JPS63284864A - Manufacture of insulated-gate field-effect transistor - Google Patents

Manufacture of insulated-gate field-effect transistor

Info

Publication number
JPS63284864A
JPS63284864A JP11954087A JP11954087A JPS63284864A JP S63284864 A JPS63284864 A JP S63284864A JP 11954087 A JP11954087 A JP 11954087A JP 11954087 A JP11954087 A JP 11954087A JP S63284864 A JPS63284864 A JP S63284864A
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
epitaxial growth
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11954087A
Other languages
Japanese (ja)
Inventor
Kenji Aoki
健二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP11954087A priority Critical patent/JPS63284864A/en
Priority to EP88303695A priority patent/EP0289246A1/en
Publication of JPS63284864A publication Critical patent/JPS63284864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep an impurity concentration of a channel region to a low level and make it possible to have a high mobility of a gate oxide by forming the gate oxide film at a temperature which is lower than that of an epitaxial growth in the case of forming the channel region with a CVD technique when the gate oxide film is formed. CONSTITUTION:After forming an epitaxial growth layer 2, a substrate is set in a hot wall-type CVD device under reduced pressure. Dichlorosilane and dinitrogen monoxide are used as material gases to form a gate oxide film 3 and the excellent oxide film is obtained, for example, by keeping a substrate temperature at 850 deg.C and by setting a gas pressure and a gas flow rate at optimum conditions. In this way, an impurity diffusion is suppressed to the extent that its diffusion from a highly concentrated substrate 1 to a low concentrated epitaxial growth layer 2 is negligible and operations can be performed at great speed by forming the gate oxide film 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速かつ低消費電力で動作し超LSIなどの
基本素子として用いられる絶縁ゲート電界効果トランジ
スタ(以下、MOSFETと略す)の製造方法に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for manufacturing an insulated gate field effect transistor (hereinafter abbreviated as MOSFET), which operates at high speed and with low power consumption and is used as a basic element of VLSI etc. Regarding.

〔発明の概要〕[Summary of the invention]

近年、分子線エピタキシャル成長法(以下、MBEと略
す)や分子層エピタキシャル成長法(以下MLEと略す
)による結晶成長技術の進歩によって、低温において単
原子層の精度で単結晶薄膜を形成できるようになってき
た。例えばMBHについては、応用物理、第51巻、第
8号(1982)P、938〜P、941において、ま
たMLEについては、例えば、Sem1conduct
or Ho1d 1985.1.P、135〜P、14
0において報告されている。本発明は、上述の結晶成長
法を用いて高濃度基板上に低温でエピタキシャル成長を
行うことにより低不純物濃度のチャネル領域を形成する
とともに、CVD法を用いてゲート酸化膜形成時の基板
温度を低くすることにより、高濃度基板からチャネル領
域への不純物の拡散を防止している。これにより、耐ラ
ンチアップ性に優れ、短チヤネル効果防止に有効で、か
つ移動度の高いデバイス構造を実現できる。
In recent years, advances in crystal growth technology using molecular beam epitaxial growth (hereinafter referred to as MBE) and molecular layer epitaxial growth (hereinafter referred to as MLE) have made it possible to form single-crystal thin films with the precision of a single atomic layer at low temperatures. Ta. For example, regarding MBH, see Applied Physics, Vol. 51, No. 8 (1982) P, 938-P, 941, and regarding MLE, e.g.
orHold 1985.1. P, 135-P, 14
Reported in 0. The present invention forms a channel region with a low impurity concentration by performing epitaxial growth on a high concentration substrate at a low temperature using the above-mentioned crystal growth method, and also lowers the substrate temperature when forming a gate oxide film using a CVD method. This prevents impurities from diffusing from the highly doped substrate to the channel region. This makes it possible to realize a device structure that has excellent launch-up resistance, is effective in preventing short channel effects, and has high mobility.

〔従来の技術〕[Conventional technology]

従来は、MBEあるいはMLEを用いて、高濃度基板上
に低濃度のエピタキシャル成長層を形成してチャネル領
域とした後に、熱酸化法を用いてゲート酸化膜を形成し
ていた。
Conventionally, a low concentration epitaxial growth layer was formed on a high concentration substrate using MBE or MLE to form a channel region, and then a gate oxide film was formed using a thermal oxidation method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

不純物純度がI XIO”cm−’の高濃度基板上に約
1000人の膜厚を有するエピタキシャル成長層を例え
ばMBE法を用いて、例えば基板温度850℃で形成し
た場合の不純物濃度分布は、第3図の曲線aのようにな
る。
When an epitaxial growth layer having a thickness of about 1,000 layers is formed on a highly concentrated substrate with an impurity purity of I It will look like curve a in the figure.

尚、第3図において横軸Xは、エピタキシャル成長層表
面をOとして深さ方向を正にとっている。
In FIG. 3, the horizontal axis X takes the surface of the epitaxial growth layer as O, and the depth direction is positive.

