JPS59167013A - Plasma cvd equipment - Google Patents

Plasma cvd equipment

Info

Publication number
JPS59167013A
JPS59167013A JP58040044A JP4004483A JPS59167013A JP S59167013 A JPS59167013 A JP S59167013A JP 58040044 A JP58040044 A JP 58040044A JP 4004483 A JP4004483 A JP 4004483A JP S59167013 A JPS59167013 A JP S59167013A
Authority
JP
Japan
Prior art keywords
tray
heater
substrates
substrate
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58040044A
Other languages
Japanese (ja)
Other versions
JPH0436453B2 (en
Inventor
Kazumi Maruyama
和美 丸山
Yoshiyuki Uchida
内田 喜之
Shiro Naruse
成瀬 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58040044A priority Critical patent/JPS59167013A/en
Publication of JPS59167013A publication Critical patent/JPS59167013A/en
Publication of JPH0436453B2 publication Critical patent/JPH0436453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Abstract

PURPOSE:To reduce the heat loss for substrate heating by a method wherein substrates are mounted on a tray and this tray is so constructed as to surround and contain one heat source from both sides in a vertical plane. CONSTITUTION:A substrate heater 5 fixed in a vacuum vessel is provided vertically. Substrates 7 on which films are formed are mounted on a tray 8. The tray 8 is hung surrounding both sides of the heater 5 so that the heat radiated from the heater 5 is kept in a space between the heater 5 and the tray 8. High frequency electrodes 4 are provided in parallel with an interval from each side of the tray 8, and plasma reaction is generated at both sides of the heater to form the prescribed films on the substrates 7. Because the substrates 7 and other items are provided vertically, even if undesirable reaction products adhered to the walls of the vessel and the like fall off, they are not deposited on the substrates 7.

Description

【発明の詳細な説明】 7@明は太陽電池やセンサなどに用いられる非晶質シリ
コン膜あるいは窒化シリコン膜などの薄1轡浩成に用い
られる高周波プラズマ反応を利用しEプラズマCVD 
 装置n関する。
[Detailed Description of the Invention] 7@Ming is an E-plasma CVD method that utilizes high-frequency plasma reactions used to form thin films such as amorphous silicon films or silicon nitride films used in solar cells and sensors.
Regarding device n.

この種のプラズマCVD装置としては第1図に示す構造
のものが知られている。図線装置の断面構造を示すもの
で、真壁容器lは真受排気装置x2により真空に排気さ
れる。ガス導入パルプ3によ多材料ガス(例えばシラン
ガス)を所定圧力まで導入後、高周波電&4と基板加熱
用ヒーターを兼用した対向電極5との間に高周波電源6
によって高周波電界を印加しプラズマ反応を生起させる
ことKより、基板7を装着したトレイ8上に薄膜(この
場合は非晶質シリコン膜)を形成することができる。こ
の際の基板加熱方法としては5の加熱ヒーターにトレイ
を密着もしくはある間隔離した状態で設置し基板の裏面
から所望温式に制御している。しかしこの方法によれば
、ヒーターの全表面積に対して基板加熱に有効に寄与す
る表面積は5゜チ以下でsb熱源から放出される熱量の
大半は輻“射熱として放射されてしまい熱損失が大きく
なる°2iに熱効率が悪い。しかもトレイが隣接するヒ
′トター中央部と開放端である周辺部とでは熱輻射の状
況が異なシ、トレイ面内での温度の均一性がrmられな
いという欠点がある。
As this type of plasma CVD apparatus, one having the structure shown in FIG. 1 is known. The figure shows the cross-sectional structure of the device, and the true wall container l is evacuated to vacuum by the true wall exhaust device x2. After introducing a multi-material gas (for example, silane gas) into the gas-introducing pulp 3 to a predetermined pressure, a high-frequency power source 6 is connected between the high-frequency electric power &4 and a counter electrode 5 which also serves as a heater for heating the substrate.
By applying a high frequency electric field and causing a plasma reaction, a thin film (an amorphous silicon film in this case) can be formed on the tray 8 on which the substrate 7 is mounted. In this case, the substrate heating method is to install the tray in close contact with the heating heater 5 or in a state where it is separated for a certain period of time, and to control the desired temperature from the back surface of the substrate. However, according to this method, the surface area that effectively contributes to substrate heating with respect to the total surface area of the heater is less than 5°, and most of the heat emitted from the sb heat source is radiated as radiant heat, resulting in heat loss. Thermal efficiency is poor as °2i increases.Furthermore, the heat radiation situation is different between the central part of the heater where the tray is adjacent and the peripheral part which is the open end, and the temperature uniformity within the tray surface cannot be maintained. There are drawbacks.

