JPS63280801A - Stationary blade for steam turbine - Google Patents

Stationary blade for steam turbine

Info

Publication number
JPS63280801A
JPS63280801A JP11429287A JP11429287A JPS63280801A JP S63280801 A JPS63280801 A JP S63280801A JP 11429287 A JP11429287 A JP 11429287A JP 11429287 A JP11429287 A JP 11429287A JP S63280801 A JPS63280801 A JP S63280801A
Authority
JP
Japan
Prior art keywords
drain
groove
blade
stationary blade
outer circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11429287A
Other languages
Japanese (ja)
Other versions
JPH0791961B2 (en
Inventor
Tadashi Tanuma
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11429287A priority Critical patent/JPH0791961B2/en
Publication of JPS63280801A publication Critical patent/JPS63280801A/en
Publication of JPH0791961B2 publication Critical patent/JPH0791961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent a moving blade from being eroded by drain produced on the surface of a stationary blade by forming a drain catching groove extending longitudinally from a position separated from the outer circumferential wall of a flow path toward the inner ring of the stationary blade in at least one face on back side or front side of the stationary blade. CONSTITUTION:A stationary blade 3 of a steam turbine is supported at the outer circumferential end portion by the outer circumferential wall 1 of a flow path and at the inner circumferential end portion by a stationary blade inner ring 2. A drain catching groove 4 is formed in the longitudinal direction of the stationary blade 3 closely to the trailing edges of the back side face and the front side face of the stationary blade 3. The drain catching groove 4 does not open to the outer circumferential wall 1 side of the flow path, where the distance D between the outer circumferential side end of the groove 4 and the outer circumferential wall 1 of the flow path is set longer than about 3mm. The inner circumferential end of the groove 4 is formed closer to the inner ring 2 side than 75% of the height of stator blade with reference to the outer circumferential face of the stator blade inner ring 2. Consequently, drain produced on the surface of the stationary blade 3 can be caught and erosion of the moving blade 7 due to drain can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービンの静翼に係り、特に蒸気中のドレ
ンが動翼の先端に衝突することによって起きる羽根の浸
蝕や性能の低下を防止するのに適する蒸気タービンの静
翼に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to stationary blades of steam turbines, and particularly to corrosion of the blades caused by condensate in steam colliding with the tips of the rotor blades. The present invention relates to a stator blade for a steam turbine suitable for preventing performance deterioration.

(従来の技術) 原子力タービンや地熱タービンの大部分の段落あるいは
火力タービンの低圧部の段落では、作動流体である蒸気
の一部分が凝縮してドレンとなり、静翼の表面を流れ、
これらドレンが下流にある動翼を浸蝕したり、タービン
効率を低下させたりすることは知られている。
(Prior Art) In most stages of nuclear power turbines and geothermal turbines, or in the low-pressure stage of thermal power turbines, a portion of steam, which is the working fluid, condenses and becomes drain, flowing on the surface of the stationary blade.
These condensates are known to erode downstream rotor blades and reduce turbine efficiency.

静翼の表面で発生したドレンは、成長し集合し後縁へ流
れそこから飛散して蒸気主流の速度に追従できないまま
動翼に衝突する。衝突速度は翼の先端はど速く、ドレン
の発生は翼の外周近くに多い。したがって、動翼先端が
集中的に浸蝕を受ける。また、ドレンの動翼への衝突は
、動翼の回転に対してブレーキとして作用するのでター
ビン効率低下の要因となる。
The condensate generated on the surface of the stationary blade grows and collects, flows to the trailing edge, and is scattered from there, colliding with the moving blade without being able to follow the speed of the mainstream steam. The collision speed is faster at the tip of the wing, and most condensate occurs near the outer periphery of the wing. Therefore, the tip of the rotor blade is intensively eroded. Furthermore, the collision of the drain against the rotor blades acts as a brake on the rotation of the rotor blades, causing a reduction in turbine efficiency.

このような問題を改善するために、従来、第8図、第9
図に示されるような湿分分離装置を備えた蒸気タービン
が提案されている。
In order to improve such problems, conventional methods such as those shown in Figs.
A steam turbine equipped with a moisture separator as shown in the figure has been proposed.

第8図において、流路外周壁1と静翼内輪2との間には
溶接や鋳込みなどにより50枚から100枚程度の静翼
3が放射状に固設されている。
In FIG. 8, approximately 50 to 100 stator blades 3 are radially fixed between the flow path outer circumferential wall 1 and the stator blade inner ring 2 by welding, casting, or the like.

