JPH01162304A - Oxide superconducting coil - Google Patents

Oxide superconducting coil

Info

Publication number
JPH01162304A
JPH01162304A JP62321725A JP32172587A JPH01162304A JP H01162304 A JPH01162304 A JP H01162304A JP 62321725 A JP62321725 A JP 62321725A JP 32172587 A JP32172587 A JP 32172587A JP H01162304 A JPH01162304 A JP H01162304A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconductor
superconducting coil
oxide superconducting
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62321725A
Other languages
Japanese (ja)
Inventor
Motomasa Imai
今井 基真
Hisami Ochiai
落合 久美
Seiichi Yoshida
精一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62321725A priority Critical patent/JPH01162304A/en
Publication of JPH01162304A publication Critical patent/JPH01162304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prevent the deterioration in superconducting characteristics caused by the mechanical stress generated when a winding work is conducted and to sharply reduce the irregularity in manufactured articles by a method wherein an oxide superconducting body and an electric insulator consisting of ceramic are closely fixed, and they are formed into a spiral form by winding them alternately. CONSTITUTION:An oxide superconducting material 2 and an electric insulator 3, made of the ceramic shown by a general formula Ln2MCuO5, are closely adhered and the title coil is formed in spiral form in which they are wound alternately. The Ln in the formula is at least a kind of element selected from La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the M is at least a kind of element selected from bivalent alkaline earth metals. The superconducting material 2 is a perovskite type oxide superconducting material containing a rare-earth element. As a result, the deterioration in superconducting characteristics caused by the mechanical stress generated when a winding work is conducted can be prevented, and the irregularity of manufactured articles can also be reduced sharply.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用い、巻線工程を要せずし
て得られる超電導コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting coil obtained using an oxide superconductor without requiring a winding process.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型([nBa2Cu307−δ型、
δは酸素欠陥を表わし通常1J:1.下、[nは、Y、
 La; Sc、 Nd、 Sm、 Eu、 Gd、D
y、 No、 Er、 Tm、 YbおよびLuから選
ばれた少なくとも1種の元素、Baの一部は釘等で置換
可能)の酸化物超電導体は、臨界温度が90に以上と液
体窒素以上の高い温度を示すため非常に有望な材料どし
て注目されている(Phys、’Rev、 Lett、
Vol、58No、 9.908−910)。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type ([nBa2Cu307-δ type,
δ represents an oxygen defect and is usually 1J:1. Bottom, [n is Y,
La; Sc, Nd, Sm, Eu, Gd, D
Oxide superconductors of at least one element selected from y, No, Er, Tm, Yb, and Lu (some of the Ba can be replaced with nails, etc.) have a critical temperature of 90 or higher and a temperature higher than that of liquid nitrogen. It is attracting attention as a very promising material because it exhibits high temperatures (Phys, 'Rev, Lett,
Vol. 58 No. 9.908-910).

ところで、従来から合金系あるいは金属間化合物系の超
電導体については、各種のコイルが研究され、NMRや
回転電機では既に実用化もされているが、上記酸化物超
電導体は、脆い結晶性の酸化物であって可撓性に乏しい
ため、可撓性の良好な線材あるいはテープを得ることが
困難である。
By the way, various types of coils have been studied for alloy-based or intermetallic compound-based superconductors, and they have already been put to practical use in NMR and rotating electric machines, but the oxide superconductors mentioned above are brittle crystalline oxide Since it is a material with poor flexibility, it is difficult to obtain a wire or tape with good flexibility.

また、この酸化物超電導体は機械的応力に対して弱く、
一定値以上歪むと超電導特性が低下または消滅するため
、線材の巻回時において所望の電流密度を得ることが困
難であり、コイルへの適用が非常に困難視されている。
In addition, this oxide superconductor is weak against mechanical stress,
If the wire is distorted beyond a certain value, the superconducting properties will deteriorate or disappear, making it difficult to obtain a desired current density when winding the wire, making it extremely difficult to apply it to coils.

