JP3786458B2 - Axial turbine blade - Google Patents

Axial turbine blade Download PDF

Info

Publication number
JP3786458B2
JP3786458B2 JP00771896A JP771896A JP3786458B2 JP 3786458 B2 JP3786458 B2 JP 3786458B2 JP 00771896 A JP00771896 A JP 00771896A JP 771896 A JP771896 A JP 771896A JP 3786458 B2 JP3786458 B2 JP 3786458B2
Authority
JP
Japan
Prior art keywords
blade
flow
peripheral wall
trailing edge
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00771896A
Other languages
Japanese (ja)
Other versions
JPH09195705A (en
Inventor
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00771896A priority Critical patent/JP3786458B2/en
Publication of JPH09195705A publication Critical patent/JPH09195705A/en
Application granted granted Critical
Publication of JP3786458B2 publication Critical patent/JP3786458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は軸流タービンの静翼または動翼の改良に係り、特に翼の加熱、冷却、流れの制御の目的で翼の内部に流体を導いて翼後縁又は翼表面から吹き出すようにしたものにおいて、流れの適正化のための吹き出し口部の形状を改良した軸流タービン翼に関する。
【0002】
【従来の技術】
軸流タービン翼の内部に中空部を形成して、翼まわりを流れる主流作動流体より高圧の流体を翼内部に導いて、後縁や翼表面から流出させるようにしたタービン翼は、タービンの性能と信頼性を向上させるために、ガスタービンでは一般的に使用されており、また蒸気タービンに適用する構成例も既に提案されている。
【0003】
ガスタービンにおいては、タービン翼を冷却するためにタービンの作動流体より低温高圧の空気を圧縮機から抽気して、タービン段落の静翼及び動翼の内部の中空部に導き、翼後縁や翼表面から吹き出している。
【0004】
一方、蒸気タービンに関しては、湿り蒸気中で使用されるタービン静翼内部に高温高圧の蒸気を導いて静翼を加熱して表面を流れる凝縮水分を再度蒸発させ、下流動翼の水分による浸食を防止し、さらに水滴の衝突によって生じる損失を低減するための技術が特開昭50−112604号などで提案されている。
【0005】
更に、一般の軸流流体機械の段落の二次流れ損失と後流損失の低減を目的として、翼表面から主流の一部を吸い込んで翼内部に導き、後縁から吹き出させる構造が特公昭56−14845号で提案されている。
【0006】
以上の従来技術の中から特開昭50−112604号に記載された蒸気タービンに関する技術を例にして具体的に説明する。
【0007】
図8および図9は、前述した蒸気タービンの例の一つで、低圧最終段への適用例である。タービンの段落は周方向に複数枚配置された静翼1と、同じく周方向に複数枚配置された動翼2とによって構成される。動翼2はロータ3に植え込まれており、ロータ3と共に回転する。
【0008】
静翼2はケーシング4に固定されており、ケーシング4の通路側表面は、静翼1に流通する主流作動流体Fmを外側から囲む外周壁10を形成しており、静翼2の内輪側植え込み部の表面は内周壁11を形成している。最終段の上流段落の静翼入口部には高温高圧の作動流体の吸い込み口5が設けてあり、この吸い込み口5から取り入れた蒸気はバイパス通路6を通って静翼1の内部の中空部7に導かれる。
【0009】
図9は図8のA−A断面図である。静翼1の後縁には吹き出し口としての後縁吹き出し口9が形成されており、中空部7の蒸気は吹き出し通路8によって後縁吹き出し口9に導かれる。
【0010】
以上のように構成した蒸気タービンにおいては、吸い込み口5から最終段に比べて高温高圧で、通常は乾き状態の蒸気を取り入れ、バイパス通路6を通して中空部7に導くようになっている。静翼1はこの蒸気によって加熱され、表面を流れる凝縮水分の一部は再度蒸発して蒸気になる。
【0011】
中空部7の蒸気は、吹き出し通路8を通って後縁吹き出し口9から主流蒸気中に吹き出される。このとき、静翼1の加熱によって蒸発せずに後縁まで到達した水分が吹き飛ばされて微細化する。この結果、動翼2に衝突する水分の合計量と浸食作用の強い比較的大きな水滴の数の両方が減少して動翼2の浸食が低減され、合わせて水滴の動翼2への衝突によって生ずる段落性能の低下も低減される。
【0012】
この従来技術においては、後縁吹き出し口9からの噴射の方向は作動流体の流出方向とほぼ一致させ、また噴射速度は作動流体の主流の速度に等しいか、もしくはそれより若干高めとなるようにされている。
【0013】
【発明が解決しようとする課題】
上記のように構成された蒸気タービンは、静翼上の凝縮水分を静翼表面から吸い込んで外部に排出してしまう方法に比べて、蒸気の一部が水分と一緒に外部に流出してしまうことが無いので、段落の性能を損なうことがなく、動翼の浸食を防止できて望ましいように思われる。そこで、環状翼列試験によって後縁からの吹き出しが段落性能に及ぼす影響を調べたところ、以下の問題点が明らかになった。
【0014】
図10は静翼の損失分布を全圧損失係数で表したものである。縦軸は後縁高さで無次元化した静翼出口の高さ位置を表し、横軸は吹き出しなしの時の流路中央の全圧損失係数ζPCDで無次元化した全圧損失係数を表している。実線は後縁吹き出しが無い場合、破線は後縁吹き出しが有る場合の計測値を示す。
【0015】
無次元高さ0.8以上で損失が急に増加するのは、外周壁面10の低エネルギー流体が主流に流れ込んで生ずる二次流れによる。この部分では、後縁吹き出し有りの時の損失が吹き出しなしを上回っている。
【0016】
一方、無次元高さ0.5から0.7ではわずかに吹き出し有りの損失が減少している。従って、外周壁側の高さ0.8から1.0の間で吹き出しを行った場合は吹き出しによる効率の低下が大きく、高さ0.5から1.0の間で吹き出しを行った場合には中央付近の損失減少により多少改善されるが、やはり効率は低下する。
【0017】
図11は翼列下流の二次流れを簡略化して表現した説明図である。外周壁及び内周壁上の境界層を形成する速度の遅い低エネルギーの流れの部分が、翼列流路の腹側から背側への圧力勾配によって翼背側に移動する。背側に到達した低エネルギー流体は更に背側の一定の高さの位置まで入り込んで行き、ここで翼面から離れて渦を形成して行く。
【0018】
従って、二次流れの影響領域においては、後縁に沿って流路中央に向かう速度成分が存在することがわかる。ここに後縁からの吹き出しを行うと、吹き出された流体は二次流れ渦に引き込まれて同じ方向に偏向し、その結果二次流れ渦にエネルギーを供給して二次流れ損失を増加させると考えられる。
【0019】
図8、図9で説明した従来技術の例では、吹き出しの周方向の角度は比較的長い助走区間として吹き出し通路8を設けることにより、作動流体の主流の方向に向けることができるが、後縁に沿った流れの方向はなんら拘束できず、その結果吹き出し通路8の入口と出口の状態で流れの方向が決定してしまうことになる。
【0020】
図8の中空部7の構造から明らかなように、中空部には外周壁から流路中央に向かう流れが生じており、前述した二次流れの方向に吹き出す傾向を助長していることがわかる。二次流れの影響があまり及ばない流路中央付近で吹き出しによって損失が低減される現象を明らかにするために高精度の流れの数値シミュレーションを実施したところ、吹き出しの無い後縁において通常生じている逆流領域が吹き出し流れで満たされており、逆流による乱れのない安定した流れになっていることが分かった。
【0021】
従って、二次元的な流れとなっている流路中央では、吹き出しは翼列の損失を低減するが、流れの3次元性が著しい内外壁の近くでは何らかの方法で吹き出しの半径方向の流れの向きを制御しない限り、吹き出しは二次流れを増大させる方向に作用し、段落全体で見た場合タービンの効率を低下させることになる。
【0022】
他の従来技術についても同様な問題点がある。特公昭56−14845号においても後縁に沿った方向の吹き出しの制御は何等なされておらず、そのかわりに二次流れの低減対策として周方向の吹き出し流出角度を幾何学的な静翼流出角から3〜5度オフセットすることを提案している。
【0023】
しかしながら、翼列の流出角度は流出速度などの流体条件で変化し、更に主流の方向と後縁のすぐ下流の後流内では1度以上の差が有るので効果的なオフセット角度を見つけることは事実上かなり難しく、効果の程度も十分ではないと考えられる。
【0024】
ガスタービン冷却翼に関しては非常に多くの提案がなされている。たとえば、特開平6−137105号では、後縁の外周壁と内周壁の近くで吹き出しスリットの開口面積を大きくして、二次流れ損失を低減させる技術が開示されている。しかしながら、開口面積を大きく取るだけで流出方向を効果的に制御しなければ、前述した例のようにかえって二次流れを増大させることになる。
【0025】
本発明は上述した事情を考慮してなされたもので、翼後縁や翼表面からの高圧流体の吹き出しによって損失が増加せず、むしろ吹き出しによって効率が向上するように機能する軸流タービン翼を提供することを目的とする。
【0026】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路の内周側に位置する内周壁近くの後縁ではその内周壁側に傾斜する方向に、また前記作動流体流路の外周側に位置する外周壁近くではその外周壁側に傾斜する方向にそれぞれ傾けて前記作動流体流路に吹き出すようにした軸流タービン翼において、当該軸流タービン翼が配置される作動流体流路は流れの方向に流路高さが増加する拡大流路に形成されるとともに、前記吹き出し口を、タービン中心軸から図った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
[ 数1 ]
βm={βt(R−Rt)+βr(Rt−R)}/(Rt−Rr)
と定義した場合、後縁吹き出しの子午面傾斜角βが、
[ 数2 ]
R<(Rr+Rt)/2においてはβ<βm,
R>(Rr+Rt)/2においてはβ>βm
となるように形成して二次流れ損失を低減させたことを特徴とする。
【0027】
本発明によれば、拡大流路を有する軸流タービン翼において、翼内部の中空部に導かれた高圧流体後縁から吹き出される際に、流路の拡大に伴う幾何学的な平均傾斜角βmを基準として、内周壁近くでは内周壁側に、外周壁近くでは外周壁側に傾斜するように吹き出すので、図11に示した二次流れFsと逆向きの流れが後縁下流に生じて二次流れの渦を弱くし、二次流れ損失を低減させることができる。
【0030】
請求項の発明は、請求項記載の軸流タービン翼において、翼の腹側(正圧側)を、内周壁および外周壁の近くでそれぞれ内周壁と外周壁とに向くように、かつ子午面またはタービン中心軸に直角な面に投影した後縁線が弓形に湾曲するように形成し、前記後縁線に沿って吹き出し口を設けたことを特徴とする。
【0031】
本発明によれば、内周壁と外周壁の近くで翼の腹側が壁の方向に向くように後縁線を弓形に湾曲させるので、主流の流れが壁面に押しつけられるように翼列から流出し、後縁からの吹き出しも壁の方向を向くので、二次流れ渦が壁から離れて巻き上がることを防止でき、二次流れ渦の巻き上がりに起因する損失を低減することができる。
【0032】
請求項の発明は、請求項1または2のいずれかに記載の軸流タービン翼において、翼の内部に設けた中空部と、翼後縁部に沿って設けた吹き出し口との間に、吹き出し流体の半径方向の流れの向きを制御する複数の流れ案内板、案内翼、もしくは案内通路を設けたことを特徴とする。
【0033】
本発明によれば、吹き出し流体の半径方向の流れの向きを制御する案内板、案内翼、もしくは案内通路を設けて吹き出し流体の流れを壁側に向くように流出させるので、翼の後流に二次流れ渦と反対の方向の流れを引き起こし、二次流れ損失を低減させることができる。
【0034】
請求項の発明は、請求項1からまでのいずれかに記載の軸流タービン翼において、前記吹き出し口を後縁の全長の内の前記内周壁および外周壁の極めて近くの一部を除く全領域に設けたことを特徴とする。
【0035】
本発明によれば、壁の極めて近くでは吹き出し口を設けないようにしたので、吹き出し流れが壁の境界層と干渉して混合と摩擦による損失を生ずることを防ぐことができる。
【0036】
請求項6の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁の近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする。
【0037】
本発明によれば、後縁ではなく翼表面から二次流れを妨げる方向に高圧流体を吹き出すので、二次流れ渦の発生段階で効果的に渦の成長を妨げることができて、効果的に二次流れ損失を低減することができる。
【0038】
請求項の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁の近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする。
【0039】
図1および図2は軸流タービンの第1実施形態を示している。なお、従来の構成と同一または対応する部分には図8および図9と同一の符号を用いて説明する。
【0040】
本実施形態では、図1および図2に示すように、作動流体流路の外周壁10を構成するケーシング4と内周壁11を構成する静翼内輪21との間に、周方向に数十枚の静翼1が接合固定されている。また、ロータ3には周方向に数十枚の動翼2が取り付けられ、高速で回転できる構成になっている。
