JPS63284722A - Manufacture of linear oxide superconductor - Google Patents

Manufacture of linear oxide superconductor

Info

Publication number
JPS63284722A
JPS63284722A JP62118215A JP11821587A JPS63284722A JP S63284722 A JPS63284722 A JP S63284722A JP 62118215 A JP62118215 A JP 62118215A JP 11821587 A JP11821587 A JP 11821587A JP S63284722 A JPS63284722 A JP S63284722A
Authority
JP
Japan
Prior art keywords
oxide superconductor
linear
temperature
baking
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62118215A
Other languages
Japanese (ja)
Inventor
Katsunori Nishioka
西岡 克典
Yoshie Ishii
石井 良衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62118215A priority Critical patent/JPS63284722A/en
Priority to DE3853444T priority patent/DE3853444D1/en
Priority to EP88107555A priority patent/EP0291034B1/en
Publication of JPS63284722A publication Critical patent/JPS63284722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a lengthy sintered body with the excellent characteristic and high critical temperature relatively easily by cutting off the slurry for the superconducting ceramic material into tapes with a slitter, baking them in the oxidizing atmosphere, and continuously winding them utilizing the plasticity at the high temperature. CONSTITUTION:The superconducting oxide powder, an organic binder plasticizer for molding, and an organic solvent are uniformly mixed to form slurry 1, and it is molded into a thin sheet by the doctor blade method. This sheet 5 is then cut off into thin tapes with a slitter 6, the tapes are put into a baking furnace 7 kept at the oxidizing atmosphere and baked at the preset baking temperature, these sintered bodies are wound within the plasticizing temperature range, thus linear lengthy ceramic sintered bodies are formed. Fine tape-shaped moldings to be sintered can be thereby kept at the desired baking temperature in the baking atmosphere, and lengthy linear sintered bodies with the excellent characteristic and high critical temperature can be easily manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明け、線状酸化物超電導体、特に、高い臨界温度を
持つ線状酸化物超電導体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a linear oxide superconductor, particularly a linear oxide superconductor having a high critical temperature.

(従来の技術) 最近、送電などの電力分野、磁気浮上列車、核磁気共鳴
装置、物性研究用などの各分野において、運転コストの
低い超電導ケーブルが望まれている。1987年になっ
て、非常に高い臨界温度(Tc)を持った酸化物超電導
体が発見され、液体窒素温度(77K)でも超電導性を
示すようになった。この超電導体は(Y 、 Ba) 
−Cu−0で代表される組成の酸化物である。これは1
1aGO,、Y2O3、Gunの各粉末を混合、成形後
、プレス成形した後、熱処理して長さが数10m−のブ
ロック状に作成されている。
(Prior Art) Recently, superconducting cables with low operating costs have been desired in various fields such as electric power fields such as power transmission, magnetic levitation trains, nuclear magnetic resonance apparatuses, and physical property research. In 1987, an oxide superconductor with an extremely high critical temperature (Tc) was discovered, and it began to exhibit superconductivity even at liquid nitrogen temperatures (77K). This superconductor is (Y, Ba)
It is an oxide with a composition represented by -Cu-0. This is 1
The powders of 1aGO, Y2O3, and Gun are mixed, molded, press-molded, and then heat-treated to form a block with a length of several tens of meters.

なお、この分野の技術については、例えば雑誌(Phy
s、Rev、Lett、58(1987)P2O3〜9
10)に記載されている。
Regarding technology in this field, for example, please refer to the magazine (Physical
s, Rev. Lett, 58 (1987) P2O3-9
10).

(発明が解決しようとする問題点) 高い臨界温度Tcを持つ酸化物超電導体は、Y −Ba
−(:u−0系酸化物を例にとれば、BaC0,、Y2
O3、Gunの各粉末を混合し、プレス成形した後、熱
処理して作成される。しかし、このような作成方法では
、長さが、たかだか数10+uiのブロック状のものし
か作成できず、このため超電導マグネットやケーブルに
不可欠な長尺の線状にはできないという難点があった。
(Problem to be solved by the invention) An oxide superconductor with a high critical temperature Tc is Y-Ba
-(: Taking u-0 type oxide as an example, BaC0,, Y2
It is created by mixing O3 and Gun powders, press-molding, and then heat-treating. However, with this manufacturing method, it is only possible to create blocks with a length of at most several 10+ ui, which has the disadvantage that it is not possible to create long wires that are essential for superconducting magnets and cables.