静翼3の腹側面3aの下流側には第9図に示すようにド
レン捕獲溝4が形成され、このドレン捕獲溝4は流路外
周壁1側から長手方向に流路中央近くまで延設されてい
る。また、ドレン捕獲溝4は流路外周壁1内に設けられ
たドレン回収室5に連通孔6を介して連通されている。
As shown in FIG. 9, a drain capture groove 4 is formed on the downstream side of the ventral surface 3a of the stationary blade 3, and this drain capture groove 4 extends from the flow channel outer peripheral wall 1 side in the longitudinal direction to near the center of the flow channel. has been done. Further, the drain capture groove 4 is communicated with a drain recovery chamber 5 provided in the outer circumferential wall 1 of the flow path via a communication hole 6.

静翼3の上流側と下流側の流路外周壁1にはドレン吸込
スリット8が設けられ、ドレン回収室5に連通されてい
る。
Drain suction slits 8 are provided in the flow path outer peripheral wall 1 on the upstream and downstream sides of the stationary blade 3 and communicate with the drain recovery chamber 5 .

ドレン回収室5は低圧の復水器(図示せず)などに連通
されている。また、静翼3の下流にはホイール9に植込
まれた動翼10が配設されている。
The drain recovery chamber 5 is connected to a low pressure condenser (not shown) or the like. Furthermore, a moving blade 10 embedded in a wheel 9 is disposed downstream of the stationary blade 3.

主流蒸気は第8図における左方より静翼3に流入しここ
で流れの向きを変えつつ増速されて動翼10に流入し、
これを回転させる。温度、圧力の低い湿り蒸気が流れて
いる蒸気タービン段落では静翼3や流路外周壁1上で蒸
気の一部が凝縮してドレンが発生する。静翼3の腹側を
流れるドレンはドレン捕獲溝4で捕獲され、連通孔6か
らドレン回収室5に吸込まれ流路外へ排出される。流路
外周壁1上のドレンはドレン吸込スリット8を介して流
路外へ排出される。
The mainstream steam flows into the stationary blade 3 from the left in FIG.
Rotate this. In a steam turbine stage through which wet steam with low temperature and pressure flows, a portion of the steam condenses on the stationary blades 3 and the outer circumferential wall 1 of the flow path to generate drain. Drain flowing on the ventral side of the stationary blade 3 is captured by the drain capture groove 4, sucked into the drain collection chamber 5 through the communication hole 6, and discharged out of the flow path. The drain on the outer peripheral wall 1 of the flow path is discharged to the outside of the flow path via the drain suction slit 8.

(発明が解決しようとする間m点) 静翼3の背側面には上記腹側面と同様にドレンの流れが
存在し、その量は腹側面を流れるドレンの20%〜12
0%にも達し、背側面の下流近くで付着し成長するドレ
ンも多い。ドレンの半径方向の分布を見ると流路中央部
から外側に向かってドレンの大部分が集中しており、特
に流路高さの75%より外側に多く集中している。流路
外周壁1でもドレンは多量にフィルム状になって流れる
(Point m to be solved by the invention) There is a drain flow on the dorsal side of the stationary blade 3, similar to the ventral side, and the amount is 20% to 12% of the drain flowing on the ventral side.
It reaches 0%, and there are many drains that adhere and grow near the downstream of the dorsal surface. Looking at the distribution of condensate in the radial direction, most of the condensate is concentrated outward from the center of the channel, and is particularly concentrated outside 75% of the channel height. A large amount of drain flows in the form of a film even on the outer circumferential wall 1 of the flow path.

静W3の表面に長手方向に上記のようにドレン捕獲溝4
を設けると、ここでドレンは捕獲され、ドレンの主流方
向の速度は無くなり、あとは溝に沿った静圧勾配でより
低圧な方へ流されることが観察されている。
Drain capture groove 4 is installed on the surface of static W3 in the longitudinal direction as shown above.
It has been observed that when a drain is provided, the drain is captured here, the speed of the drain in the mainstream direction is lost, and the rest is flowed toward lower pressure due to the static pressure gradient along the groove.

つまり、上記従来技術においては、静翼の背側面を流れ
るドレンは全く捕獲されないばかりか腹側のドレン捕獲
溝4でとらえたドレンも静圧勾配が抵抗となって連通孔
6まで達するものはごく一部に限られ、残りは再度流出
してしまう可能性が大きい。また、外周壁1を流れる多
量のドレンで連通孔6がいっばいになりドレン捕獲溝4
のドレンが逆流する可能性もある。このような現象を防
ぐために連通孔6を大きくすることは可能であるが、a
効な仕事をする蒸気までυト出することになりタービン
効率の低下を招くことになる。
In other words, in the above-mentioned conventional technology, not only is the drain flowing on the dorsal side of the stator vane not captured at all, but also the drain that is captured in the drain capture groove 4 on the ventral side rarely reaches the communication hole 6 due to the resistance of the static pressure gradient. There is a high possibility that it will be limited to a portion and the rest will leak out again. In addition, the communication hole 6 is filled with a large amount of drain flowing through the outer peripheral wall 1, and the drain capture groove 4
There is also a possibility that the drain will flow backwards. Although it is possible to enlarge the communication hole 6 to prevent such a phenomenon, it is possible to
Even the steam that does effective work will be emitted, leading to a decrease in turbine efficiency.