しかし、ゲート酸化膜を熱酸化法を用いて例えば、10
00℃、 lQmin、という条件で約300人形成し
た後のエピタキシャル成長層の不純物濃度分布は、基板
からの不純物拡散のために、第3図の曲線すのようにな
る。このため、チャネル領域の不純物濃度が高くなって
しまい、実効的に移動変が低下するという問題があった
However, if the gate oxide film is formed using a thermal oxidation method, for example,
The impurity concentration distribution of the epitaxial growth layer after approximately 300 layers were formed under the conditions of 00° C. and lQmin becomes as shown in the curve in FIG. 3 due to impurity diffusion from the substrate. As a result, the impurity concentration in the channel region becomes high, resulting in a problem that the transfer variation is effectively reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、MOS F ETのゲート酸化膜形成時に、
従来から用いられてきた熱酸化法は用いないで、CVD
法を用いることにより、チャネル領域を形成した時のエ
ピタキシャル成長温度よりも低い温度においてゲート酸
化膜を形成し、高濃度基板からの不純物のチャネル領域
への拡散を防止し、チャネル領域の不純物濃度を低く保
ち、高移動度を実現している。
In the present invention, when forming a gate oxide film of a MOS FET,
CVD does not use the conventional thermal oxidation method.
By using this method, the gate oxide film is formed at a temperature lower than the epitaxial growth temperature when forming the channel region, preventing the diffusion of impurities from the high concentration substrate into the channel region, and lowering the impurity concentration in the channel region. and achieves high mobility.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明の詳細な説明する。第1
図f8) 〜fc)は、本発明によるMOSFETの製
造工程順断面図である。850℃以下の基板温度におい
て第1図1blで示すような高濃度基板1の上に形成さ
れた低濃度エピタキシャル成長層2の上に、エピタキシ
ャル成長温度よりも低い温度においてゲート酸化膜3を
形成するには、以下のような方法を用いる。即ち1.第
1図fa)でエピタキシャル成長N2を形成した後、ホ
ットウォール型の減圧CVD装置内に基板をセントする
。ゲート酸化膜3形成のための材料ガスにジクロルシラ
ン(SiHzC!□)及び亜酸化窒素(NzO)を用い
て、例えば基板温度を850℃に保ち、ガス圧力、ガス
流量などを最適条件に設定することにより、良好な酸化
膜を得ることができる。このようにして第1図1blに
示すようにゲート酸化膜3を形成すれば、従来の熱酸化
法を用いて酸化膜を形成していた際に生じる高濃度基板
1から低濃度エピタキシャル成長層2への不純物の拡散
を無視できる程度に抑えることができ、第2図に示すよ
うな不純物濃度の低いチャネル領域を高濃度基板上に設
けることができる。
Hereinafter, the present invention will be described in detail based on Examples. 1st
Figures f8) to fc) are cross-sectional views in the order of manufacturing steps of the MOSFET according to the present invention. To form a gate oxide film 3 at a temperature lower than the epitaxial growth temperature on a low concentration epitaxial growth layer 2 formed on a high concentration substrate 1 as shown in FIG. 1 1bl at a substrate temperature of 850° C. or less , using the following method. Namely 1. After epitaxial growth N2 is formed in FIG. 1fa), the substrate is placed in a hot wall type low pressure CVD apparatus. Dichlorosilane (SiHzC!□) and nitrous oxide (NzO) are used as material gases for forming the gate oxide film 3, and the substrate temperature is maintained at, for example, 850° C., and the gas pressure, gas flow rate, etc. are set to optimal conditions. Accordingly, a good oxide film can be obtained. If the gate oxide film 3 is formed in this manner as shown in FIG. The diffusion of impurities can be suppressed to a negligible level, and a channel region with a low impurity concentration as shown in FIG. 2 can be provided on a highly doped substrate.

尚、第2図において横軸Xはエピタキシャル成長層表面
を0として深さ方向を正にとっている。
In FIG. 2, the horizontal axis X takes the surface of the epitaxial growth layer as 0 and the depth direction as positive.