この発明は、以上のような問題点を解決するためになさ
れたもので、従来よりも高い温度で運転できる超電導マ
グネットや送電用ケーブルに適用できる高い臨界温度を
持つ酸化物超電導線を得ることを[1的としている。
This invention was made to solve the above problems, and aims to obtain an oxide superconducting wire with a high critical temperature that can be applied to superconducting magnets and power transmission cables that can operate at higher temperatures than conventional ones. [It is considered as 1 target.

(間■点を解決するための手段) このため、この発明においては、焼成によって酸化物超
電導体を生成するように配合された酸化物、硝酸基部よ
び炭酸塩のうち、いずれか一種以上の粉末、あるいはす
でに超電導性を有する酸化物粉末と、成形用の有機バイ
ンダー可塑剤および、有機溶剤を均一に混合、攪拌して
、スラリーを作成し、これをドクターブレード法により
、薄いシート状に成形し、しかる後、このシートをスリ
ッターにて細いテープ状に切断し、酸化雰囲気にした焼
成炉に入れ、所定の焼成温度にて焼成し、さらにこの焼
結体の可塑化温度範囲にて巻き取るこにより線状の長尺
のセラミック焼結体を作成する方法により前記目的を達
成しようとするものである。
(Means for Solving the Problems) Therefore, in the present invention, a powder of at least one of oxides, nitric acid groups, and carbonates blended to produce an oxide superconductor by firing Alternatively, an oxide powder that already has superconductivity, an organic binder plasticizer for molding, and an organic solvent are uniformly mixed and stirred to create a slurry, which is then molded into a thin sheet using a doctor blade method. After that, this sheet is cut into thin tapes using a slitter, placed in a firing furnace with an oxidizing atmosphere, fired at a predetermined firing temperature, and further rolled up within the plasticizing temperature range of this sintered body. The present invention aims to achieve the above object by a method of producing a linear elongated ceramic sintered body.

なお、シート成形から、スリッティング、焼成炉での焼
成および巻取りに到るまでを連続的に行うものである。
Note that the process from sheet forming to slitting, firing in a firing furnace, and winding is performed continuously.

(作用) 以上のようなこの発明の製造方法によれば、線材化を行
うのにドクターブレード法によるシート、 成形、なら
びにバインダーを含有した段階でスリッティングによる
細片化を行っているため、長尺の線材化が比較的容易で
あり、また、焼成においては、焼成炉中の雰囲気を酸化
雰囲気に調整できるため、被焼結体である細片テープ状
成形体を所望の焼成温度、焼成雰囲気にすることができ
、特性の優れた長尺の高い臨界温度を有する線状焼結体
が容易に製作可能となる。
(Function) According to the manufacturing method of the present invention as described above, the wire rods are formed into sheets by the doctor blade method, and then cut into pieces by slitting at the stage where the binder is contained, so that the wire rods can be made into long wires. It is relatively easy to make a length wire rod, and during firing, the atmosphere in the firing furnace can be adjusted to an oxidizing atmosphere. This makes it possible to easily produce a long linear sintered body with excellent properties and a high critical temperature.

(実施例) 以下に、この発明を、実施例に基づいて詳細に説明する
(Examples) The present invention will be described in detail below based on Examples.

第1図は、本発明に係わる線状セラミック焼結体の製造
方法を示す模式図である。
FIG. 1 is a schematic diagram showing a method for manufacturing a linear ceramic sintered body according to the present invention.

図において、1はスラリー、2は成形用フィルム、3は
ドクターブレード、4はシート乾燥炉、5は成形シート
、6はスリッター、7は焼成炉、8は巻取り炉、9は巻
取りリールである。
In the figure, 1 is a slurry, 2 is a forming film, 3 is a doctor blade, 4 is a sheet drying furnace, 5 is a forming sheet, 6 is a slitter, 7 is a firing furnace, 8 is a winding furnace, and 9 is a winding reel. be.

(実施例り 組成比が(Baa、aYo、J 2CuO,になるよう
に配合したDaCOi、Y2O3、CuOの炭酸塩、酸
化物の原料粉末(純度99.99%、平均粒径約10μ
m)IKgに、有機バインダーとしてポリビニル・ブチ
ラール樹衡を50g、可塑剤としてジブチル・フタレー
ト30g、ならびに溶剤として、トルエン・エタノール
混合液400gを加え、ボールミルにて24時間混合し
、成形用スラリーを作成した。
(Example) Raw material powders of carbonates and oxides of DaCOi, Y2O3, and CuO blended so that the composition ratio is (Baa, aYo, J2CuO) (purity 99.99%, average particle size approximately 10μ
m) Add 50 g of polyvinyl butyral resin as an organic binder, 30 g of dibutyl phthalate as a plasticizer, and 400 g of a toluene/ethanol mixture as a solvent to IKg, and mix in a ball mill for 24 hours to create a slurry for molding. did.