(発明が解決しようとする問題点) このように、酸化物超電導体を用いて可撓性に優れた線
材を得、かつ巻回時において所望の電流密度を得ること
は困難であるため、酸化物超電導体を用いたコイルの製
造は極めて困難なものであった。
(Problems to be Solved by the Invention) As described above, it is difficult to obtain a wire with excellent flexibility using an oxide superconductor and to obtain a desired current density during winding. Manufacturing coils using physical superconductors has been extremely difficult.

本発明は、かかる従来の難点を解決すべくなされたもの
で、酸化物超電導体を用い、巻線工程を要せずして得ら
れる酸化物超電導コイルを提供することを目的とする。
The present invention has been made to solve these conventional problems, and an object of the present invention is to provide an oxide superconducting coil that can be obtained using an oxide superconductor without requiring a winding process.

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超電導コイルは、酸化物超電
導体と、−船底Ln2MCuO,,(Lnは、YlLa
、 Sc、 Nd、 Sm、 Eu、 Gd、 Dy、
 Ho、Er、 Tm、 YbおよびLuから選ばれた
少なくとも1種の元素、Hは2価のアルカリ土類金属か
ら選ばれた少なくとも1種の元素)で表されるセラミッ
クスからなる電気絶縁物とが密着して、交互に螺旋状に
形成されてなることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the oxide superconducting coil of the present invention includes an oxide superconductor, -bottom Ln2MCuO,, (Ln is YlLa
, Sc, Nd, Sm, Eu, Gd, Dy,
An electrical insulator made of ceramics represented by at least one element selected from Ho, Er, Tm, Yb and Lu, H being at least one element selected from divalent alkaline earth metals. It is characterized by being formed in close contact and alternately in a spiral shape.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

ここでいう希土類元素を含有しベロアスカイト型構造を
有する酸化物超電導体は、超電導状態を実現できるもの
であればよく、LnBa2 Cu307−δ系(δは酸
素欠陥を表し通常1以下の数、Lnは、Y、 La、 
5cSNd、 Sm、 Eu、 Gd、 Dy、 Ho
、 ErSTm。
The oxide superconductor containing a rare earth element and having a velorskite structure may be one that can realize a superconducting state, and may be of the LnBa2 Cu307-δ system (δ represents an oxygen defect and is usually a number of 1 or less, Ln is Y, La,
5cSNd, Sm, Eu, Gd, Dy, Ho
, ErSTm.

YbおよびLuから選ばれた少なくとも1種の元素、B
aの一部はSr等で置換可能)等の酸素欠陥を有する欠
陥ペロブスカイト型、5r−La−Cu−0系等の層状
ベロアスカイト型等の広義にペロブスカイト型を有する
酸化物が例示される。また希土類元素も広義の定義とし
、Sc1’fおよびLa系を含むものとする。代表的な
系としてY−Ba−Cu−0系のほかに、YをEu、 
Dy、 Ho、 Er、 Tm、 Yb、 Lu等の希
土類で置換した系、5c−Ba−Cu−0系、5r−L
a−Cu−0系、さらにSrをBa、 Caで置換した
系等が挙げられる。
At least one element selected from Yb and Lu, B
Examples include oxides having a perovskite type in a broad sense, such as a defective perovskite type having oxygen vacancies such as (part of a can be replaced with Sr etc.), and a layered velourskite type such as 5r-La-Cu-0 system. . Rare earth elements are also broadly defined to include Sc1'f and La-based elements. In addition to the Y-Ba-Cu-0 system, representative systems include Y for Eu,
Dy, Ho, Er, Tm, Yb, system substituted with rare earth elements such as Lu, 5c-Ba-Cu-0 system, 5r-L
Examples include the a-Cu-0 system and systems in which Sr is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
ようにして製造される。
The oxide superconductor used in the present invention is manufactured, for example, as shown below.