この後、第1図中)に示すように、多結晶シリコンを堆
積してゲート5とし、ゲート5のパターニング終了後、
第1図(C1に示すようにイオン注入法を用いてソース
6及びドレイン7を形成している。
After this, as shown in FIG. 1), polycrystalline silicon is deposited to form the gate 5, and after patterning of the gate 5,
As shown in FIG. 1 (C1), the source 6 and drain 7 are formed using the ion implantation method.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、高濃度基板上に形成し
た低濃度エピタキシャル成長薄膜層をチャネル領域とし
て用いるに際して、ゲート酸化膜形成時における不純物
の基板からチャネル領域への拡散を防止している。この
ためゲートM化膜形成後でもチャネル領域の不純物濃度
を十分低くすることができる。従って、本発明によるM
OSFETは高速動作を特徴とする。更に、耐ラツチア
ツプ性や短チヤネル効果防止のうえで優れている。
As described above, according to the present invention, when a low concentration epitaxially grown thin film layer formed on a high concentration substrate is used as a channel region, diffusion of impurities from the substrate to the channel region during gate oxide film formation is prevented. . Therefore, even after forming the gate M film, the impurity concentration in the channel region can be made sufficiently low. Therefore, M according to the present invention
OSFETs are characterized by high speed operation. Furthermore, it is excellent in terms of latch resistance and prevention of short channel effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 〜(C1は、本発明によるMOSFET
(7)製造工程順断面図、第2図は、本発明によるMO
SFETのチャネル領域における不純物濃度分布図、第
3図は1、ゲート酸化膜を熱酸化法により形成した従来
のMOSFETのチャネル領域における不純物濃度の変
化を示す図である。 ■・・・高濃度基板 2・・・エピタキシャル成長層 3・・・ゲート酸化膜 4・・・多結晶シリコン 5・・・ゲート6・・・ソー
ス     7・・・ドレイン以上 出願人 セイコー電子工業株式会社 本16I!月1日ろMOSFETの製表1才隻11頁断
光図、本、ial’(Iて =t  6 M OS F
 ETV)+JILAft%て′のl統牛功濃簾4N申
1目
FIG. 1 (al ~ (C1 is a MOSFET according to the present invention)
(7) A cross-sectional view of the manufacturing process, FIG. 2 shows the MO according to the present invention.
FIG. 3 is a diagram showing the impurity concentration distribution in the channel region of a conventional MOSFET in which a gate oxide film is formed by thermal oxidation. ■...High concentration substrate 2...Epitaxial growth layer 3...Gate oxide film 4...Polycrystalline silicon 5...Gate 6...Source 7...Drain and above Applicant Seiko Electronics Industries, Ltd. Book 16I! Monthly MOSFET manufacturing table 11 pages cross section diagram, book, ial'(Ite =t 6 M OS F
ETV) + JILAft%te' l togyukonoren 4N Monkey 1

Claims (1)

【特許請求の範囲】[Claims] 基板温度850℃以下において、高濃度基板上に不純物
濃度の低いエピタキシャル成長層を形成してチャネルと
した後に、CVD法を用いてエピタキシャル成長温度よ
りも低い温度で前記エピタキシャル成長層の上にゲート
酸化膜を形成することを特徴とする絶縁ゲート電界効果
トランジスタの製造方法。
After forming an epitaxial growth layer with a low impurity concentration on a high concentration substrate to form a channel at a substrate temperature of 850° C. or lower, a gate oxide film is formed on the epitaxial growth layer using a CVD method at a temperature lower than the epitaxial growth temperature. A method of manufacturing an insulated gate field effect transistor, characterized by:
JP11954087A 1987-04-27 1987-05-15 Manufacture of insulated-gate field-effect transistor Pending JPS63284864A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11954087A JPS63284864A (en) 1987-05-15 1987-05-15 Manufacture of insulated-gate field-effect transistor
EP88303695A EP0289246A1 (en) 1987-04-27 1988-04-25 Method of manufacturing MOS devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11954087A JPS63284864A (en) 1987-05-15 1987-05-15 Manufacture of insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63284864A true JPS63284864A (en) 1988-11-22

Family

ID=14763817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11954087A Pending JPS63284864A (en) 1987-04-27 1987-05-15 Manufacture of insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63284864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228330B1 (en) * 1995-12-29 1999-11-01 김영환 Mosfet device and a manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228330B1 (en) * 1995-12-29 1999-11-01 김영환 Mosfet device and a manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH02140915A (en) Manufacture of semiconductor device
JPS6158879A (en) Preparation of silicon thin film crystal
JPH04139728A (en) Manufacture of polycrystalline field-effect transistor
JPS63284864A (en) Manufacture of insulated-gate field-effect transistor
KR960004902B1 (en) Preparation of polycrystalline silicon thin film
JPH039534A (en) Field effect transistor using silicon carbide
JPH033365A (en) Semiconductor device
JPH02203564A (en) Silicon carbide semiconductor device
JPS60193379A (en) Formation for low-resistance single crystal region
JPH0254538A (en) Manufacture of p-channel thin film transistor
JPH02184076A (en) Manufacture of thin film transistor
JPH0435019A (en) Thin film transistor
JPS62124736A (en) Silicon thin-film and manufacture thereof
KR960026967A (en) Polycrystalline Thin Film Transistor and Manufacturing Method Thereof
JPH0272669A (en) Thin film semiconductor device and manufacture thereof
JPH0488642A (en) Manufacture of thin film transistor
JPS61203682A (en) Semiconductor device and manufacture thereof
JPH0350873A (en) Thin-film transistor
JPH0320084A (en) Manufacture of thin film transistor
JPS6410620A (en) Manufacture of semiconductor device
JPH04144123A (en) Manufacture of semiconductor device
JPH01276615A (en) Manufacture of semiconductor device
JPH0294625A (en) Polycrystalline silicon film, formation of same film, and photovoltaic device using same film
KR19980040629A (en) Salicide Formation Method of Semiconductor Device
JPS61247680A (en) Soi crystal growth process