【0041】
ケーシング4には高圧流体通路16が設けられており、図示しない上流のタ一ビン段落や外部の圧縮機などから、翼の加熱、冷却あるいは流れの制御等の目的で高圧流体が静翼1の内部の中空部に導かれるようになっている。なお、本実施形態は静翼を対象として説明しているが、動翼を対象とする場合には、高圧流体通路16がロータ3の内部に設けられる。
【0042】
図2は図1のB−B断面図であり、この図2R>2に示すように、中空部7と後縁吹き出し口9の間には、吹き出し通路8が設けられている。そして図1に示すように、吹き出し通路8は案内板14と、案内翼13とによって仕切られ、各半径ごとにあらかじめ決められた子午面傾斜角βで、高圧流体が後縁から吹き出すようになっている。
【0043】
タービン中心軸から計った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
[数3]
βm={βt(R−Rr)+βr(Rt−R)}/(Rt−Rr)
と定義した場合、後縁吹き出しの子午面傾斜角βが、
[数4]
R<(Rr+Rt)/2においてはβ<βm,
R>(Rr+Rt)/2においてはβ>βm
となるように、後縁吹き出し口9を形成する案内板14及び案内翼13の形状と半径方向の取り付け角度を調整している。
【0044】
内周壁11と外周壁10との壁際で、後縁全長のそれぞれ5%から10%の長さの位置までには後縁吹き出し口9を設けず、吹き出し通路内周側壁15と吹き出し通路外周側壁12とを設けている。
【0045】
次に、本実施形態の作用について説明する。高圧流体の流れFhは、中空部7から吹き出し通路8を通って後縁吹き出し口9から主流作動流体Fmに吹き出す間に、吹き出し通路8の中に設けられた案内板14、案内翼13、吹き出し通路外周側壁12、吹き出し通路内周側壁15によって、流路中央より外周壁寄りでは外周壁10の方向に、また内周壁寄りでは内周壁11の方向に向かう速度成分を与えられる。一方、壁の極めて近い位置には吹き出し口が開口していないので、壁の近くで吹き出した流体同士が衝突することがなく滑らかに流れる。
【0046】
このように本実施形態によれば、後縁からの吹き出しの方向を後縁に沿って内周壁11及び外周壁10の方向に傾斜させることができ、しかも壁の極めて近い位置に過度の集中をすることがないので、効果的に二次流れを抑制してタービン段落の損失を低減することができる。
【0047】
翼を周方向に傾斜させたり、湾曲させる従来の二次流れの抑制手段では、周方向に平均的な効果しか期待できないのに対し、本実施形態では二次流れの渦が集中する後流付近に、集中的に二次流れの渦と逆方向の流れを起こすものであり、より効果的に渦を減衰させることができる。
【0048】
図3は本発明を適用したタービン段落の半径方向の損失分布を示している。従来例とは逆に、後縁吹き出しを行なうことによって二次流れ損失が大幅に低減している。
【0049】
図4は、本発明の第2実施形態に係る軸流タービン翼を示している。本実施形態においては、静翼1が内周壁11外周壁10との間に接合固定されている。外周壁1Οには高圧流体入口17が開口しており、静翼内部の中空部7に連通している。
【0050】
そして、中空部7と後縁吹き出し口9との間の吹き出し通路8には、高圧流体の流れFhを壁方向に向けるために、案内板14が設けられている。静翼1は、内周壁11と外周壁10との近くで腹側(正圧面)がそれぞれ内周壁11および外周壁10の方向に向くように、タービン軸中心に直行した面に投影した後縁線を弓形に湾曲させている。
【0051】
このような第2実施形態の構成によると、翼の腹側が壁の方向に向くように後縁を弓形に湾曲させたことによって、吹き出し通路8を通る高圧流体の流れが自然に壁方向を向くようになり、高圧流体の流れの損失を低く押さえることができる。従って主流作動流体と翼内部に供給される高圧流体との圧力差が小さいときでも、二次流れの抑制効果を発揮することができる。
【0052】
図5は本発明の第3実施形態に係る軸流タービン翼を示している。本実施形態においては、外周壁10と内周壁11の間に接合固定されている静翼1の内部に、中空部7が形成されており、高圧流体入口17が中空部7の外周壁10側に開口している。静翼1の後縁20は、子午面から見て後縁中央部が下流側に突出するように弓形に湾曲している。
【0053】
ただし、内外壁の極めて近い位置で後縁20の湾曲部が終了し、後縁線と内外壁のなす角度が鋭角にならないように形成されている。後縁20部分の内部には吹き出し通路8が設けられ、吹き出し通路8は内外壁面の近くで吹き出し通路外周側壁12と吹き出し通路内周側壁15とによって仕切られている。
【0054】
このような第3実施形態によれば、中空部7に供給された高圧流体が吹き出し通路8を通って後縁20とほぼ直行する方向に噴出する。この場合、後縁20の形状が湾曲しているため、壁近くの高圧流体の流れは内外壁の方向に向かうことになる。従って、前記第1実施形態と同様の効果が奏される。すなわち、第3実施形態においては、吹き出し流れが後縁20に略直行して吹き出すので、吹き出し通路内部の案内板や案内翼を省略することができ、より単純な形状で二次流れ抑制効果を実現できる。
【0055】
図6および図7は、本発明の第4実施形態に係る軸流タービン翼を示している。本実施形態では、静翼1内部の中空部7から、腹側表面吹き出し口18と背側表面吹き出し口19とを設けている点が他の実施形態と異なっている。更に、腹側表面吹き出し口18は流路中央方向に吹き出すように開口し、背側表面吹き出し口19は壁側に向かって吹き出すようになっており、共に二次流れの渦の方向と逆の流れを作り出して、損失を低減する効果がある。
【0056】
【発明の効果】
以上で詳述したように、本発明に係る軸流タービン翼よれば、翼列の二次流れと反対方向の吹き出し流れを生じさせることができ、それによって二次流れの渦を減衰させることができる。従って、後縁や翼表面からの吹き出しによっては損失が増加せず、むしろ吹き出しによって効率が向上する等の効果が奏される。
【図面の簡単な説明】
【図1】 本発明に係る軸流タービン翼の第1実施形態を示す断面図。
【図2】 図1におけるB−B断面図。
【図3】 前記第1実施形態の効果を説明する全圧損失の高さ方向分布図。
【図4】 本発明に係る軸流タービン翼の第2実施形態を示す斜視図。
【図5】 本発明に係る軸流タービン翼の第3実施形態を示す断面図。
【図6】 本発明に係る軸流タービン翼の第4実施形態を示す断面図。
【図7】 本発明に係る軸流タービン翼の第4実施形態を異なる面で示す断面図。
【図8】 従来の軸流タービン翼を示す断面図。
【図9】 図8におけるΑ−Α断面図。
【図10】 従来の軸流タービン翼の問題点を説明する全圧損失係数の高さ方向分布図。
【図11】 軸流タービンの二次流れを説明する概念図。
【符号の説明】
1 静翼
2 動翼
3 ロータ
4 ケーシング
5 吸い込み口
6 バイパス通路
7 中空部
8 吹き出し通路
9 後縁吹き出し口
10 外周壁
11 内周壁
12 通路外周側壁
13 案内翼
14 案内板
15 吹き出し通路内周側壁
16 高圧流体通路
17 流体入口
18 腹側表面吹き出し口
19 背側表面吹き出し口
20 後縁
21 静翼内輪
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a stationary blade or a moving blade of an axial flow turbine, and in particular, for the purpose of heating, cooling, and flow control of a blade, a fluid is introduced into the blade and blown out from the blade trailing edge or the blade surface. The present invention relates to an axial-flow turbine blade having an improved shape of a blow-out port portion for flow optimization.
[0002]
[Prior art]
A turbine blade that has a hollow part inside the axial flow turbine blades and guides a fluid higher in pressure than the mainstream working fluid that flows around the blades to the inside of the blades and outflows from the trailing edge or blade surface. In order to improve the reliability, the gas turbine is generally used, and a configuration example applied to the steam turbine has already been proposed.
[0003]
In a gas turbine, in order to cool the turbine blades, air at a temperature lower than that of the turbine working fluid is extracted from the compressor and guided to the hollow portions inside the stationary blades and the moving blades of the turbine stage. It is blowing out from the surface.
[0004]
On the other hand, with regard to steam turbines, high-temperature and high-pressure steam is introduced into the turbine vanes used in wet steam to heat the vanes to re-evaporate the condensed water flowing on the surface, and the lower flow blades are eroded by moisture. Japanese Laid-Open Patent Application No. 50-112604 proposes a technique for preventing and further reducing the loss caused by the collision of water droplets.
[0005]
Further, for the purpose of reducing the secondary flow loss and the wake loss in the paragraph of a general axial flow fluid machine, a structure in which a part of the main flow is sucked from the blade surface and guided to the inside of the blade and blown out from the trailing edge is disclosed in JP-B-56. It is proposed in -14845.
[0006]
Of the above conventional techniques, a technique related to the steam turbine described in Japanese Patent Application Laid-Open No. 50-112604 will be specifically described.
[0007]
8 and 9 are examples of the steam turbine described above, and are examples of application to the low-pressure final stage. The paragraph of the turbine is composed of a plurality of stationary blades 1 arranged in the circumferential direction and a plurality of moving blades 2 arranged in the circumferential direction. The rotor blade 2 is implanted in the rotor 3 and rotates together with the rotor 3.
[0008]
The stationary blade 2 is fixed to the casing 4, and the passage-side surface of the casing 4 forms an outer peripheral wall 10 that surrounds the mainstream working fluid Fm flowing through the stationary blade 1 from the outside. The surface of the part forms an inner peripheral wall 11. A high-temperature and high-pressure working fluid suction port 5 is provided at the stationary blade inlet portion of the upstream stage of the final stage, and the steam taken from the suction port 5 passes through the bypass passage 6 and is a hollow portion 7 inside the stationary blade 1. Led to.
