JPH01219058A - Superconductor and its production - Google Patents

Superconductor and its production

Info

Publication number
JPH01219058A
JPH01219058A JP63047198A JP4719888A JPH01219058A JP H01219058 A JPH01219058 A JP H01219058A JP 63047198 A JP63047198 A JP 63047198A JP 4719888 A JP4719888 A JP 4719888A JP H01219058 A JPH01219058 A JP H01219058A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting material
mixed
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047198A
Other languages
Japanese (ja)
Inventor
Yumiko Masuda
由美子 増田
Yayoi Ogawa
小川 弥生
Akira Ikushima
生嶋 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP63047198A priority Critical patent/JPH01219058A/en
Publication of JPH01219058A publication Critical patent/JPH01219058A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the subject superconductor with a relative high transition temp., having excellent moldability, and capable of maintaining stabilized performance for a long time by mixing a ceramic superconducting material and glass material powder, melting the mixture, and then calcining the melt. CONSTITUTION:A ceramic superconducting material or the powder of the material is mixed with glass material powder, the mixture is melted, and the melt is calcined to obtain the desired superconductor. The physical and mechanical properties of the mixed glass material do not change the characteristics of the superconducting material, and rather control the most physical and mechanical properties of the superconductor itself. Accordingly, the superconductor has excellent moldability, the superconductor can be easily worked into a wire by molding by a metallic mold, extrusion, drawing, etc., and formed into a film by rolling by rollers, rolling by a metallic mold, etc. In addition, a reduction reaction is controlled by the action of the mixed glass material, ageing deterioration is minimized, and the superconductor is stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック系超伝導体及びその製造方法に係
り、特に、転移温度が比較的高温で、かつ、成形性にす
ぐれ安定した性能を長時間維持できる超伝導体及びその
製造方法に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a ceramic superconductor and a method for producing the same, and in particular, a ceramic superconductor that has a relatively high transition temperature, excellent formability, and stable performance. A superconductor that can be maintained for a long time and a method for manufacturing the same.

[従来の技術] 超伝導体は、転移温度以下の温度において電気抵抗が零
になる特性を有していることかべ、例えば、理想的電気
輸送媒体として、医療用・実験用NMR1磁気浮上列車
もしくは超伝導発電機等に用いられるコイル材として、
あるいは、コヒーレンス性を備えた素材としてジョセフ
ソン素子等に使用する薄膜材としての応用が期待されて
いる。
[Prior Art] Superconductors have the property of having zero electrical resistance at temperatures below their transition temperature, and are used, for example, as ideal electrical transport media in NMR1 magnetic levitation trains for medical and experimental purposes. Or as a coil material used in superconducting generators, etc.
Alternatively, as a material with coherence, it is expected to be applied as a thin film material for use in Josephson elements and the like.

ところで、このような応用を工業的に実用化の域に近ず
けるためには、転移温度ができるだけ高く、成形性にす
ぐれ、かつ、経年変化のない超伝導体の出現が必須であ
る。
By the way, in order to bring such applications closer to the level of industrial practical use, it is essential to develop a superconductor that has a transition temperature as high as possible, excellent formability, and does not change over time.

近年に至り、転移温度が極めて高い超伝導体として、一
般式RB az Cu s 0t−y  (R=Y。
In recent years, a superconductor with an extremely high transition temperature has been developed using the general formula RB az Cu s 0t-y (R=Y.

La、Nd、Sm、Eu、Gd、Dy、Hc。La, Nd, Sm, Eu, Gd, Dy, Hc.

Er、Tm、Yb、Lu)、あるいは、一般式%式%) で表されるいわゆるセラミック系の高温超伝導体が開発
され、脚光を浴びている。
So-called ceramic-based high-temperature superconductors represented by the general formula (Er, Tm, Yb, Lu) or the general formula (%) have been developed and are attracting attention.

[発明が解決しようとする課題] しかしながら、このようなセラミミック系高温超伝導体
は、一般に、成形性が極めて悪く、また、経年変化が大
きいため、いまだ工業化の段階にはいたっていない。
[Problems to be Solved by the Invention] However, such ceramic-based high-temperature superconductors generally have extremely poor moldability and are subject to large changes over time, so they have not yet reached the stage of industrialization.

