on the grounded side is configured to be movable between the plurality of reaction chambers or between the reaction chamber and the outside of the reaction chamber. There is.

さらに、基板表面上へのごみの付着の問題を考
慮するならば前記第1又は第2の平板電極の電極
面が鉛直な構成にすることが好ましい。
Furthermore, in consideration of the problem of dust adhesion on the substrate surface, it is preferable that the electrode surface of the first or second flat electrode be vertical.

(作用) 複数の電極が、第1の平板電極と、該第1の平
板電極の両側に対向して配置される第2の平板電
極とから成り、前記第1又は第2の平板電極のど
ちらか一方に、直流又は交流電流が印加され、他
方が接地され、この接地される側の平板電極に基
板が設置されるため、一定の膜質を有し、一定の
膜厚を有する均一な薄膜を生成できるとともに、
前記接地される側の第1又は第2の平板電極のい
づれかが複数の前記反応室間又は前記反応室と前
記反応室外の間を移動可能な構成にしているた
め、基板ホルダの移動方向に面積を大きくするこ
となく処理能力を2倍にすることができる。
(Function) The plurality of electrodes are composed of a first flat plate electrode and a second flat plate electrode arranged opposite to each other on both sides of the first flat plate electrode. Direct current or alternating current is applied to one side, the other is grounded, and a substrate is installed on the grounded side of the flat plate electrode, so a uniform thin film with a certain film quality and thickness can be formed. In addition to being able to generate
Either the first or second flat plate electrode on the grounded side is configured to be movable between the plurality of reaction chambers or between the reaction chamber and the outside of the reaction chamber, so that the area is small in the direction of movement of the substrate holder. The processing capacity can be doubled without increasing the size.

(実施例) 以下、本考案の実施例を図を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本考案による一実施例の構成を示し
た正面断面図である。平板電極4には、従来と同
様一般に高周波電圧が印加される。基板ホルダ5
及び5′は、平板電極4の両側に配置されている。
また、基板ホルダ5及び5′には、それぞれ加熱
ヒータ9及び9′が取り付けられている。グロー
放電は、電極間ギヤツプ6及び6′で起る。平板
電極4の両側のグロー放電を利用するので、平板
電極4には放電防止シールドを取り付ける必要は
ない。このような第1図の電極構造では、平板電
極4の両側に設置された基板ホルダ5及び5′上
に設置された基板8及び8′には、同等の性質の
膜が同等の速度で成膜される。このように、平板
電極4の大きさ及び反応室3の横方向の大きさを
変えないで、処理能力を2倍にすることができ
る。
FIG. 1 is a front sectional view showing the configuration of an embodiment of the present invention. Generally, a high frequency voltage is applied to the flat plate electrode 4 as in the conventional case. Board holder 5
and 5' are arranged on both sides of the flat plate electrode 4.
Furthermore, heaters 9 and 9' are attached to the substrate holders 5 and 5', respectively. A glow discharge occurs in the interelectrode gaps 6 and 6'. Since the glow discharge on both sides of the flat electrode 4 is utilized, there is no need to attach a discharge prevention shield to the flat electrode 4. In the electrode structure shown in FIG. 1, films with the same properties are formed at the same speed on the substrates 8 and 8' placed on the substrate holders 5 and 5' placed on both sides of the flat electrode 4. Filmed. In this way, the processing capacity can be doubled without changing the size of the plate electrode 4 and the lateral size of the reaction chamber 3.