そこで、本発明は、上述したような従来の蒸気タービン
静翼のドレン排出上の欠点を解消し、静翼の表面上で発
生するドレンによる動翼の浸蝕を防止すると共に、ター
ビン効率を向上させることを目的とするものである。
Therefore, the present invention solves the above-mentioned drawbacks of conventional steam turbine stationary blades in terms of drain discharge, prevents corrosion of the rotor blades due to drain generated on the surface of the stationary blades, and improves turbine efficiency. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は、外周側端部を流
路外周壁に、内周側端部を静翼内輪にそれぞれ支持した
静翼を有し、この静翼の背側面または腹側面の少なくと
も一方の而に上記流路外周壁から間隔を隔てた位置より
上記静翼内輪側へ向けて長手方向へ延びるドレン捕S%
 ??nを形成したことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention has a stator blade whose outer end is supported on the outer peripheral wall of the flow path and whose inner end is supported on the inner ring of the stator vane. A drain trap S% is provided on at least one of the dorsal surface and the ventral surface of the stator vane and extends in the longitudinal direction from a position spaced apart from the outer circumferential wall of the flow path toward the inner ring side of the stator vane.
? ? It is characterized by forming n.

(作 用) 本発明によれば、静翼の表面を流れるドレンはドレン捕
獲溝に捕えられ、外周壁側における静圧か内輪側におけ
る静圧より高いという上記溝内の静圧勾配によってドレ
ンは内輪側へ流され、静翼の下流に配置された動翼の周
速が充分小さくなる半径方向の位置まで導かれ、上記溝
がなくなる近くでドレンは再び静翼の表面に流れ出して
後縁から飛散する。ここでは動翼の先端近くと異なりそ
の周速が小さいのでドレンの動翼への衝突速度は小さく
、動翼を浸蝕することはなく、ブレーキ作用によるター
ビン効率の低下も小さい。また、ドレン蒸気は流路から
外部へ排出されないので、蒸気の損失も少なくなる。
(Function) According to the present invention, the drain flowing on the surface of the stationary blade is caught in the drain trapping groove, and the drain is trapped by the static pressure gradient in the groove, where the static pressure on the outer circumferential wall side is higher than the static pressure on the inner ring side. The drain flows toward the inner ring and is guided to a position in the radial direction where the circumferential speed of the rotor blade located downstream of the stator blade becomes sufficiently small. Near the point where the groove disappears, the drain flows out onto the surface of the stator blade again and is removed from the trailing edge. scatter. Here, unlike near the tips of the rotor blades, the circumferential speed is low, so the impingement speed of the drain against the rotor blades is low, the rotor blades are not eroded, and the decrease in turbine efficiency due to braking is also small. Furthermore, since drain steam is not discharged to the outside from the flow path, steam loss is also reduced.

(実施例) 以下、本発明による蒸気タービンの静翼の一実施例を第
1図乃至第3図を参照して説明する。なお、第8図と同
一部分には同一符号を付して示し説明を省略する。
(Example) Hereinafter, an example of a stationary blade of a steam turbine according to the present invention will be described with reference to FIGS. 1 to 3. Note that the same parts as in FIG. 8 are denoted by the same reference numerals, and explanations thereof will be omitted.

第1図において、静翼3の背側面及び腹側面の後縁近く
には、静翼3の長手方向に沿ってドレン捕獲溝4が形成
されている。この溝4は流路外周ul側に開口しない形
状になっており、本実施例においては、溝4の外周側端
部と流路外周壁1との距離りが約3mm以上隔てられて
いる。一方、溝4の内周側端部は、静翼内輪2の外周面
を基準とする静翼高さの75%より内輪2側に近くなる
よう形成されている。
In FIG. 1, drain capture grooves 4 are formed along the longitudinal direction of the stator blade 3 near the trailing edges of the dorsal and ventral surfaces of the stator blade 3. This groove 4 has a shape that does not open toward the outer periphery ul side of the flow path, and in this embodiment, the outer peripheral end of the groove 4 and the outer peripheral wall 1 of the flow path are separated by a distance of about 3 mm or more. On the other hand, the inner peripheral end of the groove 4 is formed to be closer to the inner ring 2 than 75% of the height of the stator blade based on the outer peripheral surface of the inner ring 2 of the stator blade.