すなわち、現状において、例えば、セラミック系高温超
伝導体で導線を製作するには、まず、超伝導物質の原料
を仮焼きして粉砕し、棒状に成形し、次に、これを銀、
銅もしくは銅合金等のシースにいれて伸線加工し、しか
る後、焼結する。しかも、この焼結は、導線の中心部ま
で酸素を供給しつつ行わなければならないが、シースを
被覆したままで焼結すると、この酸素とシース金属とが
反応して導線の組成比を狂わせてしまうことから、焼結
の際には、再びシースを剥がしてから行わなければなら
なかった。
In other words, at present, for example, in order to manufacture a conducting wire using a ceramic-based high-temperature superconductor, the raw material of the superconducting material is first calcined and pulverized and formed into a rod shape, and then this is mixed with silver,
The wire is drawn into a sheath made of copper or copper alloy, and then sintered. Moreover, this sintering must be performed while supplying oxygen to the center of the conductor, but if sintering is performed with the sheath still covered, this oxygen will react with the sheath metal and the composition ratio of the conductor will be disturbed. Because of this, the sheath had to be peeled off again before sintering.

このため、製造工程が極めて煩雑であるとともに、製造
に長時間を要し、実験室的には製造可能であるものの、
工業化はおぼつかないものであった。
For this reason, the manufacturing process is extremely complicated and takes a long time to manufacture.Although it can be manufactured in a laboratory,
Industrialization was shaky.

また、セラミック系高温超伝導体で膜を形成する方法と
しては、種々の物理蒸着法が試みられているが、蒸着速
度が極めて遅く、また、これによって形成された膜が超
伝導特性の再現性に乏しいため、均一な品質を有する膜
を大量に形成する方法としては極めて不十分なものであ
った。
In addition, various physical vapor deposition methods have been attempted to form films with ceramic-based high-temperature superconductors, but the deposition rate is extremely slow, and the films formed by this method have poor reproducibility of superconducting properties. Because of the lack of quality, it was extremely inadequate as a method for forming a large amount of films with uniform quality.

さらに、上述のような方法によって製造されたセラミッ
ク系高温超伝導体の導線あるいは膜は、時間経過ととも
に酸素が抜けて超伝導性を示さなくなる場合が多く、極
めて不安定であった。
Furthermore, conductive wires or films of ceramic-based high-temperature superconductors manufactured by the method described above often lose oxygen over time and no longer exhibit superconductivity, making them extremely unstable.

本発明の目的は、上述の問題点を除去した超伝導体及び
その製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconductor and a method for manufacturing the same that eliminate the above-mentioned problems.

[課題を解決するための手段] 本発明は、セラミック系超伝導物質に結合材としてガラ
ス材を混在させた超伝導体、及び、セラミック系超伝導
物質またはセラミック系超伝導物質の原料粉末とガラス
材の粉末とを混合し、溶融後、焼成することにより、前
記超伝導体を得る超伝導体の製造方法であり、これによ
り、転移温度が高く、成形性にすぐれ、かつ、安定な超
伝導体を安価にかつ大量に製造することを可能にしたも
ので、以下の各構成を有する。
[Means for Solving the Problems] The present invention provides a superconductor in which a ceramic superconducting material is mixed with a glass material as a binder, and a ceramic superconducting material or a raw material powder of the ceramic superconducting material and glass. This is a superconductor manufacturing method in which the superconductor is obtained by mixing the superconductor with a powder of the material, melting it, and then firing it. It has the following configurations, making it possible to manufacture the body at low cost and in large quantities.

(1)セラミック系超伝導物質と、この超伝導物質に結
合材として混在するガラス材とを含むことを特徴とした
超伝導体。
(1) A superconductor characterized by containing a ceramic superconducting material and a glass material mixed with this superconducting material as a binding material.