[0009]
9 is a cross-sectional view taken along the line AA in FIG. A trailing edge outlet 9 as an outlet is formed at the rear edge of the stationary blade 1, and the steam in the hollow portion 7 is guided to the trailing edge outlet 9 by the outlet passage 8.
[0010]
In the steam turbine configured as described above, steam which is normally dry at a higher temperature and pressure than the last stage is taken in from the suction port 5 and led to the hollow portion 7 through the bypass passage 6. The stationary blade 1 is heated by this steam, and a part of the condensed water flowing on the surface is evaporated again to become steam.
[0011]
The steam in the hollow portion 7 is blown out from the trailing edge blowout port 9 into the mainstream steam through the blowout passage 8. At this time, the water that has reached the trailing edge without being evaporated due to the heating of the stationary blade 1 is blown off and refined. As a result, both the total amount of moisture colliding with the moving blade 2 and the number of relatively large water droplets with strong erosion action are reduced, and the erosion of the moving blade 2 is reduced. The resulting degradation in paragraph performance is also reduced.
[0012]
In this prior art, the direction of injection from the trailing edge outlet 9 is made to substantially coincide with the direction of outflow of the working fluid, and the injection speed is equal to or slightly higher than the speed of the main flow of the working fluid. Has been.
[0013]
[Problems to be solved by the invention]
The steam turbine configured as described above causes a part of the steam to flow out together with moisture compared to a method in which condensed moisture on the stationary blade is sucked from the surface of the stationary blade and discharged to the outside. This seems to be desirable because it does not impair the performance of the paragraph and prevents erosion of the rotor blades. Therefore, the influence of blowout from the trailing edge on the paragraph performance was examined by the annular cascade test, and the following problems were clarified.
[0014]
FIG. 10 shows the loss distribution of the stationary blade in terms of the total pressure loss coefficient. The vertical axis represents the height position of the stationary blade outlet made dimensionless with the trailing edge height, and the horizontal axis represents the total pressure loss coefficient made dimensionless with the total pressure loss coefficient ζPCD at the center of the flow path when there is no blowing. ing. A solid line indicates a measured value when there is no trailing edge balloon, and a broken line indicates a measured value when there is a trailing edge balloon.
[0015]
The sudden increase in loss at a dimensionless height of 0.8 or more is due to the secondary flow generated by the low energy fluid on the outer peripheral wall surface 10 flowing into the main flow. In this part, the loss when there is a trailing edge blowout exceeds that without a blowout.
[0016]
On the other hand, when the dimensionless height is 0.5 to 0.7, the loss with blowing is slightly reduced. Therefore, when blowing is performed at a height between 0.8 and 1.0 on the outer peripheral wall side, the reduction in efficiency due to the blowing is large, and when blowing is performed at a height between 0.5 and 1.0. Is somewhat improved by reducing the loss near the center, but efficiency is still reduced.
[0017]
FIG. 11 is an explanatory diagram showing a simplified secondary flow downstream of the blade row. The portion of the low-energy flow that forms a boundary layer on the outer peripheral wall and the inner peripheral wall moves to the blade back side due to the pressure gradient from the ventral side to the back side of the cascade passage. The low-energy fluid that has reached the dorsal side further enters a position at a certain height on the dorsal side, where it forms a vortex away from the wing surface.
[0018]
Therefore, it can be seen that there is a velocity component toward the center of the flow path along the trailing edge in the influence region of the secondary flow. When blowing from the trailing edge here, the blown fluid is drawn into the secondary flow vortex and deflected in the same direction, and as a result, energy is supplied to the secondary flow vortex to increase the secondary flow loss. Conceivable.
[0019]
8 and 9, the circumferential angle of the blowing can be directed in the direction of the main flow of the working fluid by providing the blowing passage 8 as a relatively long running section. The flow direction along the flow path cannot be restricted at all, and as a result, the flow direction is determined by the state of the inlet and outlet of the blowing passage 8.
[0020]
As is apparent from the structure of the hollow portion 7 in FIG. 8, a flow from the outer peripheral wall toward the center of the flow path is generated in the hollow portion, which promotes the tendency to blow out in the direction of the secondary flow described above. . In order to clarify the phenomenon that the loss is reduced by the blowout near the center of the channel where the influence of the secondary flow does not reach much, a highly accurate numerical simulation of the flow is performed, and it usually occurs at the trailing edge without the blowout It was found that the backflow region was filled with the blowout flow, and the flow was stable without any disturbance due to the backflow.
[0021]
Therefore, in the center of the flow path, which is a two-dimensional flow, the blowout reduces the blade loss, but in some way near the inner and outer walls where the flow has a significant three-dimensionality, the flow direction of the blowout in the radial direction is somehow. Unless the air pressure is controlled, the blowout acts in the direction of increasing the secondary flow, and the efficiency of the turbine is reduced when viewed in the whole paragraph.
[0022]
Other conventional techniques have similar problems. Japanese Patent Publication No. 56-14845 does not control the blowout in the direction along the trailing edge. Instead, as a measure for reducing the secondary flow, the circumferential blowout outflow angle is changed to the geometric stationary blade outflow angle. 3 to 5 degrees offset from