第2図は本発明による他の一実施例の構成を示
した正面断面図である。この例では、平板電極4
及び4′が基板ホルダ5の両側に配置されている。
この基板ホルダ5の構造は、加熱ヒータ9を内蔵
した一体構造でも良いし、加熱構造を挾んだサン
ドイツチ構造でも良い。また平板電極4及び4′
にはそれぞれ放電防止シールド7及び7′が取り
付けられている。したがつて、第2図の電極構造
でも、第1図の場合と同様に、電極間ギヤツプ6
及び6′のプラズマの状態は同等であり、また基
板8及び8′は電気的に同一条件の下に置かれる
ので、両側の基板ホルダ5に到達するイオンのエ
ネルギー及び密度が同等になる。よつて基板ホル
ダ5の両側に設置された基板8及び8′には同等
の性質の膜が同等の速度で成膜される。このよう
に第2図のものは、第1図のものと同様に、基板
ホルダ5の大きさ及び反応室3の横方向の大きさ
を変えないで、処理能力を2倍にすることができ
る。
FIG. 2 is a front sectional view showing the structure of another embodiment according to the present invention. In this example, the flat electrode 4
and 4' are arranged on both sides of the substrate holder 5.
The structure of this substrate holder 5 may be an integral structure with a built-in heater 9, or a sandwich structure with a heating structure sandwiched therebetween. Also, the flat plate electrodes 4 and 4'
are fitted with discharge prevention shields 7 and 7', respectively. Therefore, in the electrode structure shown in FIG. 2, the gap 6 between the electrodes is the same as in the case shown in FIG.
Since the plasma states of the substrates 8 and 6' are the same, and the substrates 8 and 8' are placed under the same electrical conditions, the energy and density of the ions reaching the substrate holders 5 on both sides are the same. Therefore, films of the same properties are formed at the same speed on the substrates 8 and 8' placed on both sides of the substrate holder 5. In this way, the system shown in Figure 2 can double the processing capacity without changing the size of the substrate holder 5 and the lateral size of the reaction chamber 3, similar to the system shown in Figure 1. .

また、第1図及び第2図の実施例では、平板電
極及び基板ホルダが水平に設置されているが、こ
れら平板電極及び基板ホルダが垂直に設置されて
いても良い。その場合、基板ホルダのそれぞれの
面に取り付けられた基板のすべての成膜面が垂直
になるので、基板表面にごみが付着しにくいとい
う利点がある。
Further, in the embodiments shown in FIGS. 1 and 2, the flat plate electrode and the substrate holder are installed horizontally, but the flat plate electrode and the substrate holder may be installed vertically. In this case, all the film-forming surfaces of the substrates attached to the respective surfaces of the substrate holder are vertical, so there is an advantage that dust is less likely to adhere to the substrate surfaces.

なお、本考案によるプラズマCVD装置は、a
−Si膜作成のみに適用されるのではなく、平行平
板型プラズマCVD装置で行つているすべての成
膜作成に適用できるのは言うまでもない。
In addition, the plasma CVD apparatus according to the present invention has a
It goes without saying that this method is not only applicable to -Si film formation, but can also be applied to all film formation processes performed using parallel plate plasma CVD equipment.

(考案の効果) 請求項1によれば、従来の装置より薄膜作成の
処理能力を増大させるとともに、装置の製造コス
トを安価にし、かつ設置面積を小さくすることが
できる。
(Effects of the invention) According to claim 1, it is possible to increase the processing capacity for thin film formation compared to conventional apparatuses, reduce the manufacturing cost of the apparatus, and reduce the installation area.

さらに、基板が載置される平板電極は、接地さ
れ、即ち、高周波電圧や直流電圧が印加されなの
で、その基板が載置される平板電極に加熱機構が
取り付け易く、また、ガスの種類の異なつた複数
の反応室を連結し、真空中で連続して多層膜を作
成する連続装置の場合に、基板が載置される平板
電極を移動するための移動機構が簡単となる。
Furthermore, since the flat plate electrode on which the substrate is placed is grounded, that is, a high frequency voltage or DC voltage is applied to it, it is easy to attach a heating mechanism to the flat plate electrode on which the substrate is placed. In the case of a continuous apparatus that connects a plurality of reaction chambers and continuously forms a multilayer film in a vacuum, the moving mechanism for moving the flat plate electrode on which the substrate is placed becomes simple.

請求項2によれば、上記効果に加えて、基板表
面にごみが付着しにくいという利点がある。
According to claim 2, in addition to the above effects, there is an advantage that dust is less likely to adhere to the substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による一実施例の構成を示した
正面断面図、第2図は本考案による他の一実施例
の構成を示した正面断面図、第3図は従来の平行
平板型プラズマCVD装置の構成を示した正面断
面図である。 1……ガス導入口、2……真空排気口、3……
反応室、4,4′……平板電極、5,5……基板
ホルダ、6,6′……電極間ギヤツプ、7,7′…
…放電防止シールド、8,8……基板、9,9′
……加熱ヒータ、10……高周波電源。
Figure 1 is a front sectional view showing the configuration of one embodiment of the present invention, Figure 2 is a front sectional view showing the configuration of another embodiment of the invention, and Figure 3 is a conventional parallel plate plasma. 1 is a front cross-sectional view showing the configuration of a CVD apparatus. 1...Gas inlet, 2...Vacuum exhaust port, 3...
Reaction chamber, 4, 4'... Flat electrode, 5, 5... Substrate holder, 6, 6'... Gap between electrodes, 7, 7'...
...Discharge prevention shield, 8, 8... Board, 9, 9'
...Heating heater, 10...High frequency power supply.