このスラリー1を用いて、ドクターブレード3により、
成形用フィルム2−トにスラリーを流延し、乾燥炉4で
100℃で1時間乾燥を行い。
Using this slurry 1, with a doctor blade 3,
The slurry was cast onto a forming film 2-t, and dried in a drying oven 4 at 100°C for 1 hour.

50II11巾で、厚さ0.5mmの乾燥シート5を作
成した。次にスリッター6により、両端部は除いて、該
シートの中央部より巾2.5雪−のもの2本を増り出し
、1100℃の焼成炉7にて10時間焼成を行った。こ
の焼結テープ10を次の1000℃の巻取つり炉8にて
焼結テープの可塑化を使用して、アルミナ製リール9に
巻き取った。
A drying sheet 5 having a width of 11 widths and a thickness of 0.5 mm was prepared. Next, with the slitter 6 excluding both ends, two sheets with a width of 2.5 cm were extracted from the center of the sheet and fired in a firing furnace 7 at 1100° C. for 10 hours. This sintered tape 10 was then wound onto an alumina reel 9 in a winding and hanging furnace 8 at 1000° C. using plasticization of the sintered tape.

このようにして、焼結体として、巾2mmX厚0.4m
mの断面を持つテープ状線材を約10m得た。
In this way, the sintered body was made into a sintered body with a width of 2 mm and a thickness of 0.4 m.
Approximately 10 m of tape-shaped wire material having a cross section of m was obtained.

これについて、一部(長さ約40mm)を取り出して、
液体窒素温度まで冷却して、通電試験を行った結果、1
平方Cl11当り100Aの超電導電流が得られた。
Regarding this, I took out a part (about 40 mm in length) and
As a result of cooling to liquid nitrogen temperature and conducting a current test, 1
A superconducting current of 100 A per square Cl11 was obtained.

(実施例2ン (Yo、6BaO,4) 2(:u207になるように
配合したHa、Y、Cuの硝酸塩粉末を酸素を含む雰囲
気中600〜1100℃で熱処理して、酸化物とした。
(Example 2) Nitrate powders of Ha, Y, and Cu blended to give 2(Yo, 6BaO, 4)2(:u207) were heat-treated at 600 to 1100°C in an oxygen-containing atmosphere to form oxides.

この状態て既に酸化物粉末は超電導性を示すことが磁化
測定によって確認できた。
It was confirmed by magnetization measurements that the oxide powder already exhibits superconductivity in this state.

次に、この粉末を用いて上記実施例と同様にテープ状線
材を製作し、液体窒素温度で通電試験を行った結果、同
じ断面寸法の従来のブロック状サンプルと同等以上の臨
界電流が得られた。。
Next, a tape-shaped wire rod was manufactured using this powder in the same manner as in the above example, and a current conduction test was conducted at liquid nitrogen temperature. As a result, a critical current equivalent to or higher than that of a conventional block-shaped sample with the same cross-sectional dimensions was obtained. Ta. .

(実施例3) (Ybo、5Bao、4) 3(:u+Osになるよう
に配合シタB a (:03. Y b 20 、 、
Cu Oの各原料粉末(純度99.99%、を均粒径約
10μm)を800〜1100℃で熱処理して酸化物粉
末を得た。この状態で既に、酸化物粉末は超電導性を示
すことが磁化測定によって確認できた。
(Example 3) (Ybo, 5Bao, 4) 3(:u+Os) B a (:03. Y b 20 , ,
Each raw material powder of Cu 2 O (99.99% purity, average particle size of about 10 μm) was heat-treated at 800 to 1100° C. to obtain oxide powder. It was confirmed by magnetization measurements that the oxide powder already exhibits superconductivity in this state.

次に、上記した二つの実施例と同様にテープ状線材を製
作した。これについても同様に、臨界電流を測定し、そ
の結果、やはり従来のブロック状サンプルと同等以上の
臨界電流を有することが判明した。
Next, a tape-shaped wire material was manufactured in the same manner as in the two examples described above. The critical current of this sample was similarly measured, and the results revealed that it had a critical current equivalent to or higher than that of the conventional block-shaped sample.