静翼3の背側面の溝4は、後縁近くに後縁とほぼ平行に
なるように形成され、静翼3の腹側面の1g4は、外周
側端部がプロフィル前縁側にかつ内周側端部がプロフィ
ル後縁側に近付くよう形成されている。
The groove 4 on the back side of the stator blade 3 is formed near the trailing edge so as to be almost parallel to the trailing edge, and the groove 4 on the ventral side of the stator blade 3 is formed so that the outer peripheral end is on the front edge side of the profile and on the inner peripheral side. The end portion is formed closer to the rear edge side of the profile.

次に、本発明における蒸気タービンの静翼の作用を説明
する。
Next, the operation of the stationary blade of the steam turbine in the present invention will be explained.

湿り蒸気が流れる蒸気タービンにおいては、蒸気が静翼
3の間を流れるときに、蒸気中の湿分が流れ方向の速度
変化に追従できず静翼3の表面に衝突したり、静翼3の
表面に沿って流れるうちに凝縮したりして静′A3表面
にドレンが発生する。
In a steam turbine in which wet steam flows, when the steam flows between the stator blades 3, the moisture in the steam cannot follow the speed change in the flow direction and collides with the surface of the stator blades 3, or the stator blades 3. As it flows along the surface, it condenses and condensation occurs on the static A3 surface.

静翼3の■−■−■及びIV−IV断面(第1図参照)
のプロフィル表面静圧分布は第3図に示すような関係に
あり、外周側の■−■断面断面刃が内周側のIV−IV
断面部より圧力は高い。従って、ドレン捕獲溝4を形成
すると背・腹側両面とも外周側で高く内周側で低いとい
う圧力差が溝4に沿って生じる。第3図ではこの圧力差
を腹側、背側についてそれぞれ△P 、△P2で示して
いる。た■ だし背側では溝4を後縁に平行にするだけで十分な圧力
差が生ずるが、腹側では第3図から明らかなように、そ
れだけでは不十分なので溝4の外周側端部をプロフィル
前縁寄りに、かつ内周側端部をプロフィル後縁寄りにな
るよう形成することによって圧力差を大きくしている。
■-■-■ and IV-IV cross sections of stationary blade 3 (see Figure 1)
The static pressure distribution on the profile surface has the relationship shown in Figure 3, with the ■-■ cross section blade on the outer circumference side being IV-IV on the inner circumference side.
The pressure is higher than the cross section. Therefore, when the drain capture groove 4 is formed, a pressure difference occurs along the groove 4 on both the dorsal and ventral sides, such that it is higher on the outer peripheral side and lower on the inner peripheral side. In FIG. 3, this pressure difference is indicated by ΔP and ΔP2 on the ventral and dorsal sides, respectively. However, on the dorsal side, a sufficient pressure difference is generated just by making the groove 4 parallel to the trailing edge, but on the ventral side, as is clear from Figure 3, this is not enough, so the outer edge of the groove 4 is The pressure difference is increased by forming the profile closer to the front edge and the inner peripheral end closer to the profile rear edge.

静翼3表面のドレンは翼の表面上を流れるうちにドレン
捕獲溝4に捕えられ、溝4内の静圧勾配によって内周側
に流され、溝4がなくなる部位の近くで再び流出して静
翼3の後縁まで流される。
Drain on the surface of the stator blade 3 is captured by the drain capture groove 4 as it flows on the surface of the blade, is flown to the inner circumference side by the static pressure gradient in the groove 4, and flows out again near the part where the groove 4 disappears. It is swept up to the trailing edge of the stationary blade 3.

この間のドレンの経路は第1図に符号Fdで示されてい
る。後縁に到達したドレンはそこから飛散して動翼7に
衝突するが、前記ドレン捕獲溝4は充分に長く、ドレン
が衝突する位置の半径は充分小さくなっているので、ド
レンの衝突速度は充分小さい。
The drain path during this period is indicated by the symbol Fd in FIG. The drain that reaches the trailing edge is scattered from there and collides with the rotor blade 7, but since the drain capture groove 4 is sufficiently long and the radius of the point where the drain collides is sufficiently small, the collision speed of the drain is Small enough.

一方、実験によって流路外周壁1上をフィルム状になっ
て流れるドレンはその量も多いことがわかっているが、
ドレン捕獲溝4と流路外周壁1との間には3mm以上の
間隔りがあり、外周壁1上のドレンが溝4に流れ込むこ
とはなく、外周壁1上のドレンは静翼3の下流のドレン
吸込スリット8に効率良く吸込まれる。
On the other hand, experiments have shown that there is a large amount of condensate flowing in the form of a film on the outer circumferential wall 1 of the flow path.
There is a gap of 3 mm or more between the drain capture groove 4 and the flow path outer circumferential wall 1, so that the drain on the outer circumferential wall 1 does not flow into the groove 4, and the drain on the outer circumferential wall 1 is downstream of the stationary blade 3. The drain is efficiently sucked into the drain suction slit 8.