まず、Y、 Ba、 Cu等のペロブスカイト型酸化物
超電導体の構成元素を充分混合する。混合の際には、Y
2O3、[u203、CuO等の酸化物を原料として用
いることができる。また、これらのぽかに、焼成後酸化
物に転化する炭酸塩、硝酸塩、水酸化物等の化合物を用
いてもよい。さらには、共沈法等で得たシュウ酸塩等を
用いてもよい。ペロブスカイト型酸化物超電導体を構成
する元素は、基本的に化学量論比の組成となるように混
合するが、多少製造条件等との関係でずれていても差支
えない。たとえば、Y−Ba−Cu−0系ではY 1 
molに対しBa 2 mol、Cu 3 molが標
準組成であるが、実用上はY 1 molに対して、B
a 2±0.6 mol、Cu 3±0.2 mol程
度のずれは問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. When mixing, Y
Oxides such as 2O3, [u203, CuO, etc. can be used as raw materials. In addition, compounds such as carbonates, nitrates, hydroxides, etc., which are converted into oxides after firing, may be used in these materials. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions. For example, in the Y-Ba-Cu-0 system, Y 1
The standard composition is Ba 2 mol and Cu 3 mol per mol, but in practice, Ba 2 mol and Cu 3 mol are
A deviation of about 2±0.6 mol and Cu 3±0.2 mol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を向上させる。この熱処理は、通常、600
℃以下で徐冷しながら行う。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to improve superconducting properties. This heat treatment is usually 600
Do this while slowly cooling below ℃.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa2 
Cu307−6、δは通常1以下)となる。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa2
Cu307-6, δ is usually 1 or less).

なお、BaをSr、 Caの少なくとも1種で置換する
こともでき、ざらにCuの一部をTi1V、 Cr、 
Hn、 Fe。
Note that Ba can also be replaced with at least one of Sr and Ca, and roughly a part of Cu can be replaced with Ti1V, Cr,
Hn, Fe.

C01H+、zn等で置換することもできる。It can also be replaced with C01H+, zn, etc.

この置換量は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80mo 1%以下、さらに
実用上は20mo1%以下程度までとする。
The amount of this substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be limited to 80mo 1% or less, and more practically 20mo 1% or less. .

また、本発明に用いる電気絶縁物としては、−船底しn
21(CIJO5(Lnは、 Y、 La、 Sc、 
Nd、 8m、 Eu。
In addition, the electrical insulators used in the present invention include -ship bottom n
21 (CIJO5 (Ln is Y, La, Sc,
Nd, 8m, Eu.

GdXDV、HOlEr、 Tm、 YbおよびLuか
ら選ばれた少なくとも1種の元素、Hは2価のアルカリ
土類金属から選ばれた少なくとも1種の元素)で表され
るセラミックスが好ましい。これは、酸化物超電導体の
焼成時における収縮と上記セラミックスの収縮をほぼ一
致させることができ、さらに焼成時における酸化物超電
導体と電気絶縁物との間の相互拡散による特性への影響
を小さくできるため、このセラミックスを電気絶縁物と
して用いることにより、製造時に収縮率の違いに起因し
て、接合面に生じるクラックや歪の発生を抑止して、酸
化物超電導体の超電導特性の低下やコイルの機械的強度
の低下を防止することができるからである。
Ceramics represented by at least one element selected from GdXDV, HOlEr, Tm, Yb, and Lu, where H is at least one element selected from divalent alkaline earth metals are preferred. This makes it possible to almost match the shrinkage of the oxide superconductor during firing with the shrinkage of the above-mentioned ceramics, and further reduces the effect on properties due to mutual diffusion between the oxide superconductor and the electrical insulator during firing. Therefore, by using this ceramic as an electrical insulator, cracks and distortions that occur on the bonding surface due to differences in shrinkage rate during manufacturing can be suppressed, and the superconducting properties of oxide superconductors and coils can be reduced. This is because it is possible to prevent a decrease in mechanical strength.