なお、ト記実施例においては、Y−Ha−Cu−0系%
Yb −Ha −Cu −0系酸化物について説明した
が、これ以外の臨界温度の高い超電導体、例えば、Sc
 −Da −Cu −0系、 La−5r−Cu−0系
の酸化物としてもよい。すなわち、この発明に係わる酸
化物超電導体は、閘、が■1族の元素、M2が■1の元
素のものである。■1族元素としては1.a、 Y、Y
b%Sc、 Ce、 Pr1.Sm、 Ho、 Erお
よびT−のし)ずれか一種以上のものが用いられる。ま
た、II■族元素としてはBa、 Sr、CaおよびM
gのいずれか一種以上が用いられる。
In addition, in the above example, Y-Ha-Cu-0 system%
Although the Yb-Ha-Cu-0-based oxide has been described, other superconductors with high critical temperatures, such as Sc
-Da-Cu-0-based or La-5r-Cu-0-based oxides may also be used. That is, in the oxide superconductor according to the present invention, M2 is an element of group 1 and M2 is an element of group 1. ■As a Group 1 element, 1. a, Y, Y
b%Sc, Ce, Pr1. One or more of Sm, Ho, Er and T-Noshi is used. Group II■ elements include Ba, Sr, Ca, and M.
One or more of g is used.

また、この発明に係わる原料粉末は、酸化物、炭酸塩、
硝酸塩などの超電導性を示さないものだけでなく、すで
に超電導性を有する酸化物粉末でもよい。なお、上記実
施例においては、出発原料が酸化物と炭酸塩を組合せた
もの、および硝酸塩だけのものを示したが、安定な酸化
物が得られれば酸化物のみの組合せでも差支えない。
In addition, the raw material powder according to this invention includes oxides, carbonates,
In addition to powders that do not exhibit superconductivity, such as nitrates, oxide powders that already have superconductivity may be used. In the above examples, the starting materials were a combination of an oxide and a carbonate, and a nitrate alone, but a combination of only oxides may be used as long as a stable oxide can be obtained.

さらに、この発明に係わる焼成は酸素を含む雰囲気中で
行う。また、焼成温度としては600℃では炭酸塩が分
解せず、1500℃以トでは酸化物が不安定になるので
600〜1500℃の温度範囲がよい。
Furthermore, the firing according to the present invention is performed in an atmosphere containing oxygen. Further, as the firing temperature, the carbonate does not decompose at 600°C, and the oxide becomes unstable at 1500°C or higher, so a temperature range of 600 to 1500°C is preferable.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明によれば、超電導用セ
ラミック材料のスラリーをドクターブレード法によりシ
ート状に成形しスリッターによりテープ状に切断し、焼
成炉において酸化雰囲気において焼成し、高温における
可塑性を利用して、連続的に巻き取る構成としたことに
より、比較的容易に、特性の優れた長尺の高い臨界温度
を持つ超電導体を得ることができる。
As explained above, according to the present invention, a slurry of superconducting ceramic material is formed into a sheet shape using a doctor blade method, cut into tape shapes using a slitter, and fired in an oxidizing atmosphere in a firing furnace to improve plasticity at high temperatures. By using this method and winding it up continuously, a long superconductor with excellent properties and a high critical temperature can be obtained relatively easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による模式図を示す。 1−−スラリー 2−一成形用フィルム 3−−ドクターブレード 4・−一シート乾燥炉 5・・・−成形シート 6・−・−スリッター ? −−−−焼成炉 8−一・巻取り炉 9・・・・・・巻取りリール FIG. 1 shows a schematic diagram according to an embodiment of the invention. 1--Slurry 2-1 Molding film 3--Doctor Blade 4.-One sheet drying oven 5...-molded sheet 6.--Slitter ? ----Kilning furnace 8-1. Winding furnace 9...Take-up reel

Claims (5)