[0023]
However, since the blade outflow angle varies with fluid conditions such as outflow velocity, and there is a difference of more than 1 degree in the main flow direction and in the wake just downstream of the trailing edge, finding an effective offset angle is not possible. It is actually quite difficult and the degree of effect is not considered sufficient.
[0024]
Many proposals have been made regarding gas turbine cooling blades. For example, Japanese Patent Laid-Open No. 6-137105 discloses a technique for reducing the secondary flow loss by increasing the opening area of the blow slit near the outer peripheral wall and the inner peripheral wall of the trailing edge. However, if the outflow direction is not controlled effectively only by taking a large opening area, the secondary flow is increased instead of the example described above.
[0025]
The present invention has been made in consideration of the above-described circumstances, and an axial flow turbine blade that functions so as not to increase loss by blowing high-pressure fluid from the blade trailing edge or blade surface, but rather to improve efficiency by blowing. The purpose is to provide.
[0026]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention of claim 1 is a stationary blade or a moving blade of an axial-flow turbine, wherein a hollow portion is formed inside the blade, and the hollow portion is formed at a trailing edge portion of the blade. A communication outlet is formed, and the fluid guided to the hollow portion at a higher pressure than the main flow operating fluid flowing in the working fluid passage around the blade trailing edge is allowed to flow from the outlet on the blade trailing edge to the working fluid passage. The rear edge near the inner peripheral wall located on the inner peripheral side is inclined in the direction inclined toward the inner peripheral wall side, and the outer edge located near the outer peripheral side of the working fluid channel is inclined in the direction inclined toward the outer peripheral wall side. In the axial flow turbine blade blown out to the working fluid flow path, the working fluid flow path in which the axial flow turbine blade is disposed is formed as an enlarged flow path whose flow path height increases in the flow direction. , The outlet from the turbine central axis The inclination angle of the outer peripheral wall is βt, the radius of the intersection of the outer peripheral wall and the rear edge is Rt, the inclination angle of the inner peripheral wall is βr, the radius of the intersection of the inner peripheral wall and the rear edge is Rr, and the rear edge position at an arbitrary radius R The average inclination angle βm defined in
[ Equation 1 ]
βm = {βt (R−Rt) + βr (Rt−R)} / (Rt−Rr)
The meridian inclination angle β of the trailing edge balloon is
[ Equation 2 ]
For R <(Rr + Rt) / 2, β <βm,
For R> (Rr + Rt) / 2, β> βm
And the secondary flow loss is reduced.
[0027]
According to the present invention, in an axial-flow turbine blade having an enlarged flow path, a geometric average inclination angle associated with the expansion of the flow path when blown from the trailing edge of the high-pressure fluid led to the hollow portion inside the blade. With reference to βm, the air is blown so as to incline toward the inner peripheral wall near the inner peripheral wall and toward the outer peripheral wall near the outer peripheral wall, so that a flow opposite to the secondary flow Fs shown in FIG. Secondary flow vortices can be weakened and secondary flow loss can be reduced.
[0030]
According to a second aspect of the invention, in axial flow turbine blade according to claim 1, ventral wing (positive pressure side), near the inner circumferential wall and outer circumferential wall so as to face to the inner circumferential wall and the outer peripheral wall, respectively, Katsuko Horse A trailing edge line projected onto a plane or a plane perpendicular to the turbine central axis is formed to be curved in an arcuate shape, and a blowout port is provided along the trailing edge line.
[0031]
According to the present invention, since the ventral side of the blade near the inner circumferential wall and the outer peripheral wall to bend the trailing edge line arcuately to face the direction of the wall, as mainstream flow be attached pushed to the wall outlet from Cascade In addition, since the blowout from the trailing edge also faces the wall, it is possible to prevent the secondary flow vortex from winding up away from the wall, and to reduce the loss due to the secondary flow vortex rolling up.
[0032]
Invention of Claim 3 is an axial-flow turbine blade in any one of Claim 1 or 2 , Between the hollow part provided in the inside of a blade, and the outlet provided along the blade trailing edge, A plurality of flow guide plates, guide vanes, or guide passages for controlling the flow direction of the blown-out fluid in the radial direction are provided.
[0033]
According to the present invention, a guide plate, a guide vane, or a guide passage for controlling the radial flow direction of the blown fluid is provided so that the flow of the blown fluid flows out toward the wall side. A flow in the direction opposite to the secondary flow vortex can be caused, and the secondary flow loss can be reduced.
[0034]
According to a fourth aspect of the present invention, in the axial-flow turbine blade according to any one of the first to third aspects, the blowout port is excluded from the inner peripheral wall and a part very close to the outer peripheral wall of the entire length of the trailing edge. It is provided in all areas.
[0035]
According to the present invention, since the blowout port is not provided very close to the wall, it is possible to prevent the blowout flow from interfering with the boundary layer of the wall and causing loss due to mixing and friction .
[0036]