′11本発明は上述の欠点を除去して基板の加熱のに・
掴する熱損失の少ないプラズマCVD装置を提供するこ
とを目的とする。
'11 The present invention eliminates the above-mentioned drawbacks and improves the heating of the substrate.
It is an object of the present invention to provide a plasma CVD apparatus with low heat loss.

この目的は真空容器内に一方の電極を兼ねる板状加熱体
と、その加熱体の両面からそれぞれ等しい間隔を置いて
位置する二つの対向電極と、加熱体と対向電極の間の空
間にそれぞれ加熱体に近接して位置する薄膜生成基板支
持体とを備え、板状加熱体、対向電極および基板支持体
がいずれも鉛直面内にあることによって達成される。
The purpose of this is to install a plate-shaped heating element that also serves as one electrode in a vacuum container, two opposing electrodes located at equal intervals from both sides of the heating element, and heating the spaces between the heating element and the opposing electrodes. This is achieved by having a thin film forming substrate support located close to the body, and the plate-like heating element, counter electrode and substrate support all being in a vertical plane.

以下図を引用して本発明の実施例について説明する。各
図において共通の部分には同一の符号が付されている。
Embodiments of the present invention will be described below with reference to the drawings. In each figure, common parts are given the same reference numerals.

第2図において、真空容器1に固定された基板加熱用ヒ
ーター5はシーズヒーターあるいは鋳込みヒーターなど
によシ構成されて船用14fillOはトレイを搬送キ
ャリアごと別の真空室へ移送するためのもので、これ自
体は公知でありて、モーターからの動力をチェイン等に
よりローラーへ伝導し搬送を行うものである。各トレイ
から10〜150畷の間隔を置いて両側に高周波電極4
が並設され、真空容器1の内部をガス導入パルプを開い
て0.1〜10 Torrの範囲内の所望圧に調整後、
対向電極を兼ねる基板加熱ヒーター5に高周波電源6か
ら発生されfcw、界を印加することによシ、ヒーター
5の両側でプラズマ反応を生起させ、トレイ8上の基板
7に所望の膜を形成できる。ここで基板等は鉛直方向に
配置されているのでプラズマ反応で生成された容器壁等
に付着した不所望な反応生成物が落下して基板上に堆積
しないよう工夫されている。
In FIG. 2, the heater 5 for heating the substrate fixed to the vacuum container 1 is composed of a sheathed heater or a cast-in heater, and 14fillO for ships is for transferring the tray together with the carrier to another vacuum chamber. This itself is well known, and conveys the power from a motor to rollers using a chain or the like. High-frequency electrodes 4 are placed on both sides at a distance of 10 to 150 m from each tray.
are arranged in parallel, and after opening the gas introduction pulp inside the vacuum container 1 and adjusting the desired pressure within the range of 0.1 to 10 Torr,
By applying an fcw field generated from a high frequency power source 6 to the substrate heating heater 5 which also serves as a counter electrode, a plasma reaction is generated on both sides of the heater 5, and a desired film can be formed on the substrate 7 on the tray 8. . Here, since the substrates and the like are arranged vertically, measures are taken to prevent undesirable reaction products generated by the plasma reaction adhering to the walls of the container from falling and depositing on the substrates.

薄膜生成能力をさらに向上させるために、高周波電極と
基板用加熱ヒーターの配列を複数列並列に設置すること
ができる。第3図はそのような実施例を示すもので、第
2図と異なる点は、基板加熱用の固定ヒーターtffi
51.52を2列に並べ一つの枢動装置10によシ連動
されて一体化し、移送のための制御を容易にすることも
できる。
In order to further improve the thin film production ability, multiple rows of high frequency electrodes and substrate heaters can be arranged in parallel. Fig. 3 shows such an embodiment, and the difference from Fig. 2 is that the fixed heater tffi for heating the substrate is used.
51 and 52 can be arranged in two rows and linked together by a single pivoting device 10 to facilitate control of transfer.