(2)セラミック系超伝導物質またはセラミック系超伝
導物質の原料粉末とガラス材の粉末とを混合し、溶融後
、焼成することにより、構成(1)記載の超伝導体を製
造することを特徴とした超、伝導体の製造方法。
(2) The superconductor according to configuration (1) is produced by mixing a ceramic superconducting material or a raw material powder of a ceramic superconducting material with a powder of a glass material, melting it, and then firing it. A method for manufacturing superconductors.

[作用コ 上述の構成(1)の超伝導体は、混在するガラス材の有
する物理的・機械的性質が前記超伝導物質の特性を変化
させることなく超伝導体自体の物理的・機械的性質の大
部分を支配することとなって、セラミック系超伝導物質
の特徴である高い転移温度を維持するとともに、すぐれ
た成形性を有し、例えば、金型成型法、押し出し法、引
き抜き法等によって容易に線状に加工でき、また、ロー
ラー圧延法、金型圧延法等によって膜に成形できること
が確認されているとともに、混在するガラス材の作用に
よって還元反応が抑制され、経年変化が極めて小さく、
安定であることが確認されている。
[Function] The superconductor of the above configuration (1) has the physical and mechanical properties of the superconductor itself without changing the properties of the superconducting material. It maintains a high transition temperature, which is a characteristic of ceramic superconducting materials, and has excellent formability. It has been confirmed that it can be easily processed into a linear shape, and can be formed into a film by roller rolling, mold rolling, etc., and the reduction reaction is suppressed by the action of the mixed glass material, so the change over time is extremely small.
Confirmed to be stable.

また、前記構成(2)によれば、前記構成(1)の超伝
導体を極めて容易に製造でき、前記超伝導体を安価に大
量に製造することを可能にする。
Further, according to the configuration (2), the superconductor of the configuration (1) can be manufactured extremely easily, and the superconductor can be manufactured in large quantities at low cost.

[実施例] 以下、本発明の実施例にかかる超伝導体及びその製造方
法を詳述する。
[Example] Hereinafter, a superconductor and a method for manufacturing the same according to an example of the present invention will be described in detail.

なお、本発明におけるセラミック系超伝導物質としては
、例えば、一般式、RBat Cu30y(R=Y、L
a、Nd、Sm、Eu、Gd、Dy。
In addition, as the ceramic superconducting material in the present invention, for example, the general formula, RBat Cu30y (R=Y, L
a, Nd, Sm, Eu, Gd, Dy.

Ho、Er、Tm、Yb、Lu) 、あるいは、(La
L)2 Cub<   (L=Ba、Sr)等で表され
る物質をあげることができる。
Ho, Er, Tm, Yb, Lu) or (La
Examples include substances expressed by L)2Cub< (L=Ba, Sr).

また、セラミック系超伝導物質の原料粉としては、例え
ば、Cu、Ba、Sr、Y、La、Nd。
Further, raw material powder for ceramic superconducting materials includes, for example, Cu, Ba, Sr, Y, La, and Nd.

Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、L
u等の金属成分を含む金属酸化物、金属硝酸塩、金属弗
化物等をあげることができる。すなわち、これらの原料
粉末を適宜の混合比で混合して焼成することにより、超
伝導物質を得ることができる。
Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, L
Examples include metal oxides, metal nitrates, metal fluorides, etc. containing metal components such as u. That is, a superconducting material can be obtained by mixing these raw material powders at an appropriate mixing ratio and firing the mixture.

さらに、ガラス材としては、例えば、ホウ酸、リン酸、
シリカ等の加熱・融解後、冷却することによりガラス状
になりやすいもの、あるいは、これらを2種以上混合し
たもの等をあげることができる。
Furthermore, as the glass material, for example, boric acid, phosphoric acid,
Examples include silica that easily becomes glassy by heating and melting and then cooling, or a mixture of two or more of these.

(実施例1) この実施例は、超伝導物質にガラス粉末を混合し、溶融
後、焼成することにより製造される場合の例である。
(Example 1) This example is an example in which a superconducting material is manufactured by mixing glass powder with a superconducting material, melting it, and then firing it.