この電気絶縁物は、前述した酸化物超電導体の原料と同
一の物質を出発原料として用い、各出発原料を化学量論
比の組成となるように混合した後、所望の形状にし、9
00〜950℃程度で焼成することにより得ることがで
きる。
This electrical insulator uses the same material as the material for the oxide superconductor described above as a starting material, mixes each starting material to have a stoichiometric composition, and then shapes it into a desired shape.
It can be obtained by firing at about 00 to 950°C.

本発明の酸化物超電導コイルは、前述の材料を用いて、
たとえば次のような方法により製造することができる。
The oxide superconducting coil of the present invention uses the above-mentioned materials, and
For example, it can be manufactured by the following method.

■ まず、焼成して得た酸化物超電導体を、ボールミル
等の公知の手段により粉砕して、酸化物超電導体粉末と
する。この酸化物超電導体粉末に結合剤および可塑剤を
添加して混合し、混合物とする。
(2) First, the oxide superconductor obtained by firing is pulverized by a known means such as a ball mill to obtain an oxide superconductor powder. A binder and a plasticizer are added to this oxide superconductor powder and mixed to form a mixture.

また、同様にして、電気絶縁物の混合物を得る。Also, a mixture of electrical insulators is obtained in the same manner.

次いで、第3図に示すように、得られた各混合物を1台
または2台の押出し機31により別々に直線状に押出し
た後、可塑性を有する間に、酸化物超電導体32と電気
絶縁物33とが交互に位置するようにして円筒状のドラ
ム34に巻き取る。
Next, as shown in FIG. 3, each of the obtained mixtures is linearly extruded separately using one or two extruders 31, and then, while still having plasticity, an oxide superconductor 32 and an electrical insulator are extruded. 33 are arranged alternately, and wound onto a cylindrical drum 34.

この後、成形物を400〜500℃で熱処理して有機成
分を揮散させた後酸素含有雰囲気中850℃〜980℃
で焼成し、次いで600℃以下を徐冷して酸化物超電導
体の結晶構造中の酸素空席に酸素を導入して、酸化物超
電導コイルを得る。
After this, the molded product is heat-treated at 400 to 500°C to volatilize the organic components, and then heated to 850 to 980°C in an oxygen-containing atmosphere.
The oxide superconductor is fired at 100° C. and then slowly cooled to 600° C. or lower to introduce oxygen into the oxygen vacancies in the crystal structure of the oxide superconductor to obtain an oxide superconducting coil.

■ ■と同様にして酸化物超電導体および電気絶縁物を
別々に直線状に押出した後、第4図に示すように、一対
の円錐台41をそれぞれの小径部が同一側にくるように
して周面を長手方向に沿わせて近接配置してなる2台の
コニカルロール42により、酸化物超電導体43および
電気絶縁物44を別々に圧延して、螺旋状の積層物45
を得る。
■After extruding the oxide superconductor and the electric insulator separately in a straight line in the same manner as in ■■, as shown in FIG. The oxide superconductor 43 and the electrical insulator 44 are separately rolled by two conical rolls 42 arranged close to each other with their circumferential surfaces along the longitudinal direction to form a spiral laminate 45.
get.

この後、積層物に■と同様の熱処理を施して酸化物超電
導コイルを得る。
Thereafter, the laminate is subjected to the same heat treatment as in (1) to obtain an oxide superconducting coil.

■ ■と同様にして酸化物超電導体および電気絶縁物を
別々に押出すにあたって、押出し機の口金部にかかる圧
力が口金の中心を挟んで異なるようにし、酸化物超電導
体と電気絶縁物とが交互に位置しするようにして螺旋状
の積層物を得る。
■ When extruding the oxide superconductor and the electrical insulator separately in the same way as in ■, the pressure applied to the extruder nozzle is made different across the center of the nozzle, so that the oxide superconductor and the electrical insulator are extruded separately. A spiral laminate is obtained by alternating positions.