【特許請求の範囲】[Claims] (1)焼成によって酸化物超電導体を生成するように配
合された酸化物、硝酸塩および炭酸塩のうちいずれか一
種以上の粉末、あるいはすでに超電導性を有する酸化物
粉末と、有機樹脂バインダー、可塑剤および有機溶剤よ
り成るスラリーから、ドクターブレード法にてシートを
作成し、該シートをテープ状に切断加工後、焼成して焼
結体となし、該焼結体の可塑化変形温度範囲にて巻取る
工程により製造することを特徴とする線状酸化物超電導
体の製造方法。
(1) A powder of one or more of oxides, nitrates, and carbonates blended to produce an oxide superconductor by firing, or an oxide powder that already has superconductivity, an organic resin binder, and a plasticizer. A sheet is prepared using a doctor blade method from a slurry of organic solvent and the sheet is cut into tape shapes, then fired to form a sintered body, and rolled within the plasticizing deformation temperature range of the sintered body. 1. A method for producing a linear oxide superconductor, the method comprising: producing a linear oxide superconductor.
(2)前記焼結体を作成するための焼成は、酸素を含む
雰囲気中で600℃から1500℃の温度で行うことを
特徴とする特許請求の範囲第1項記載の線状酸化物超電
導体の製造方法。
(2) The linear oxide superconductor according to claim 1, wherein the firing for creating the sintered body is performed at a temperature of 600°C to 1500°C in an atmosphere containing oxygen. manufacturing method.
(3)前記超電導体がM_1、M_2、Cu、Oを含む
元素からなる酸化物で、M_1はIII_■族元素、M_
2はII_■族元素であることを特徴とする特許請求の範
囲第1項または第2項のいずれかに記載の線状酸化物超
電導体の製造方法。
(3) The superconductor is an oxide consisting of elements including M_1, M_2, Cu, and O, where M_1 is a group III_■ element and M_
2. The method for producing a linear oxide superconductor according to claim 1 or 2, wherein 2 is a group II_■ element.
(4)前記III_■族元素は、La、Y、Yb、Ca、
Pr、Ho、Er、SaおよびScのいずれか一種以上
であることを特徴とする特許請求の範囲第3項記載の線
状酸化物超電導体の製造方法。
(4) The group III elements include La, Y, Yb, Ca,
4. The method for producing a linear oxide superconductor according to claim 3, wherein the material is at least one of Pr, Ho, Er, Sa, and Sc.
(5)前記II_■族元素はSr、Ba、CaおよびMg
のいずれか一種以上からなることを特徴とする特許請求
の範囲第3項または第4項に記載の線状酸化物超電導体
の製造方法。
(5) The group II_■ elements are Sr, Ba, Ca, and Mg.
The method for producing a linear oxide superconductor according to claim 3 or 4, characterized in that the method comprises at least one of the following.
JP62118215A 1987-05-15 1987-05-15 Manufacture of linear oxide superconductor Pending JPS63284722A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62118215A JPS63284722A (en) 1987-05-15 1987-05-15 Manufacture of linear oxide superconductor
DE3853444T DE3853444D1 (en) 1987-05-15 1988-05-11 Process for the production of a superconducting oxide.
EP88107555A EP0291034B1 (en) 1987-05-15 1988-05-11 Method for producing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118215A JPS63284722A (en) 1987-05-15 1987-05-15 Manufacture of linear oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63284722A true JPS63284722A (en) 1988-11-22

Family

ID=14731064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118215A Pending JPS63284722A (en) 1987-05-15 1987-05-15 Manufacture of linear oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63284722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410308A (en) * 1990-04-25 1992-01-14 Reiko Co Ltd Superconductive fine wire material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410308A (en) * 1990-04-25 1992-01-14 Reiko Co Ltd Superconductive fine wire material

Similar Documents

Publication Publication Date Title
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPS63284722A (en) Manufacture of linear oxide superconductor
EP0291034B1 (en) Method for producing oxide superconductor
JPS63299015A (en) Manufacture of sheet-like oxide superconductive material
JPS63299209A (en) Manufacture of oxide superconducting coil
JPH0816022B2 (en) Method for manufacturing oxide superconductor
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
JP2590183B2 (en) Method for producing functional oxide elongated body
US5401717A (en) Elongate bismuth system superconductor having aligned 2212 phase
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JP2597844B2 (en) Superconductor manufacturing method
JP2610030B2 (en) Oxide-based superconductor and manufacturing method thereof
JP2597578B2 (en) Superconductor manufacturing method
JPH01163914A (en) Manufacture of oxide superconductive wire
JPS6476946A (en) Production of superconductor
JPH01162307A (en) Manufacture of superconductor coil
JPH01105415A (en) Manufacture of wire made of superconductor ceramic
JPH0196060A (en) Production of oxide superconducting material
JPS63279530A (en) Manufacture of superconductor molding
JPH02175649A (en) Oxide-based high-temperature superconducting ceramics
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH01162304A (en) Oxide superconducting coil
JPH01219058A (en) Superconductor and its production