超伝導の転移温度が30に以上の、いわゆる高温超伝導
物質に分類される一般式 %式% Yb)で示される物質の原料である Rt Os 、BaO又はCuOの粉末をR対Ba対C
uが1:2:3となるように乳鉢またはボールミルで混
合粉砕した後、金型で成型し、ラバープレスでプレスし
てペレツトを作る。これを850℃〜950℃で35時
間焼成し、その後、02ガス中で1℃/分で徐冷してベ
レット状の超伝導物質を得る。こうして得た超伝導物質
の転移温度を測定したところ1.92にであった。
The powder of RtOs, BaO or CuO, which is the raw material for a substance with the general formula % Yb, which is classified as a so-called high-temperature superconducting material with a superconducting transition temperature of 30 or higher, is mixed with R vs. Ba vs. C.
After mixing and pulverizing in a mortar or ball mill so that u is 1:2:3, it is molded in a mold and pressed in a rubber press to make pellets. This is fired at 850° C. to 950° C. for 35 hours, and then slowly cooled at 1° C./min in 02 gas to obtain a pellet-shaped superconducting material. The transition temperature of the superconducting material thus obtained was measured to be 1.92.

次に、こうして得な超伝導物質の焼結体にホウ酸(外側
りのモル%で0.5〜2%)をまぜて再び乳鉢またはボ
ールミルで混合粉砕し、これをふるいにかけて粒度10
μm〜50AL11の粒径の粉末のみを取り出し、これ
を金型成型によりプレスするかあるいはそのまま400
℃で30分焼成する。これにより、ホウ酸の融点が18
5℃であることから、このホウ酸が溶解して結合剤とし
て作用し、一定形状を有した超伝導体が得られる。こう
して得られた超伝導体の転移温度と混入ホウ酸のモル%
との関係を調べたところ、はぼ第1図に示される結果が
得られた。
Next, the sintered body of the superconducting material thus obtained is mixed with boric acid (0.5 to 2% by mole of the outer layer), mixed and ground again in a mortar or ball mill, and sieved to obtain a particle size of 10
Take out only the powder with a particle size of μm to 50AL11 and press it by molding or directly
Bake at ℃ for 30 minutes. As a result, the melting point of boric acid is 18
Since the temperature is 5° C., this boric acid dissolves and acts as a binder, resulting in a superconductor having a certain shape. The transition temperature of the superconductor thus obtained and the mol% of mixed boric acid
When we investigated the relationship between the two, we obtained the results shown in Figure 1.

なお、第1図において、図中、縦軸が転移温度(K)、
横軸がホウ酸濃度(モル%)をそれぞれ示している。
In addition, in FIG. 1, the vertical axis represents the transition temperature (K),
The horizontal axis indicates the boric acid concentration (mol%).

(実施例2ン この例は、超伝導物質の原料粉から直接膜状もしくは棒
状をなした超伝導体を得る場合の例である。
(Example 2) This example is an example in which a film-like or rod-like superconductor is obtained directly from raw material powder of a superconducting material.

超伝導の転移温度が30に以上の、いわゆる高温超伝導
物質に分類される一般式 YBat Cus Oyで示される物質の原料であるY
20s 、Bao2又はCuOの粉末をY対Ba対Cu
が1:2:3となるように混合したものを70g用意し
、次に、ガラス材としてH,BO3からB x Osの
粉末を作り、これを前記用意した超伝導物質の原料に対
して外側のモル%で0.5%になるように加えて混合し
、次いで、この混合物を白金のルツボにいれ、このルツ
ボを電気炉により1300°Cに昇温し、これを2時間
維持して溶融する。
Y is a raw material of a substance represented by the general formula YBat Cus Oy, which is classified as a so-called high-temperature superconducting substance with a superconducting transition temperature of 30 or higher.
20s, Bao2 or CuO powder Y vs Ba vs Cu
Prepare 70g of a mixture with a ratio of 1:2:3, then make B x Os powder from H and BO3 as a glass material, and apply this to the outside of the superconducting material prepared above. Then, this mixture was put into a platinum crucible, and the crucible was heated to 1300°C in an electric furnace, and this temperature was maintained for 2 hours to melt it. do.