この後、積層物に■と同様の熱処理を施して酸化物超電
導コイルを得る。
Thereafter, the laminate is subjected to the same heat treatment as in (1) to obtain an oxide superconducting coil.

■ まず、■と同様にして酸化物超電導体粉末を得、こ
の酸化物超電導体粉末に溶媒、結合剤、および、必要に
応じて可塑剤や解膠剤を添加した後、混合、熱処理して
、酸化物超電導体のグリーンシートを得る。
■ First, obtain oxide superconductor powder in the same manner as in ■, add a solvent, a binder, and if necessary a plasticizer or peptizer to this oxide superconductor powder, then mix and heat-treat. , obtain green sheets of oxide superconductor.

また、同様にして、電気絶縁物のグリーンシートを得る
Further, a green sheet of electrical insulator is obtained in the same manner.

これらのグリーンシートを押出し成形物の代りに用いて
、酸化物超電導体と電気絶縁物とが交互に位置しするよ
うに螺旋状に成形した後、酸素含有雰囲気中850℃〜
980℃で焼成し、次いで600℃以下を徐冷して酸化
物超電導体の結晶構造中の酸素空席に酸素を導入して、
酸化物超電導コイルを得る。
These green sheets were used instead of extruded materials and formed into a spiral shape so that oxide superconductors and electrical insulators were arranged alternately, and then heated at 850°C to 850°C in an oxygen-containing atmosphere.
Calcining at 980°C, then slowly cooling below 600°C to introduce oxygen into the oxygen vacancies in the crystal structure of the oxide superconductor,
Obtain an oxide superconducting coil.

なお、本発明の酸化物超電導コイルを構成する酸化物超
電導体の形状と電気絶縁物の形状とは同形状である必要
は無く、電気絶縁物の形状は酸化物超電導体間を完全に
絶縁できるものであれば、いかなる形状であってもよい
。また、コイルとしての機械的強度を向上させるため、
本発明の酸化物超電導コイル全体をエポキシ樹脂等の電
気絶縁性の樹脂で被覆してもよ−い。
Note that the shape of the oxide superconductor and the shape of the electrical insulator constituting the oxide superconducting coil of the present invention do not need to be the same, and the shape of the electrical insulator can completely insulate between the oxide superconductors. It can be of any shape as long as it is of any shape. In addition, to improve the mechanical strength of the coil,
The entire oxide superconducting coil of the present invention may be coated with an electrically insulating resin such as epoxy resin.

(作 用) 本発明の酸化物超電導コイルは、酸化物超電導体および
電気絶縁物の各押出し成形物あるいは各グリーンシート
等を交互に螺旋状に成形した後、熱処理を施して得られ
るため、酸化物超電導体おにび絶縁物を線材化する必要
が無い。したがって、巻線工程を必要としないので、巻
線に伴う超電導特性の低下もない。
(Function) The oxide superconducting coil of the present invention is obtained by alternately forming extruded products or green sheets of oxide superconductors and electrical insulators into a spiral shape, and then subjecting them to heat treatment. There is no need to convert superconductors and insulators into wires. Therefore, since a winding process is not required, there is no deterioration in superconducting properties due to winding.

さらに、酸化物超電導体と電気絶縁物との収縮率の差が
小さいため、収縮率の違いに起因する接合面におけるク
ラックや歪の発生も抑止することができ、超電導特性の
低下ならびにコイルとしての機械的強度の低下を防ぐこ
ともできる。
Furthermore, since the difference in shrinkage rate between the oxide superconductor and the electrical insulator is small, it is possible to prevent cracks and distortions at the bonding surface caused by the difference in shrinkage rate, which can prevent deterioration of superconducting properties and make it difficult to use as a coil. It is also possible to prevent a decrease in mechanical strength.