通常、26インチ程度までの最終段動翼では先端から7
5%高さまでの範囲がドレンとの衝突速度か大きく浸蝕
か激しい。本実施例では、ドレン捕獲溝4を形成するこ
とによってこの範囲は少なくとも保護される。
Normally, for final stage rotor blades up to about 26 inches, 7 inches from the tip.
The range up to 5% height is due to the collision speed with the drain and is severely eroded. In this embodiment, at least this area is protected by forming the drain capture groove 4.

上記のようにして、動翼に衝突するときの衝突速度が充
分小さくなる内周側の部分に静翼3の表面で発生するド
レンを導くことによって、動翼の浸蝕は大幅に低減でき
、信頼性が向上すると共にタービンの補修費用を減らす
ことができる。また、動翼への衝突損失は小さくなるの
で、タービンの段落効率が向上する。本実施例では、ド
レン及び蒸気を流路外へ流出することがないので、蒸気
の損失もなくなる。
As described above, by directing the drain generated on the surface of the stator blade 3 to the inner circumferential portion where the collision speed when colliding with the rotor blade is sufficiently small, corrosion of the rotor blade can be significantly reduced, resulting in reliability. This improves performance and reduces turbine repair costs. Furthermore, since the collision loss to the rotor blades is reduced, the stage efficiency of the turbine is improved. In this embodiment, since drain and steam do not flow out of the flow path, there is no loss of steam.

さらに、最終段静翼では静翼流出蒸気速度は内周側にな
ればなるほど大きくなるので、ドレンを内周側に導いて
から流出させることは静翼後縁から飛散するドレン粒子
をより微細化することになり、動翼の浸蝕をさらに低減
できるという効果が得られる。
Furthermore, in the final stage stator blade, the velocity of the steam flowing out of the stator blade increases as it approaches the inner circumference, so guiding the condensate toward the inner circumference and then letting it flow out makes the condensate particles scattered from the trailing edge of the stator blade more fine. This has the effect of further reducing rotor blade erosion.

本発明によれば、静翼3の表面に溝を設けるだけの簡単
な構造であるので、湿り蒸気を作動流体とするタービン
のコストを低減できるばかりでなく、既存設備にも簡単
に適用でき動翼の浸蝕防止及び性能向上を安価に実現す
ることができる。
According to the present invention, the structure is as simple as providing grooves on the surface of the stationary blade 3, so not only can the cost of a turbine using wet steam as a working fluid be reduced, but it can also be easily applied to existing equipment and operated. It is possible to prevent erosion of blades and improve performance at a low cost.

次に、本発明の他の実施例について第4図及び第5図を
参照して説明する。なお、第5図は第4図に示した静翼
3の■−■断面図である。
Next, another embodiment of the present invention will be described with reference to FIGS. 4 and 5. Note that FIG. 5 is a cross-sectional view taken along the line ■-■ of the stationary blade 3 shown in FIG.

第4図において、静翼3の背・腹側両面には複数のドレ
ン捕獲溝4が形成されている。すべての溝4の外周側端
部は流路外周壁1から第1図と同様にして距離りだけ隔
てられており、溝4の長さは下流に位置するものほど短
くなるように、かつ背・腹側含めてすべての溝4の内周
側端部の半径方向位置が異なるように形成されている。
In FIG. 4, a plurality of drain capture grooves 4 are formed on both the dorsal and ventral sides of the stationary blade 3. The outer peripheral side ends of all the grooves 4 are separated by a distance from the flow path outer peripheral wall 1 in the same manner as shown in FIG. - All the grooves 4, including the ventral side, are formed so that the inner circumferential end portions are located at different positions in the radial direction.

このように構成することによって、一本の溝4だけでは
捕獲しきれなかったドレンや一本目の溝4の下流で新た
に発生したドレンを確実に捕獲でき、ドレンが流出する
半径方向の位置を分散させ低速といえども集中して動翼
にドレンが衝突するのを防止することができる。
With this configuration, it is possible to reliably capture condensate that could not be captured by one groove 4 alone or newly generated condensate downstream of the first groove 4, and to determine the radial position from which the condensate flows. It is possible to prevent the condensate from colliding with the rotor blades by dispersing it and concentrating it even at low speeds.

また、第6図及び第゛7図を参照して他の実施例につい
て説明する。なお、第7図は第6図の静翼のvt−vt
断面図である。
Further, other embodiments will be described with reference to FIGS. 6 and 7. In addition, Fig. 7 shows the vt-vt of the stationary blade in Fig. 6.
FIG.