この場合、均一溶融されるように20分おきに前記ルツ
ボを電気炉から取り出して撹拌する。
In this case, the crucible is taken out of the electric furnace and stirred every 20 minutes to ensure uniform melting.

次に、この溶融体を回転する2つの金属製のローラーの
間に流し込み、圧延急冷成型して、厚さ101m〜50
071111の膜状に形成する。
Next, this melt is poured between two rotating metal rollers, rolled and rapidly cooled to a thickness of 101 m to 50 m.
071111 in the form of a film.

次いで、この膜体を950℃にて35時間焼成し、しか
る後、1°C/分の降温速度で徐冷する。
Next, this film body is fired at 950° C. for 35 hours, and then slowly cooled at a cooling rate of 1° C./min.

こうして得られた膜体の性質を調べたところ、転移温度
が81にの超伝導体であることが確認されている。この
場合、超伝導物質の原料粉を溶融したことにより、従来
法の乳鉢混合に比較して超伝導物質自体も原子レベルで
極めて良好に混合されていることがX線による分析で確
認されているとともに、ホウ酸を混合することによって
、超伝導物質の原料粉だけのときに比教して溶融温度が
下がり(1350℃→1300℃)、溶融をし易くする
という利点も得られている。
When the properties of the membrane thus obtained were investigated, it was confirmed that it was a superconductor with a transition temperature of 81. In this case, X-ray analysis has confirmed that by melting the raw material powder of the superconducting material, the superconducting material itself is mixed extremely well at the atomic level compared to the conventional method of mixing in a mortar. In addition, by mixing boric acid, the melting temperature is lowered (from 1350° C. to 1300° C.) compared to when only the raw material powder of the superconducting material is used, making it easier to melt.

また、前記と同じ条件で溶融した溶融体を、内径5■φ
、肉厚111のガラス管内に吸引して急冷固化し、線状
体に形成したものを、前記と同じ条件によって焼成する
ことによって、前記と同じ特性を有する線状体の超伝導
体を得ることができた。
In addition, the molten material melted under the same conditions as above was
, to obtain a linear superconductor having the same characteristics as described above by suctioning it into a glass tube with a wall thickness of 111 mm, rapidly solidifying it, forming it into a linear body, and firing it under the same conditions as above. was completed.

次に、ガラス材としてのホウ酸の混入量を種々変え、そ
の他の条件は前記の場合と同じにして膜体及び線状体を
製造してその特性を調べた結果は以下の通りであった。
Next, membrane bodies and linear bodies were manufactured with various amounts of boric acid mixed in as the glass material, and other conditions were kept the same as in the previous case, and their properties were investigated.The results were as follows. .

混入ホウ酸量(モル%) 転移温度(K)1.5   
              492.0      
           392.5         
       □3 、0             
   −−この場合、混入ホウ酸が2.5%以上のとき
は、12に〜300 Kの温度範囲において超伝導性を
認めることはできなかった。
Amount of mixed boric acid (mol%) Transition temperature (K) 1.5
492.0
392.5
□3,0
--In this case, when the mixed boric acid content was 2.5% or more, no superconductivity could be observed in the temperature range of 12 to 300 K.

なお、ホウ酸を全く混入しない場合は、上述のような圧
延法や吸引法によって膜体や線状体を形成することはで
きなかった〈従来法では、10〜20IIIφ以上の線
状体、あるいは、厚さ2〜51n以上の膜体を実験室的
に作るのがやっとであった)。
In addition, when no boric acid is mixed at all, it is not possible to form a film body or a linear body by the above-mentioned rolling method or suction method. , it was only possible to fabricate a film body with a thickness of 2 to 51 nm or more in a laboratory).

そこで、従来と同様の方法でホウ酸なしの超伝導体を作
成したところ、その転移温度は87にであった。
Therefore, when a superconductor without boric acid was created using the same method as before, its transition temperature was 87.

以上の結果は、前記第1図に示される結果とほぼ一致す
るものである。
The above results almost match the results shown in FIG. 1 above.