Claims (1)

【実用新案登録請求の範囲】 (1) 少なくとも1つの金属製の反応室を有し、該
反応室内に互いに対向する複数の電極を備え、
該複数の電極の内、接地される側の電極上に載
置した基板表面に薄膜を生成するプラズマ
CVD装置において、前記複数の電極が、第1
の平板電極と、該第1の平板電極の両側に対向
して配置される第2の平板電極とから成り、前
記第1又は第2の平板電極のどちらか一方に、
直流又は交流電流が印加され、他方が接地され
る関係にするとともに、前記接地される側の第
1又は第2の平板電極のいづれかが複数の前記
反応室間又は前記反応室と前記反応室外の間を
移動可能であることを特徴とするプラズマ
CVD装置。 (2) 前記第1又は第2の平板電極の電極面が鉛直
である請求項1記載のプラズマCVD装置。
[Claims for Utility Model Registration] (1) Having at least one metal reaction chamber, and comprising a plurality of electrodes facing each other in the reaction chamber,
Plasma that generates a thin film on the surface of a substrate placed on the grounded electrode among the plurality of electrodes.
In the CVD apparatus, the plurality of electrodes include a first
a flat plate electrode, and a second flat plate electrode arranged opposite to each other on both sides of the first flat plate electrode, and on either the first or second flat plate electrode,
A direct current or an alternating current is applied, and the other is grounded, and either the grounded first or second plate electrode is connected between the plurality of reaction chambers or between the reaction chambers and the outside of the reaction chamber. plasma characterized by being able to move between
CVD equipment. (2) The plasma CVD apparatus according to claim 1, wherein the electrode surface of the first or second plate electrode is vertical.
JP1988062572U 1988-05-12 1988-05-12 Expired JPH0351971Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988062572U JPH0351971Y2 (en) 1988-05-12 1988-05-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988062572U JPH0351971Y2 (en) 1988-05-12 1988-05-12

Publications (2)

Publication Number Publication Date
JPH01125530U JPH01125530U (en) 1989-08-28
JPH0351971Y2 true JPH0351971Y2 (en) 1991-11-08

Family

ID=31288175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988062572U Expired JPH0351971Y2 (en) 1988-05-12 1988-05-12

Country Status (1)

Country Link
JP (1) JPH0351971Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445111B2 (en) * 2000-09-12 2010-04-07 株式会社神戸製鋼所 Plasma surface treatment equipment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265184A (en) * 1975-11-26 1977-05-30 Nippon Telegr & Teleph Corp <Ntt> Eqipment for simultaneous sputtering at both surface
US4116806A (en) * 1977-12-08 1978-09-26 Battelle Development Corporation Two-sided planar magnetron sputtering apparatus
JPS556410A (en) * 1978-06-26 1980-01-17 Hitachi Ltd Plasma gas phase reactor
JPS5527626A (en) * 1978-08-17 1980-02-27 Murata Manufacturing Co Electronic part magazine container
JPS5559727A (en) * 1978-10-27 1980-05-06 Hitachi Ltd Plasma deposition device
JPS5585673A (en) * 1978-12-20 1980-06-27 Advanced Coating Tech Cathode for sputtering
JPS5645761A (en) * 1979-09-25 1981-04-25 Mitsubishi Electric Corp Plasma reaction apparatus
JPS5664437A (en) * 1979-08-22 1981-06-01 Onera (Off Nat Aerospatiale) Method and device for chemically etching integrated circuit by dry process
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film
EP0034706A2 (en) * 1980-02-08 1981-09-02 VEB Zentrum für Forschung und Technologie Mikroelektronik Process and apparatus for ion etching or for plasma C.V.D.
JPS56114387A (en) * 1980-02-13 1981-09-08 Sanyo Electric Co Ltd Manufacture of photovoltaic force element
JPS5743413A (en) * 1980-05-19 1982-03-11 Energy Conversion Devices Inc Semiconductor element and method of producing same
JPS5767020A (en) * 1980-10-15 1982-04-23 Agency Of Ind Science & Technol Thin silicon film and its manufacture
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS5784137A (en) * 1980-11-14 1982-05-26 Matsushita Electric Ind Co Ltd Plasma chemical evaporation
JPS5789217A (en) * 1980-11-26 1982-06-03 Seiko Epson Corp Manufacturing device of semiconductor
JPS58174570A (en) * 1982-03-29 1983-10-13 エナージー・コンバーション・デバイセス・インコーポレーテッド Glow discharge deposition device containing non-horizontally placed cathode