この静翼3は中空構造であり、その内部は空洞11にな
っており、表面圧力がほぼ等しい背側前縁近くと腹側後
縁近くには、外部と空洞11とを連通ずるドレン吸込ス
リット10が形成されている。スリット10は静翼3の
長手方向に沿いかつ流れに直交するように形成され、静
翼3の強度を低下させないように3つに分割されている
(第6図参照)。空洞11に連通するドレン回収室5は
流路外周壁1の内部に設けられ、この回収室5はより低
圧なたとえば復水器などの部分へつながっている。また
、静翼3の後縁近くの背側面上には後縁と平行にドレン
捕獲溝4が形成されている。
The stationary vane 3 has a hollow structure, and the inside thereof is a cavity 11. Near the dorsal front edge and the ventral rear edge, where the surface pressure is almost equal, there is a drain suction slit 10 that communicates the outside with the cavity 11. is formed. The slit 10 is formed along the longitudinal direction of the stator blade 3 and perpendicular to the flow, and is divided into three parts so as not to reduce the strength of the stator blade 3 (see FIG. 6). A drain recovery chamber 5 communicating with the cavity 11 is provided inside the outer circumferential wall 1 of the flow path, and this recovery chamber 5 is connected to a portion having a lower pressure, such as a condenser. Furthermore, a drain capture groove 4 is formed on the back side near the rear edge of the stationary blade 3 in parallel with the rear edge.

このように構成した蒸気タービン静翼においては、翼の
表面上を流れるドレンは上記ドレン吸込スリット10が
ら空洞11内に吸込まれ、ドレン回収室5を経て、」二
記低圧の部分へ排出される。
In the steam turbine stator vane constructed in this way, the condensate flowing on the surface of the vane is sucked into the cavity 11 through the condensate suction slit 10, passes through the condensate recovery chamber 5, and is discharged to the low-pressure section in Section 2. .

ところで背側の静翼ドレン吸込スリット10は前縁近く
に形成されているので、例えここですべてのドレンを吸
込んだとしてもその下流では凝縮によってドレンが発生
する。このドレンを背側後縁近くのドレン捕獲溝4が捕
えて半径方向の位置が充分小さい位置までドレンを導く
。本実施例では、ドレンの吸込みと溝4によるドレンの
移動を併用するので、特に湿り度が高くドレンの多いタ
ービン段落に有効であり、従来の吸込スリットだけの中
空状静翼では防止できなかった背側下流に発生するドレ
ンによる浸蝕を有効に防止することかできる。
By the way, since the stator vane drain suction slit 10 on the back side is formed near the leading edge, even if all the drain is sucked in here, the drain will be generated downstream due to condensation. This drain is captured by the drain capture groove 4 near the rear edge of the back side and guided to a position where the position in the radial direction is sufficiently small. In this example, since drain suction and drain movement through the grooves 4 are used together, it is particularly effective for turbine stages with high humidity and a large amount of drain, which could not be prevented with conventional hollow stator vanes with only suction slits. Erosion caused by drain occurring downstream on the dorsal side can be effectively prevented.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、静翼
の背側面または腹側面の少なくとも一方の而に形成され
たドレン捕獲溝を介して静翼の表面−りのドレンを動翼
に浸蝕を与えない半径方向の位置まで導くようにしたの
で、動翼の浸蝕を防IJ二できると共に、タービン段落
の効率を向−1ニさせることができる。
As is clear from the above description, according to the present invention, drain from the surface of the stator blade is transferred to the rotor blade through the drain capture groove formed on at least one of the dorsal surface and the ventral surface of the stator blade. Since the rotor is guided to a position in the radial direction that does not cause corrosion, corrosion of the rotor blades can be prevented and the efficiency of the turbine stage can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す蒸気タービン最終段の
縦断面図、第2図は第1図の■−■断面図、第3図は第
1図の■−■断面とIV−IV断面における静翼のプロ
フィル表面静圧分布図、第4図は他の実施例を示す蒸気
タービン最終段静翼の縦断面図、第5図は第4図のV−
■断面図、第6図は他の実施例を示す蒸気タービン最終
段の縦断面図、第7図は第6図の■−■断面図、第8図
は従来の蒸気タービン最終段の縦断面図、第9図は第8
図のIX−IX断面図である。 1・・・流路外周壁、2・・・静翼内輪、3・・・静翼
、4・・・ドレン捕獲溝、5・・・ドレン回収空洞、6
・・・連通孔、7・・・動翼、8・・・ドレン吸込スリ
ット、]0・・・静翼ドレン吸込スリット、11・・・
静翼空洞、Fd・・・ドレンの流れ。 出願人代理人  佐  藤  −雄 躬 1 図 躬4 図 躬5図 嘉6図 躬8図 佑9図
FIG. 1 is a vertical cross-sectional view of the final stage of a steam turbine showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a cross-sectional view taken along ■-■ in FIG. FIG. 4 is a longitudinal sectional view of a steam turbine final stage stator blade showing another embodiment, and FIG.
■Cross-sectional view, Figure 6 is a vertical cross-section of the final stage of a steam turbine showing another embodiment, Figure 7 is a cross-sectional view taken along ■--■ of Figure 6, and Figure 8 is a vertical cross-section of the final stage of a conventional steam turbine. Figure 9 is the 8th
It is a sectional view taken along line IX-IX in the figure. DESCRIPTION OF SYMBOLS 1...Flow path outer peripheral wall, 2...Stator blade inner ring, 3...Stator blade, 4...Drain capture groove, 5...Drain collection cavity, 6
... Communication hole, 7... Moving blade, 8... Drain suction slit, ]0... Stationary blade drain suction slit, 11...
Stationary blade cavity, Fd...Drain flow. Applicant's agent Sato -Yuman 1 Figure 4 Figure 5 Figure 6 Figure 8 Figure 8 You 9 Figure