(実施例3) この実施例は、超伝導物質として、 RBat Cus Oy (R=Nd、 Gd、 Ho
 )を用いた外は、前記実施例2と同じ条件で同じよう
にして膜体及び線状体の製造並びにホウ酸なしの超伝導
体の製造を行ったもので、前記実施例2とほぼ同じ結果
が得られている。
(Example 3) In this example, RBat Cus Oy (R=Nd, Gd, Ho
) was used, except that the film body and the linear body were produced in the same manner as in Example 2, and the superconductor was produced without boric acid, which is almost the same as in Example 2. Results are being obtained.

(実施例4) この実施例は、前記実施例2で用いた超伝導物質、YB
a2Cux OyのBaをSrで一部置き換えたY (
Ba+−x Srx )2 Cus Oyを超伝導物質
として用いた外は、前記実施例2と同じ条件で同じよう
にしてWA体及び線状体の製造並びにホウ酸なしの超伝
導体の製造を行ったもので、転移温度はホウ酸なしの場
合が、50K、1%の場合が43にであった。
(Example 4) In this example, the superconducting material used in Example 2, YB
a2Cux Y in which Ba of Oy is partially replaced with Sr (
A WA body and a linear body were produced in the same manner as in Example 2, and a superconductor without boric acid was produced in the same manner as in Example 2, except that Ba+-x Srx )2 Cus Oy was used as the superconducting material. The transition temperature was 50K in the case without boric acid and 43K in the case of 1% boric acid.

(実施例5) この実施例は、前記実施例2で用いた超伝導物質、Y 
B a 2 Cu s Oyの0の一部をF”(″置き
換えたYBat Cus  (OF)3’を超超伝導物
質として用いた外は、前記実施例2と同じ条件で同じよ
うにして膜体及び線状体の製造並びにホウ酸なしの超伝
導体の製造を行ったもので、転移温度はホウ酸なしの場
合が、70K、1%の場合が61にであった。
(Example 5) In this example, the superconducting material used in Example 2, Y
A film body was formed in the same manner as in Example 2, except that YBat Cus (OF)3', in which some of the 0's in B a 2 Cu s Oy were replaced with F''(''), was used as the superconducting material. The transition temperature was 70 K in the case without boric acid and 61 in the case of 1% boric acid.

(実施例6) この実施例は、超伝導物質として B15rCaCu20yを用いて800℃で焼成した外
は、前記実施例2と同じである。この場合の転移温度は
、ホウ酸なし場合が115K、1%の場合が95にであ
った。
(Example 6) This example is the same as Example 2 except that B15rCaCu20y was used as the superconducting material and firing was performed at 800°C. The transition temperature in this case was 115K in the case without boric acid and 95K in the case with 1% boric acid.

なお、以上の実施例において、ホウ酸を1%混入したサ
ンプルと、ホウ酸を全く混入しないサンプルとを空気中
において20℃で保存して経年変化(安定性)を調べた
ところ、ホウ酸なしのサンプルは2力月後に転移温度が
IOK下がったのに対し、ホウ酸を混入したサンプルは
転移温度に全く変化が認められなかった。
In addition, in the above examples, when a sample containing 1% boric acid and a sample containing no boric acid were stored in the air at 20°C and their changes over time (stability) were investigated, it was found that no boric acid was present. The transition temperature of the sample decreased by IOK after 2 months, whereas no change was observed in the transition temperature of the sample mixed with boric acid.