このように基@を多層配置することによって、第1図に
示す従来方式に対し!2図の実施例では2倍、第3図の
実施例では4倍と飛躍的に基板処理能力を増大させるこ
とができる。
By arranging the base@ in multiple layers in this way, the conventional method shown in Fig. 1 is improved! The substrate processing capacity can be dramatically increased by two times in the embodiment shown in FIG. 2 and four times in the embodiment shown in FIG.

第4図はil@2図の実施例の応用例で、多)e構造か
ら成る薄膜素子(例えばpin構造の非晶質シリコン光
起電力素子)の形成装置を示して2シ、装置の横断面を
上側から見た図である。各真空室11〜14は仕切りバ
ルブ21〜25によって分離されそれぞれ独立に真空排
気できる。ここで第1真空室1】は基板の予備加熱室で
あシ、第2図の真空容!a1と異なる点は高周波電極4
の代わシに、その位置に加熱用ヒーター53を設置した
点で、これによシ基板加熱時間の短縮ができる。真空室
12〜14は反応室であシ、前記のpin構造非晶負シ
リコン素子の形成のように、i層へのドーピング不純物
の混入が問題となるような場合には、このよりに各j―
の生成基を分離す°ることが有効である。先ず予備加熱
室11で予備加熱後、第2図に示すようなキャリアによ
って第二真空室12ここで各真空室間の移送は同程度の
真空圧力中で行われる。
Figure 4 is an application example of the embodiment shown in Figure 2, showing an apparatus for forming a thin film element having a multi-e structure (for example, an amorphous silicon photovoltaic element with a pin structure). FIG. The vacuum chambers 11-14 are separated by partition valves 21-25 and can be evacuated independently. Here, the first vacuum chamber 1] is a preheating chamber for the substrate, and the vacuum volume shown in FIG. The difference from a1 is the high frequency electrode 4.
In place of this, a heating heater 53 is installed at that position, thereby making it possible to shorten the substrate heating time. The vacuum chambers 12 to 14 are reaction chambers, and in cases where the incorporation of doping impurities into the i-layer becomes a problem, such as in the formation of the pin structure amorphous negative silicon element, each j ―
It is effective to separate the producing groups. First, after preheating in the preheating chamber 11, the carrier is transferred to the second vacuum chamber 12 using a carrier as shown in FIG. 2, where the transfer between the vacuum chambers is performed under the same vacuum pressure.

本発明によれば1つの固定ヒーター熱源に対して横加熱
体である基板を装着したトレイがこの熱源を鉛直面内で
両側から囲み、かつはさむ構造としたため、両面におけ
るトレイの面内温度の均一性が向上し、°また放射によ
る熱損失を低減させると共に複数列に基板が配置される
ことによって処理能、力が倍増し量産性の大幅な向上が
図られ、さらに鉛直方向配置にニジ膜質の向上が得られ
るという効果が達せられる。
According to the present invention, a tray equipped with a board serving as a horizontal heating element surrounds and sandwiches a fixed heater heat source from both sides in a vertical plane, so that the in-plane temperature of the tray on both sides is uniform. In addition to reducing heat loss due to radiation, processing capacity and power are doubled by arranging substrates in multiple rows, greatly improving mass productivity. The effect is that an improvement is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非晶質シリコン膜生成装置の側断面図、
第2図は本発明の一実施例の非晶質シリコン膜生成装置
の側断面図、第3図社別の実施例の側断面図、第4図は
さらに別の実施例の水平断面図で委る。 1;・・・真壁容器、4・・・高周波電極、5・・・基
板加熱、用ヒーター、7・・・基板、8・・・トレイ、
11〜14同・1真空室。
Figure 1 is a side sectional view of a conventional amorphous silicon film production device.
FIG. 2 is a side sectional view of an amorphous silicon film production apparatus according to one embodiment of the present invention, FIG. 3 is a side sectional view of another embodiment of the present invention, and FIG. 4 is a horizontal sectional view of yet another embodiment. entrust DESCRIPTION OF SYMBOLS 1; Makabe container, 4... High frequency electrode, 5... Heater for substrate heating, 7... Substrate, 8... Tray,
11 to 14, 1 vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] 1)真空容器内に一方の電極金魚ねる板状加熱体と、該
加熱体の両面からそれぞれ等しい間隔を置いて位置する
二つの対向電極と、加熱体と対向電極の間の空間にそれ
ぞれ加熱体に近接して位置す濶、−膜生成基板支持体と
を備え、板状加熱体、対2同電極および基板支持体がい
ずれも鉛直面内にあ靭ことを特徴とするプラズマCVD
装置。
1) A plate-shaped heating element with one electrode in a vacuum container, two opposing electrodes located at equal intervals from both sides of the heating element, and a heating element in the space between the heating element and the opposing electrode. A plasma CVD device comprising a plate-shaped heating element, a pair of electrodes and a substrate support, all of which are arranged in a vertical plane.
Device.
JP58040044A 1983-03-12 1983-03-12 Plasma cvd equipment Granted JPS59167013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040044A JPS59167013A (en) 1983-03-12 1983-03-12 Plasma cvd equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040044A JPS59167013A (en) 1983-03-12 1983-03-12 Plasma cvd equipment