According to a sixth aspect of the present invention, there is provided a stationary blade or a moving blade of an axial flow turbine, wherein a hollow portion is formed inside the blade, and a blowout port communicating with the hollow portion is formed at a rear edge portion of the blade. In the axial flow turbine blade, the fluid guided to the hollow portion at a pressure higher than that of the main flow working fluid flowing in the working fluid flow path around the trailing edge is blown out from the blowout port on the blade trailing edge side to the working fluid flow path. The blowing direction of the high-pressure fluid is on the inner wall near the inner wall on the back side of the blade, on the outer wall near the outer wall on the blade back side, on the outer wall side near the inner wall on the blade back side, In the vicinity of the outer peripheral wall on the blade side, the blade surface outlet is formed so as to face the inner peripheral wall side to reduce the secondary flow loss .
[0037]
According to the present invention, since the high-pressure fluid is blown out from the blade surface in the direction of preventing the secondary flow, not the trailing edge, the growth of the vortex can be effectively prevented at the generation stage of the secondary flow vortex. Secondary flow loss can be reduced.
[0038]
According to a fifth aspect of the present invention, there is provided a stationary blade or a moving blade of an axial-flow turbine, wherein a hollow portion is formed inside the blade, and a blowout port communicating with the hollow portion is formed at a rear edge portion of the blade. In the axial flow turbine blade, the fluid guided to the hollow portion at a pressure higher than that of the main flow working fluid flowing in the working fluid flow path around the trailing edge is blown out from the blowout port on the blade trailing edge side to the working fluid flow path. The blowing direction of the high-pressure fluid is on the inner wall near the inner wall on the back side of the blade, on the outer wall near the outer wall on the blade back side, on the outer wall side near the inner wall on the blade back side, In the vicinity of the outer peripheral wall on the blade side, the blade surface outlet is formed so as to face the inner peripheral wall side to reduce the secondary flow loss.
[0039]
1 and 2 show a first embodiment of an axial turbine. Incidentally, in the conventional configuration that is the same or corresponding portions will be described using the same reference numerals as FIGS.
[0040]
In this embodiment, as shown in FIG. 1 and FIG. 2, dozens of sheets in the circumferential direction between the casing 4 constituting the outer peripheral wall 10 of the working fluid flow path and the stationary blade inner ring 21 constituting the inner peripheral wall 11. The stationary blade 1 is joined and fixed. In addition, several tens of moving blades 2 are attached to the rotor 3 in the circumferential direction so that the rotor 3 can rotate at high speed.
[0041]
The casing 4 is provided with a high-pressure fluid passage 16, and high-pressure fluid is supplied to the stationary blade 1 for the purpose of heating, cooling or flow control of the blades from an upstream turbine bin stage or an external compressor (not shown). It is led to the hollow part inside. In addition, although this embodiment has been described for the stationary blade, the high-pressure fluid passage 16 is provided in the rotor 3 when the moving blade is the target.
[0042]
FIG. 2 is a cross-sectional view taken along the line B-B of FIG. 1. As shown in FIG. 2R> 2, a blowing passage 8 is provided between the hollow portion 7 and the trailing edge blowing port 9. As shown in FIG. 1, the blowing passage 8 is partitioned by the guide plate 14 and the guide vanes 13, and the high-pressure fluid is blown out from the trailing edge at a meridional surface inclination angle β determined in advance for each radius. ing.
[0043]
The inclination angle of the outer peripheral wall measured from the turbine central axis is βt, the radius of the intersection of the outer peripheral wall and the rear edge is Rt, the inclination angle of the inner peripheral wall is βr, the radius of the intersection of the inner peripheral wall and the rear edge is Rr, and an arbitrary radius R The average inclination angle βm defined by the trailing edge position at
[Equation 3]
βm = {βt (R−Rr) + βr (Rt−R)} / (Rt−Rr)
The meridian inclination angle β of the trailing edge balloon is
[Equation 4]
For R <(Rr + Rt) / 2, β <βm,
For R> (Rr + Rt) / 2, β> βm
Thus, the shape of the guide plate 14 and the guide blade 13 that form the trailing edge outlet 9 and the mounting angle in the radial direction are adjusted.
[0044]
The trailing edge outlet 9 is not provided at the position between the inner peripheral wall 11 and the outer peripheral wall 10 at a length of 5% to 10% of the total length of the trailing edge, and the outlet passage inner peripheral side wall 15 and the outlet passage outer peripheral side wall are not provided. 12 are provided.
[0045]
Next, the operation of this embodiment will be described. While the high-pressure fluid flow Fh is blown from the hollow portion 7 through the blowout passage 8 to the mainstream working fluid Fm from the trailing edge blowout port 9, the guide plate 14, guide vanes 13 and blowout provided in the blowout passage 8 are blown out. The passage outer peripheral side wall 12 and the blowout passage inner peripheral side wall 15 give a speed component from the center of the flow path toward the outer peripheral wall 10 near the outer peripheral wall and toward the inner peripheral wall 11 near the inner peripheral wall. On the other hand, since the outlet is not open at a position very close to the wall, the fluids blown out near the wall flow smoothly without colliding with each other.
[0046]
Thus, according to the present embodiment, the direction of blowing from the rear edge can be inclined along the rear edge in the direction of the inner peripheral wall 11 and the outer peripheral wall 10, and excessive concentration is made at a position very close to the wall. Therefore, it is possible to effectively suppress the secondary flow and reduce the turbine stage loss.
[0047]
The conventional secondary flow suppression means that inclines or curves the blade in the circumferential direction can only expect an average effect in the circumferential direction, but in this embodiment, the vicinity of the wake where the secondary flow vortices concentrate In addition, the flow in the opposite direction to the vortex of the secondary flow is caused intensively, and the vortex can be attenuated more effectively.