(実施例) 以下、本発明の実施例について図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例1 酸化物超電導体の原料としてY2O3粉末0.5mo1
%、BaCO3粉末2m01%、CuO粉末3m01%
を用い、これらを充分混合して、大気中900℃で12
時間焼成した後、焼成物をボールミルにより粉砕して酸
化物超電導体粉末とした。次いで、この酸化物超電導体
粉末100重量部に結合剤として有機溶媒とともにエチ
ルセルロース20重量部を添加した後混合して、混合物
を得た。
Example 1 0.5mol of Y2O3 powder as raw material for oxide superconductor
%, BaCO3 powder 2m01%, CuO powder 3m01%
Mix these thoroughly and heat at 900°C in the air for 12
After firing for a period of time, the fired product was ground in a ball mill to obtain an oxide superconductor powder. Next, 20 parts by weight of ethyl cellulose was added to 100 parts by weight of this oxide superconductor powder together with an organic solvent as a binder and mixed to obtain a mixture.

また、電気絶縁物の原料としてY2O3粉末1mo1%
、BaCO3粉末1m01%、CuO粉末1mO+%を
用い、これらを充分に混合した後、大気中600℃で1
2時間焼成し、得られた焼成物を前述の酸化物超電導体
の場合と同様に処理して、混合物を得た。
In addition, 1mo1% of Y2O3 powder is used as a raw material for electrical insulators.
, 1 mO1% of BaCO3 powder and 1 mO+% of CuO powder were mixed thoroughly and then heated at 600°C in the atmosphere.
After firing for 2 hours, the resulting fired product was treated in the same manner as in the case of the oxide superconductor described above to obtain a mixture.

次ぎに、これら混合物を2台の押出し機によりそれぞれ
別々に押出すとともに、得られた各押出し成形物を酸化
物超電導体と電気絶縁物とが交互に位置するようにドラ
ムに巻き取って、酸化物超電導体と電気絶縁物とが交互
に積層された螺旋状成形物を得た。
Next, these mixtures are extruded separately using two extruders, and each of the obtained extrudates is wound up on a drum so that the oxide superconductor and the electrical insulator are alternately located, and the oxidized A spiral molded article was obtained in which a physical superconductor and an electrical insulator were alternately laminated.

しかる後、得られた螺旋状成形物を500℃で熱処理し
て有機成分を熱分解し、酸素含有雰囲気中930℃で2
4時間焼成して酸化物超電導体および電気絶縁物を焼成
した後、酸素含有雰囲気中で600°C以下を1℃/分
程度の割合いで徐冷して、酸化物超電導体の結晶構造中
の酸素空席に酸素を導入して酸化物超電導コイルを得た
Thereafter, the obtained spiral molded product was heat-treated at 500°C to thermally decompose the organic component, and then heated at 930°C in an oxygen-containing atmosphere for 2 hours.
After baking the oxide superconductor and electrical insulator for 4 hours, they are slowly cooled to 600°C or less at a rate of about 1°C/min in an oxygen-containing atmosphere to dissolve the crystal structure of the oxide superconductor. Oxide superconducting coils were obtained by introducing oxygen into the oxygen vacancies.

このコイルの斜視図を第1図に示す。第1図において、
酸化物超電導コイル1は、酸化物超電導体と電気絶縁物
とが交互に螺旋状に形成されている。また、第1図にお
けるA−A’線断面を第2図に示す。第2図において、
第1図と共通する部材については第1図と同じ符号を付
しである。
A perspective view of this coil is shown in FIG. In Figure 1,
The oxide superconducting coil 1 is formed by alternating oxide superconductors and electrical insulators in a spiral shape. Further, a cross section taken along the line AA' in FIG. 1 is shown in FIG. 2. In Figure 2,
Components common to those in FIG. 1 are designated by the same reference numerals as in FIG. 1.

このようにして得た酸化物超電導コイルの臨界温度は9
1K、臨界電流密度は240A10+fであった。
The critical temperature of the oxide superconducting coil obtained in this way is 9
1K, and the critical current density was 240A10+f.