Claims (1)

【特許請求の範囲】 1、外周側端部を流路外周壁に、内周側端部を静翼内輪
にそれぞれ支持した静翼を有し、この静翼の背側面また
は腹側面の少なくとも一方の面に上記流路外周壁から間
隔を隔てた位置より上記静翼内輪側へ向けて長手方向へ
延びるドレン捕獲溝を形成したことを特徴とする蒸気タ
ービンの静翼。 2、上記溝は、溝の外周側端部が上記流路外周壁より少
なくとも3mm以上隔てられ、溝の内周側端部が上記静
翼内輪の外周面を基準とする静翼高さの75%以下の位
置へ達するよう形成されていることを特徴とする特許請
求の範囲第1項記載の蒸気タービンの静翼。 3、上記溝は背側面の後縁近くに後縁とほぼ平行に形成
されていることを特徴とする特許請求の範囲第1項記載
の蒸気タービンの静翼。 4、上記溝は溝の外周側端部がプロフィル前縁寄りに、
かつ溝の内周側端部がプロフィル後縁寄りに位置するよ
う形成され、上記外周側端部から上記内周側端部へ向か
って上記溝内の静圧が低くなるようにしたことを特徴と
する特許請求の範囲第1項記載の蒸気タービンの静翼。 5、上記静翼の背側面または腹側面の同一面内に2本以
上の溝を並列状に形成し、溝の長さは後縁近くにある溝
ほど短くなるよう形成したことを特徴とする特許請求の
範囲第1項記載の蒸気タービンの静翼。 6、上記静翼は中空構造に形成し、蒸気圧力が同じにな
る背側面内のプロフィル前縁側と腹側面内のプロフィル
後縁側とに上記静翼の長手方向に沿いかつ蒸気の流れに
直交するスリット状のドレン吸込口を形成すると共に、
上記背側面の後縁の近くには上記溝を後縁とほぼ平行に
形成したことを特徴とする特許請求の範囲第1項記載の
蒸気タービンの静翼。
[Scope of Claims] 1. A stator blade having an outer peripheral end supported on the outer peripheral wall of the flow path and an inner peripheral end supported on the inner ring of the stator vane, and at least one of the dorsal surface or the ventral surface of the stator vane. A stator blade for a steam turbine, characterized in that a drain capture groove is formed on a surface thereof from a position spaced apart from the outer circumferential wall of the flow path and extends in the longitudinal direction toward the inner ring side of the stator blade. 2. The groove is such that the outer circumferential end of the groove is separated from the outer circumferential wall of the flow path by at least 3 mm or more, and the inner circumferential edge of the groove is 75 mm above the height of the stator vane based on the outer circumferential surface of the inner ring of the stator vane. % or less. 3. The stationary blade for a steam turbine according to claim 1, wherein the groove is formed near the trailing edge of the back side and substantially parallel to the trailing edge. 4. For the above groove, the outer circumferential end of the groove is closer to the front edge of the profile,
Further, the groove is formed such that the inner circumferential end thereof is located near the rear edge of the profile, and the static pressure within the groove decreases from the outer circumferential end toward the inner circumferential end. A stator blade for a steam turbine according to claim 1. 5. Two or more grooves are formed in parallel in the same plane on the dorsal or ventral side of the stationary blade, and the length of the grooves is formed so that the grooves closer to the trailing edge become shorter. A stator blade for a steam turbine according to claim 1. 6. The stationary blade is formed into a hollow structure, and a slit is provided along the longitudinal direction of the stationary blade and perpendicular to the steam flow on the leading edge side of the profile on the back side and the trailing edge side of the profile on the ventral side where the steam pressure is the same. In addition to forming a shaped drain suction port,
2. The stationary blade for a steam turbine according to claim 1, wherein the groove is formed near the trailing edge of the back surface so as to be substantially parallel to the trailing edge.
JP11429287A 1987-05-11 1987-05-11 Steam turbine vane Expired - Lifetime JPH0791961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11429287A JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11429287A JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Publications (2)