[0048]
FIG. 3 shows the loss distribution in the radial direction of the turbine stage to which the present invention is applied. Contrary to the conventional example, the secondary flow loss is greatly reduced by performing the trailing edge blowing.
[0049]
FIG. 4 shows an axial turbine blade according to the second embodiment of the present invention. In the present embodiment, the stationary blade 1 is bonded and fixed between the inner peripheral wall 11 and the outer peripheral wall 10. A high-pressure fluid inlet 17 is opened in the outer peripheral wall 1 and communicates with the hollow portion 7 inside the stationary blade.
[0050]
A guide plate 14 is provided in the blowout passage 8 between the hollow portion 7 and the trailing edge blowout port 9 in order to direct the flow Fh of the high-pressure fluid in the wall direction. The stationary blade 1 is a rear edge projected on a surface orthogonal to the turbine shaft center so that the ventral side (positive pressure surface) is directed toward the inner peripheral wall 11 and the outer peripheral wall 10 near the inner peripheral wall 11 and the outer peripheral wall 10. The line is curved in a bow shape.
[0051]
According to the configuration of the second embodiment, the flow of the high-pressure fluid passing through the blowing passage 8 naturally faces the wall direction by curving the trailing edge in an arc shape so that the ventral side of the wing faces the wall direction. Thus, the flow loss of the high-pressure fluid can be kept low. Therefore, even when the pressure difference between the mainstream working fluid and the high-pressure fluid supplied into the blade is small, the effect of suppressing the secondary flow can be exhibited.
[0052]
FIG. 5 shows an axial turbine blade according to the third embodiment of the present invention. In the present embodiment, the hollow portion 7 is formed inside the stationary blade 1 joined and fixed between the outer peripheral wall 10 and the inner peripheral wall 11, and the high-pressure fluid inlet 17 is on the outer peripheral wall 10 side of the hollow portion 7. Is open. The trailing edge 20 of the stationary blade 1 is curved in an arc shape so that the central portion of the trailing edge protrudes downstream as viewed from the meridian plane.
[0053]
However, the curved portion of the rear edge 20 ends at a position very close to the inner and outer walls, and the angle formed by the rear edge line and the inner and outer walls does not become an acute angle. Inside the trailing edge 20 portion is provided blowout passage 8, blowout passage 8 is partition is by the passage peripheral side wall 15 and blowing passage peripheral side wall 12 balloon near the inner and outer walls.
[0054]
According to the third embodiment as described above, the high-pressure fluid supplied to the hollow portion 7 is ejected through the blowing passage 8 in a direction substantially perpendicular to the trailing edge 20. In this case, since the shape of the trailing edge 20 is curved, the flow of the high-pressure fluid near the wall is directed toward the inner and outer walls. Accordingly, the same effects as those of the first embodiment can be obtained. That is, in the third embodiment, since the blowing flow blows out substantially straight to the trailing edge 20, the guide plate and the guide vanes inside the blowing passage can be omitted, and the secondary flow suppression effect can be achieved with a simpler shape. realizable.
[0055]
6 and 7 show an axial turbine blade according to the fourth embodiment of the present invention. This embodiment is different from the other embodiments in that a ventral surface outlet 18 and a back surface outlet 19 are provided from the hollow portion 7 inside the stationary blade 1. Further, the ventral surface outlet 18 is opened so as to blow out toward the center of the flow path, and the back side outlet 19 is blown out toward the wall, both of which are opposite to the direction of the secondary flow vortex. It has the effect of creating a flow and reducing losses.
[0056]
【The invention's effect】
As described in detail above, according to the axial turbine blade according to the present invention, it is possible to generate a blow-out flow in a direction opposite to the secondary flow of the blade row, thereby attenuating the secondary flow vortex. it can. Therefore, the loss does not increase due to the blowout from the trailing edge or the blade surface, but rather the effect of improving the efficiency due to the blowout is achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of an axial turbine blade according to the present invention.
FIG. 2 is a cross-sectional view taken along the line BB in FIG.
FIG. 3 is a distribution diagram in the height direction of total pressure loss for explaining the effect of the first embodiment;
FIG. 4 is a perspective view showing a second embodiment of an axial turbine blade according to the present invention.
FIG. 5 is a cross-sectional view showing a third embodiment of an axial turbine blade according to the present invention.
FIG. 6 is a sectional view showing a fourth embodiment of an axial turbine blade according to the present invention.
FIG. 7 is a cross-sectional view showing a fourth embodiment of an axial turbine blade according to the present invention in a different plane.
FIG. 8 is a sectional view showing a conventional axial turbine blade.
9 is a cross-sectional view taken along the line Α-Α in FIG. 8;
FIG. 10 is a distribution diagram in the height direction of the total pressure loss coefficient for explaining problems of a conventional axial turbine blade.
FIG. 11 is a conceptual diagram illustrating a secondary flow of an axial turbine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator blade 2 Rotor blade 3 Rotor 4 Casing 5 Suction port 6 Bypass passage 7 Hollow part 8 Outlet passage 9 Rear edge outlet 10 Outer peripheral wall 11 Inner peripheral wall 12 Passage outer peripheral side wall 13 Guide vane 14 Guide plate 15 Outlet passage inner peripheral side wall 16 High pressure fluid passage 17 Fluid inlet 18 Ventral surface outlet 19 Back side outlet 20 Rear edge 21 Stator blade inner ring