実施例2 実施例1と同様にして得た酸化物超電導体粉末100重
量部に、結合剤としてポリビニルブチラール15重量部
、溶媒として1,1.1−t−リクロルエタンおよびn
−ブタノール重量部を加えて混合し、ドクターブレード
により整面した後熱処理を施して、厚さ100μmのグ
リーンシートを得た。
Example 2 To 100 parts by weight of oxide superconductor powder obtained in the same manner as in Example 1, 15 parts by weight of polyvinyl butyral as a binder and 1,1.1-t-lichloroethane and n as a solvent were added.
- Parts by weight of butanol were added and mixed, and after smoothing with a doctor blade, heat treatment was performed to obtain a green sheet with a thickness of 100 μm.

また、同様にして、Y 2 B a Cu O’ 5か
らなる電気絶縁物のグリーンシートを得た。
In addition, a green sheet of an electrical insulator made of Y 2 B a Cu O' 5 was obtained in the same manner.

これらのグリーンシートをそれぞれ0.5x 120c
mの大きさに切断し、酸化物超電導体については3枚、
電気絶縁物については2枚重ねた後、酸化物超電導体と
電気絶縁物とを交互に螺旋状に積層して、積層物とした
Each of these green sheets is 0.5x 120c
Cut into pieces of m size, 3 pieces for oxide superconductors,
After stacking two electrical insulators, the oxide superconductor and the electrical insulator were alternately stacked in a spiral shape to form a laminate.

しかる後、積層物を酸素含有雰囲気中930°Cで24
時間焼成して酸化物超電導体および電気絶縁物を焼成し
た後、酸素含有雰囲気中で600℃以下を1℃/分程度
の割合いで徐冷して、酸化物超電導体の結晶構造中の酸
素空席に酸素を導入して、酸化物超電導コイルを得た。
Thereafter, the laminate was heated at 930°C in an oxygen-containing atmosphere for 24 hours.
After firing the oxide superconductor and electrical insulator for a period of time, the oxide superconductor and the electrical insulator are slowly cooled at a rate of about 1 °C/min to 600 °C or less in an oxygen-containing atmosphere to form oxygen vacancies in the crystal structure of the oxide superconductor. Oxygen was introduced to obtain an oxide superconducting coil.

このようにして得た酸化物超電導コイルの臨界温度は9
0 K、臨界電流密度は140A/cmであった。
The critical temperature of the oxide superconducting coil obtained in this way is 9
0 K, and the critical current density was 140 A/cm.

[発明の効果] 以上説明したように、本発明の酸化物超電導コイルは酸
化物超電導体を線材化することなく得られるため、酸化
物超電導体を用いた酸化物超電導コイルの製造が容易と
なる。また、巻線工程を要しないので、巻線時の機械的
応力に起因する超電導特性の低下もないため、製品のバ
ラツギも大幅に低下する。
[Effects of the Invention] As explained above, since the oxide superconducting coil of the present invention can be obtained without converting the oxide superconductor into a wire, it becomes easy to manufacture the oxide superconducting coil using the oxide superconductor. . Furthermore, since a winding process is not required, there is no deterioration in superconducting properties due to mechanical stress during winding, and product variation is also significantly reduced.

さらに、酸化物超電導体と電気絶縁物との焼成時におE
プる収縮差が小さいため、製造時に収縮率の違いに起因
して接合面に生じるクラックや歪の発生を抑止して、酸
化物超電導体の超電導特性の低下やコイルの機械的強度
の低下を防止することができる。
Furthermore, when firing oxide superconductors and electrical insulators,
Since the difference in shrinkage is small, it suppresses the occurrence of cracks and distortions that occur on the bonding surface due to differences in shrinkage during manufacturing, and prevents the deterioration of the superconducting properties of the oxide superconductor and the mechanical strength of the coil. It can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得た本発明の酸化物超電導コイルの
斜視図、第2図は第1図における八−A′線断面図、第
3図および第4図はそれぞれ本発明の酸化物超電導コイ
ルを押出し成形により得る場合の一方法を示す模式図で
ある。 1・・・・・・・・・酸化物超電導コイル2・・・・・
・・・・酸化物超電導体 3・・・・・・・・・電気絶縁物 出願人     株式会社 東芝 代理人弁理士  須 山 佐 −
FIG. 1 is a perspective view of the oxide superconducting coil of the present invention obtained in Example 1, FIG. 2 is a sectional view taken along line 8-A' in FIG. FIG. 2 is a schematic diagram showing one method for obtaining a physical superconducting coil by extrusion molding. 1... Oxide superconducting coil 2...
...Oxide superconductor 3...Electric insulator Applicant Toshiba Corporation Patent attorney Sa Suyama −