Publications (2)

Publication Number Publication Date
JPS59167013A true JPS59167013A (en) 1984-09-20
JPH0436453B2 JPH0436453B2 (en) 1992-06-16

Family

ID=12569910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040044A Granted JPS59167013A (en) 1983-03-12 1983-03-12 Plasma cvd equipment

Country Status (1)

Country Link
JP (1) JPS59167013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476219A2 (en) * 1990-09-21 1992-03-25 Leybold Aktiengesellschaft Apparatus for transporting substrates
EP0554521A2 (en) * 1992-02-04 1993-08-11 Leybold Aktiengesellschaft Apparatus for heat treating and transporting substrates
US6267075B1 (en) * 1998-07-09 2001-07-31 Yield Engineering Systems, Inc. Apparatus for cleaning items using gas plasma
JP2010518604A (en) * 2007-02-01 2010-05-27 ウィラード アンド ケルシー ソーラー グループ, エルエルシー Glass sheet semiconductor coating system and method and resulting product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film
JPS5742118A (en) * 1980-08-27 1982-03-09 Mitsubishi Electric Corp Plasma cvd device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device
JPS5681923A (en) * 1979-12-06 1981-07-04 Sumitomo Electric Ind Ltd Manufacture of thin film
JPS5742118A (en) * 1980-08-27 1982-03-09 Mitsubishi Electric Corp Plasma cvd device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476219A2 (en) * 1990-09-21 1992-03-25 Leybold Aktiengesellschaft Apparatus for transporting substrates
EP0554521A2 (en) * 1992-02-04 1993-08-11 Leybold Aktiengesellschaft Apparatus for heat treating and transporting substrates
US6267075B1 (en) * 1998-07-09 2001-07-31 Yield Engineering Systems, Inc. Apparatus for cleaning items using gas plasma
JP2010518604A (en) * 2007-02-01 2010-05-27 ウィラード アンド ケルシー ソーラー グループ, エルエルシー Glass sheet semiconductor coating system and method and resulting product

Also Published As

Publication number Publication date
JPH0436453B2 (en) 1992-06-16

Similar Documents

Publication Publication Date Title
EP0606751B1 (en) Method for depositing polysilicon films having improved uniformity and apparatus therefor
KR101369282B1 (en) High productivity thin film deposition method and system
EP0198842B1 (en) Reactor apparatus for semiconductor wafer processing
KR20030066760A (en) Chamber for uniform substrate heating
CN103074606A (en) Graphite plate, reaction chamber with graphite plate, and substrate heating method
JPS6342115A (en) Manufacture of film
US20040149716A1 (en) Chamber for uniform substrate heating
WO2012028704A1 (en) Substrate heating device
US20040226513A1 (en) Chamber for uniform heating of large area substrates
JPS59167013A (en) Plasma cvd equipment
KR101035828B1 (en) Chamber for uniform substrate heating
JPS5914633A (en) Plasma cvd apparatus
JP2023533400A (en) epitaxial growth equipment
JP2002270600A (en) Plasma cvd apparatus, plasma cvd method and thin film solar cell
JP2504489B2 (en) Chemical vapor deposition
JPS63283016A (en) Plasma cvd device
JP7417722B2 (en) Heating element for epitaxial growth equipment
JPH0351971Y2 (en)
JP2001214276A (en) Deposited film depositing apparatus
JPS59167012A (en) Plasma cvd equipment
JP2562686B2 (en) Plasma processing device
JPS6329926A (en) Plasma cvd equipment
JPH0338730B2 (en)
JP2001308014A (en) Chemical vapor deposition apparatus
JPH0666276B2 (en) Mask for thin film production