Claims (5)

軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路の内周側に位置する内周壁近くの後縁ではその内周壁側に傾斜する方向に、また前記作動流体流路の外周側に位置する外周壁近くではその外周壁側に傾斜する方向にそれぞれ傾けて前記作動流体流路に吹き出すようにした軸流タービン翼において、当該軸流タービン翼が配置される作動流体流路は流れの方向に流路高さが増加する拡大流路に形成されるとともに、前記吹き出し口を、タービン中心軸から図った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
[ 数1 ]
βm={βt(R−Rt)+βr(Rt−R)}/(Rt−Rr)
と定義した場合、後縁吹き出しの子午面傾斜角βが、
[ 数2 ]
R<(Rr+Rt)/2においてはβ<βm,
R>(Rr+Rt)/2においてはβ>βm
となるように形成して二次流れ損失を低減させたことを特徴とする軸流タービン翼。
A stationary blade or a moving blade of an axial-flow turbine, in which a hollow portion is formed inside the blade, and a blowout port communicating with the hollow portion is formed in a rear edge portion of the blade so that a working fluid flow around the blade trailing edge The fluid guided to the hollow portion at a pressure higher than that of the mainstream working fluid flowing in the passage is the inner peripheral wall of the rear edge near the inner peripheral wall located on the inner peripheral side of the working fluid flow path from the outlet on the blade trailing edge side. In an axial turbine blade that is inclined in the direction inclined to the side and near the outer peripheral wall located on the outer peripheral side of the working fluid flow path, and is inclined to the direction inclined to the outer peripheral wall side, and blown out to the working fluid flow path. The working fluid flow path in which the axial turbine blade is disposed is formed as an enlarged flow path whose flow path height increases in the flow direction, and the blowout port is inclined on the outer peripheral wall from the turbine central axis. The angle of βt, the intersection of the outer wall and the trailing edge The diameter Rt, .beta.r the inclination angle of the inner peripheral wall, the radius of the intersection of the inner wall and a trailing edge and Rr, the average inclination angle βm defined trailing edge position in any radius R,
[ Equation 1 ]
βm = {βt (R−Rt) + βr (Rt−R)} / (Rt−Rr)
The meridian inclination angle β of the trailing edge balloon is
[ Equation 2 ]
For R <(Rr + Rt) / 2, β <βm,
For R> (Rr + Rt) / 2, β> βm
An axial-flow turbine blade characterized in that the secondary flow loss is reduced by forming the same .
請求項1記載の軸流タービン翼において、翼の腹側(正圧側)を、内周壁および外周壁の近くでそれぞれ内周壁と外周壁とに向くように、かつ子午面またはタービン中心軸に直角な面に投影した後縁線が弓形に湾曲するように形成し、前記後縁線に沿って吹き出し口を設けたことを特徴とする軸流タービン翼。The axial-flow turbine blade according to claim 1, wherein the blade's ventral side (positive pressure side) faces the inner peripheral wall and the outer peripheral wall near the inner peripheral wall and the outer peripheral wall, respectively, and is perpendicular to the meridian plane or the turbine central axis. An axial-flow turbine blade, characterized in that a trailing edge line projected onto a flat surface is curved in an arcuate shape and a blowout port is provided along the trailing edge line. 請求項1または2のいずれかに記載の軸流タービン翼において、翼の内部に設けた中空部と、翼後縁部に沿って設けた吹き出し口との間に、吹き出し流体の半径方向の流れの向きを制御する複数の流れ案内板、案内翼、もしくは案内通路を設けたことを特徴とする軸流タービン翼。 3. The axial flow turbine blade according to claim 1, wherein a radial flow of the blown fluid is provided between a hollow portion provided in the blade and a blowout port provided along the blade trailing edge. An axial turbine blade comprising a plurality of flow guide plates, guide blades, or guide passages for controlling the direction of the flow. 請求項1からまでのいずれかに記載の軸流タービン翼において、前記吹き出し口を後縁の全長の内の前記内周壁および外周壁の極めて近くの一部を除く全領域に設けたことを特徴とする軸流タービン翼。The axial flow turbine blade according to any one of claims 1 to 3 , wherein the blowout port is provided in the entire region excluding the inner peripheral wall and a part very close to the outer peripheral wall in the entire length of the rear edge. A characteristic axial-flow turbine blade. 軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする軸流タービン翼。  A stationary blade or a moving blade of an axial-flow turbine, in which a hollow portion is formed inside the blade, and a blowout port communicating with the hollow portion is formed in a rear edge portion of the blade so that a working fluid flow around the blade trailing edge The axial flow turbine blade in which the fluid guided to the hollow portion at a pressure higher than that of the mainstream working fluid flowing in the passage is blown out from the outlet on the blade trailing edge side to the working fluid flow path has a high-pressure fluid blowing direction. Near the inner wall on the blade back side, on the inner wall side, near the outer wall on the blade back side, on the outer wall side, near the inner wall on the blade belly side, on the outer wall side, near the outer wall on the blade belly side Then, an axial flow turbine blade is characterized in that a blade surface outlet is formed so as to face the inner peripheral wall side to reduce secondary flow loss.
JP00771896A 1996-01-19 1996-01-19 Axial turbine blade Expired - Lifetime JP3786458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00771896A JP3786458B2 (en) 1996-01-19 1996-01-19 Axial turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00771896A JP3786458B2 (en) 1996-01-19 1996-01-19 Axial turbine blade