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物超電導体と、一般式Ln_2MCuO_5
(Lnは、Y、La、Sc、Nd、Sm、Eu、Gd、
Dy、Ho、Er、Tm、YbおよびLuから選ばれた
少なくとも1種の元素、Mは2価のアルカリ土類金属か
ら選ばれた少なくとも1種の元素)で表されるセラミッ
クスからなる電気絶縁物とが密着して、交互に螺旋状に
形成されてなることを特徴とする酸化物超電導コイル。
(1) Oxide superconductor and general formula Ln_2MCuO_5
(Ln is Y, La, Sc, Nd, Sm, Eu, Gd,
An electrical insulator made of ceramics represented by at least one element selected from Dy, Ho, Er, Tm, Yb, and Lu; M is at least one element selected from divalent alkaline earth metals. An oxide superconducting coil characterized in that the coils are formed in close contact with each other and are alternately formed in a spiral shape.
(2)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項記載の酸化物超電導コイル。
(2) The oxide superconducting coil according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(3)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項または第2項記載の
酸化物超電導コイル。
(3) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The oxide superconducting coil according to claim 1 or 2, characterized in that the oxide superconducting coil contains u in an atomic ratio of substantially 1:2:3.
(4)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第3項のいずれか1項記載の酸
化物超電導コイル。
(4) The oxide superconductor is LnBa_2Cu_3O_7
The oxide superconducting coil according to any one of claims 1 to 3, characterized in that it has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect).
JP62321725A 1987-12-19 1987-12-19 Oxide superconducting coil Pending JPH01162304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321725A JPH01162304A (en) 1987-12-19 1987-12-19 Oxide superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321725A JPH01162304A (en) 1987-12-19 1987-12-19 Oxide superconducting coil

Publications (1)

Publication Number Publication Date
JPH01162304A true JPH01162304A (en) 1989-06-26

Family

ID=18135742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321725A Pending JPH01162304A (en) 1987-12-19 1987-12-19 Oxide superconducting coil

Country Status (1)

Country Link
JP (1) JPH01162304A (en)

Similar Documents

Publication Publication Date Title
JPH01162304A (en) Oxide superconducting coil
JPS63291817A (en) Oxide superconductor
EP0291034B1 (en) Method for producing oxide superconductor
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2573256B2 (en) Manufacturing method of superconductor member
JP2593475B2 (en) Oxide superconductor
JP2554659B2 (en) Composite oxide superconductor wire connection
JPH01143308A (en) Oxide superconducting coil
JPS63279512A (en) Superconductor wire rod and its manufacture
JPH01162306A (en) Superconducting coil
JP2644245B2 (en) Oxide superconducting wire
JP2597578B2 (en) Superconductor manufacturing method
JP2752969B2 (en) Oxide superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2597579B2 (en) Superconductor manufacturing method
JPH01160860A (en) Production of sintered material of oxide superconductor
JPH0570287B2 (en)
JP2585260B2 (en) Method for producing oxide superconductor tape
JPS63279522A (en) Superconductor wire rod
JPH01162307A (en) Manufacture of superconductor coil
JPH01157455A (en) Production of oxide superconducting sintered body
JPS63279513A (en) Superconductor wire rod and its manufacture