Publication Number Publication Date
JPS63280801A true JPS63280801A (en) 1988-11-17
JPH0791961B2 JPH0791961B2 (en) 1995-10-09

Family

ID=14634202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11429287A Expired - Lifetime JPH0791961B2 (en) 1987-05-11 1987-05-11 Steam turbine vane

Country Status (1)

Country Link
JP (1) JPH0791961B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357104A (en) * 2001-05-31 2002-12-13 Toshiba Corp Steam turbine facility
GB2475957A (en) * 2009-12-07 2011-06-08 Gen Electric Steam turbine moisture removal
JP2016138524A (en) * 2015-01-28 2016-08-04 三菱日立パワーシステムズ株式会社 Stationary vane and steam turbine
WO2020250596A1 (en) * 2019-06-10 2020-12-17 三菱日立パワーシステムズ株式会社 Steam turbine stationary blade, steam turbine, and manufacturing method for steam turbine stationary blade
CN115749972A (en) * 2022-11-15 2023-03-07 中国船舶集团有限公司第七〇四研究所 Hollow quiet leaf dehumidification structure of marine 10MW level steam turbine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357104A (en) * 2001-05-31 2002-12-13 Toshiba Corp Steam turbine facility
JP4592216B2 (en) * 2001-05-31 2010-12-01 株式会社東芝 Steam turbine equipment
GB2475957A (en) * 2009-12-07 2011-06-08 Gen Electric Steam turbine moisture removal
US8568090B2 (en) 2009-12-07 2013-10-29 General Electric Company System for reducing the level of erosion affecting a component
GB2475957B (en) * 2009-12-07 2017-02-22 Gen Electric System for removing moisture from a steam turbine
JP2016138524A (en) * 2015-01-28 2016-08-04 三菱日立パワーシステムズ株式会社 Stationary vane and steam turbine
WO2020250596A1 (en) * 2019-06-10 2020-12-17 三菱日立パワーシステムズ株式会社 Steam turbine stationary blade, steam turbine, and manufacturing method for steam turbine stationary blade
JP2020200792A (en) * 2019-06-10 2020-12-17 三菱パワー株式会社 Steam turbine stationary blade, steam turbine and manufacturing method of steam turbine stationary blade
CN113785105A (en) * 2019-06-10 2021-12-10 三菱动力株式会社 Steam turbine stator blade, steam turbine, and method for manufacturing steam turbine stator blade
CN113785105B (en) * 2019-06-10 2023-08-15 三菱重工业株式会社 Steam turbine stator blade, steam turbine, and method for manufacturing steam turbine stator blade
US11840938B2 (en) 2019-06-10 2023-12-12 Mitsubishi Heavy Industries, Ltd. Steam turbine stator vane, steam turbine, and production method for steam turbine stator vane
CN115749972A (en) * 2022-11-15 2023-03-07 中国船舶集团有限公司第七〇四研究所 Hollow quiet leaf dehumidification structure of marine 10MW level steam turbine

Also Published As

Publication number Publication date
JPH0791961B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP5824208B2 (en) System for reducing the effects of erosion on parts
US3781129A (en) Cooled airfoil
KR101378236B1 (en) Systems for moisture removal in steam turbine engines
KR101747610B1 (en) Moisture removal device for steam turbine
US7296964B2 (en) Apparatus and methods for minimizing solid particle erosion in steam turbines
JP3786458B2 (en) Axial turbine blade
JP2009138540A (en) Steam turbine and moisture removing structure for steam turbine stage
JP2016166569A (en) Steam turbine
JPH04259604A (en) Honeycomb type sealing device and moisture content draining device
JPS63280801A (en) Stationary blade for steam turbine
JP2753237B2 (en) Stationary structure of steam turbine
JP3815143B2 (en) Steam turbine
JPH0326802A (en) Stationary blade apparatus of steam turbine
US6375417B1 (en) Moisture removal pocket for improved moisture removal efficiency
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JPS63117104A (en) Moisture separating device for steam turbine
JP3950308B2 (en) Moisture removal device in steam turbine
JP2005299680A (en) Axial-flow turbine blade
JPH08121107A (en) Steam turbine nozzle
JPS62168905A (en) Moisture removing device for turbine
JPH0742506A (en) Drain discharging structure of steam turbine
JPH04140401A (en) Nozzle of steam turbine
JPH0326803A (en) Moist steam turbine stage
JPH0711243B2 (en) Honeycomb labyrinth seals for steam turbines
JPS63176602A (en) Steam turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 12