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005202157A Division JP2005299680A (en) 2005-07-11 2005-07-11 Axial-flow turbine blade

Publications (2)

Publication Number Publication Date
JPH09195705A JPH09195705A (en) 1997-07-29
JP3786458B2 true JP3786458B2 (en) 2006-06-14

Family

ID=11673520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00771896A Expired - Lifetime JP3786458B2 (en) 1996-01-19 1996-01-19 Axial turbine blade

Country Status (1)

Country Link
JP (1) JP3786458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591175A1 (en) * 2018-07-02 2020-01-08 Siemens Aktiengesellschaft Exhaust outlet of a steam turbine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099252A (en) * 1998-11-16 2000-08-08 General Electric Company Axial serpentine cooled airfoil
US6164913A (en) * 1999-07-26 2000-12-26 General Electric Company Dust resistant airfoil cooling
US6419446B1 (en) * 1999-08-05 2002-07-16 United Technologies Corporation Apparatus and method for inhibiting radial transfer of core gas flow within a core gas flow path of a gas turbine engine
IT1319140B1 (en) * 2000-11-28 2003-09-23 Nuovo Pignone Spa REFRIGERATION SYSTEM FOR STATIC GAS TURBINE NOZZLES
DE60041774D1 (en) * 2000-12-05 2009-04-23 United Technologies Corp rotor blade
JP4724034B2 (en) * 2005-03-31 2011-07-13 株式会社東芝 Axial flow turbine
GB2440344A (en) * 2006-07-26 2008-01-30 Christopher Freeman Impulse turbine design
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
US8790084B2 (en) * 2011-10-31 2014-07-29 General Electric Company Airfoil and method of fabricating the same
EP2816199B1 (en) * 2013-06-17 2021-09-01 General Electric Technology GmbH Control of low volumetric flow instabilities in steam turbines
JP2015048716A (en) * 2013-08-30 2015-03-16 株式会社東芝 Steam turbine
JP2017053287A (en) * 2015-09-10 2017-03-16 新日本造機株式会社 Steam turbine
US11149549B2 (en) 2016-08-09 2021-10-19 Mitsubishi Heavy Industries Compressor Corporation Blade of steam turbine and steam turbine
JP6637455B2 (en) * 2017-02-10 2020-01-29 三菱日立パワーシステムズ株式会社 Steam turbine
CN111022127B (en) * 2019-11-29 2021-12-03 大连理工大学 Turbine blade trailing edge curved exhaust split structure
CN115680785A (en) * 2021-07-30 2023-02-03 上海电气电站设备有限公司 Stationary blade cascade for reducing blast temperature and steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591175A1 (en) * 2018-07-02 2020-01-08 Siemens Aktiengesellschaft Exhaust outlet of a steam turbine

Also Published As

Publication number Publication date
JPH09195705A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP3786458B2 (en) Axial turbine blade
EP0992654B1 (en) Coolant passages for gas turbine components
US8262340B2 (en) Turbomachine exerting dynamic influence on the flow
JP3671981B2 (en) Turbine shroud segment with bent cooling channel
US8202039B2 (en) Blade shroud with aperture
EP2148042B1 (en) A blade for a rotor having a squealer tip with a partly inclined surface
JPS6349522Y2 (en)
JP4063937B2 (en) Turbulence promoting structure of cooling passage of blade in gas turbine engine
JP5235253B2 (en) Convex compressor casing
JP2001065306A (en) Coolable stator vane for rotating machine
JP2001059402A (en) Method for cooling turbine section of rotating machine
JPH0353442B2 (en)
JP2003065299A (en) Compressor assembly of gas turbine engine
JPH0370084B2 (en)
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
JPH0319882B2 (en)
GB2127105A (en) Improvements in cooled gas turbine engine aerofoils
KR20210103391A (en) Impingement insert for re-using impingement air in an airfoil, airfoil comprising an Impingement insert, turbomachine component and a gas turbine having the same
JP2005299680A (en) Axial-flow turbine blade
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
EP0278434A2 (en) A blade, especially a rotor blade
WO2019102231A1 (en) A flow assembly for an axial turbomachine
EP3981953B1 (en) Film cooling structure and turbine blade for gas turbine engine
KR20030063369A (en) Axial flow turbo compressor
KR20220040981A (en) A technique for cooling squealer tip of a gas turbine blade

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term