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265184A (en) * 1975-11-26 1977-05-30 Nippon Telegr & Teleph Corp <Ntt> Eqipment for simultaneous sputtering at both surface
US4116806A (en) * 1977-12-08 1978-09-26 Battelle Development Corporation Two-sided planar magnetron sputtering apparatus
JPS556410A (en) * 1978-06-26 1980-01-17 Hitachi Ltd Plasma gas phase reactor
JPS5527626A (en) * 1978-08-17 1980-02-27 Murata Manufacturing Co Electronic part magazine container
JPS5559727A (en) * 1978-10-27 1980-05-06 Hitachi Ltd Plasma deposition device
JPS5585673A (en) * 1978-12-20 1980-06-27 Advanced Coating Tech Cathode for sputtering
JPS5664437A (en) * 1979-08-22 1981-06-01 Onera (Off Nat Aerospatiale) Method and device for chemically etching integrated circuit by dry process
JPS5645761A (en) * 1979-09-25 1981-04-25 Mitsubishi Electric Corp Plasma reaction apparatus
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film
EP0034706A2 (en) * 1980-02-08 1981-09-02 VEB Zentrum für Forschung und Technologie Mikroelektronik Process and apparatus for ion etching or for plasma C.V.D.
JPS56114387A (en) * 1980-02-13 1981-09-08 Sanyo Electric Co Ltd Manufacture of photovoltaic force element
JPS5743413A (en) * 1980-05-19 1982-03-11 Energy Conversion Devices Inc Semiconductor element and method of producing same
JPS5767020A (en) * 1980-10-15 1982-04-23 Agency Of Ind Science & Technol Thin silicon film and its manufacture
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS5784137A (en) * 1980-11-14 1982-05-26 Matsushita Electric Ind Co Ltd Plasma chemical evaporation
JPS5789217A (en) * 1980-11-26 1982-06-03 Seiko Epson Corp Manufacturing device of semiconductor
JPS58174570A (en) * 1982-03-29 1983-10-13 エナージー・コンバーション・デバイセス・インコーポレーテッド Glow discharge deposition device containing non-horizontally placed cathode

Also Published As

Publication number Publication date
JPH01125530U (en) 1989-08-28

Similar Documents

Publication Publication Date Title
US4452828A (en) Production of amorphous silicon film
US20100151680A1 (en) Substrate carrier with enhanced temperature uniformity
JP2588388B2 (en) Coating method
JP2616760B2 (en) Plasma gas phase reactor
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JPS5914633A (en) Plasma cvd apparatus
GB2148947A (en) Method of depositing an amorphous semiconductor layer from a glow discharge
JPH0351971Y2 (en)
EP1122336A2 (en) Apparatus and method for forming a deposited film by means of plasma CVD
JPS5972722A (en) Substrate shield for preventing irregular film from deposit-ing
EP0140130B1 (en) Process and apparatus for preparing semiconductor layer
JPH01103828A (en) Plasma cvd device
JP2562686B2 (en) Plasma processing device
Hosokawa Large area deposition: Sputtering-and PCVD-systems and techniques for LCD
JPH0425017A (en) Vacuum film formation equipment
JPS63142627A (en) Manufacture of semiconductor thin film
JP2776859B2 (en) Thin film formation method
JP2890032B2 (en) Silicon thin film deposition method
JPH0590939U (en) Plasma CVD equipment
JPS59167013A (en) Plasma cvd equipment
JPH06120153A (en) Film-forming apparatus
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
JPH05156455A (en) Film forming device
JP2002270527A (en) Plasma cvd method, plasma cvd device and thin film solar cell
JPH09213636A (en) This film forming device