[発明の効果] 以上詳述したように、本発明は、セラミック系超伝導物
質に結合材としてガラス材を混在させた超伝導体、及び
、セラミック系超伝導物質またはセラミック系超伝導物
質の原料粉末とガラス材の粉末とを混合し、溶融、して
焼成すること社より、前記超伝導体′を得る超伝導体の
製造方法であり、これにより、転移温度が高く、成形性
にすぐれ、かつ、経年変化がなく安定な超伝導体を安価
にかつ大量に製造することを可能にしたものである。
[Effects of the Invention] As detailed above, the present invention provides a superconductor in which a ceramic superconductor is mixed with a glass material as a binder, and a ceramic superconductor or a raw material for the ceramic superconductor. This is a superconductor production method in which the superconductor' is obtained by mixing powder and glass powder, melting, and firing. In addition, it has made it possible to manufacture stable superconductors that do not change over time at low cost and in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超伝導物質の原料に混入するホウ酸の混入量を
種々変えて製造した超伝導体の転移温度を表すグラフで
ある。
FIG. 1 is a graph showing the transition temperatures of superconductors produced by varying the amount of boric acid mixed into the raw material of the superconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック系超伝導物質と、この超伝導物質に結
合材として混在するガラス材とを含むことを特徴とした
超伝導体。
(1) A superconductor characterized by containing a ceramic superconducting material and a glass material mixed with this superconducting material as a binding material.
(2)セラミック系超伝導物質またはセラミック系超伝
導物質の原料粉末とガラス材の粉末とを混合し、溶融後
、焼成することにより、請求項(1)記載の超伝導体を
製造することを特徴とした超伝導体の製造方法。
(2) The superconductor according to claim (1) is manufactured by mixing a ceramic superconducting material or a raw material powder of a ceramic superconducting material with a powder of a glass material, melting the mixture, and then firing the mixture. Featured methods for manufacturing superconductors.
JP63047198A 1988-02-29 1988-02-29 Superconductor and its production Pending JPH01219058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047198A JPH01219058A (en) 1988-02-29 1988-02-29 Superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047198A JPH01219058A (en) 1988-02-29 1988-02-29 Superconductor and its production

Publications (1)

Publication Number Publication Date
JPH01219058A true JPH01219058A (en) 1989-09-01

Family

ID=12768431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047198A Pending JPH01219058A (en) 1988-02-29 1988-02-29 Superconductor and its production

Country Status (1)

Country Link
JP (1) JPH01219058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851954A (en) * 1991-01-04 1998-12-22 Alcatel Alsthom Compagnie Generale D'electricite Superconducting oxide-based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164752A (en) * 1987-12-19 1989-06-28 Toshiba Corp Oxide superconductor
JPH01176204A (en) * 1987-12-28 1989-07-12 Furukawa Electric Co Ltd:The Composition for forming superconductor of oxide base
JPH01208361A (en) * 1987-10-02 1989-08-22 Ube Ind Ltd Production of high-temperature superconducting fine ceramics particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208361A (en) * 1987-10-02 1989-08-22 Ube Ind Ltd Production of high-temperature superconducting fine ceramics particle
JPH01164752A (en) * 1987-12-19 1989-06-28 Toshiba Corp Oxide superconductor
JPH01176204A (en) * 1987-12-28 1989-07-12 Furukawa Electric Co Ltd:The Composition for forming superconductor of oxide base

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851954A (en) * 1991-01-04 1998-12-22 Alcatel Alsthom Compagnie Generale D'electricite Superconducting oxide-based composite material

Similar Documents

Publication Publication Date Title
WO1988008609A1 (en) Manufacture of high purity superconducting ceramic
JPH01219058A (en) Superconductor and its production
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP4252054B2 (en) Method for forming superconducting ceramic thin film
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JPH01138132A (en) Meltable superconductor and its production
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP2727565B2 (en) Superconductor manufacturing method
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2610030B2 (en) Oxide-based superconductor and manufacturing method thereof
JP2817199B2 (en) Method for producing sintered body of B ▲ i superconducting oxide with high critical current density
JPH01241711A (en) Manufacture of oxide superconductor wire
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPS63274027A (en) Manufacture of superconductive material
JPS63277575A (en) Production of formed article of oxide superconductor
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JP2565930B2 (en) Method for manufacturing ceramic superconducting compact
JP2630404B2 (en) Superconductor manufacturing method
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
JPS63295471A (en) Production of oxide superconducting material
JPH01241707A (en) Manufacture of oxide superconductor wire
JPH01128409A (en) Manufacture of ceramics system superconductor coil
JPS63277553A (en) Production of superconductive ceramic